〈 «入入 RelationalAI

Logic \＆Algorithms \in DB \＆AI－Simons 2023
Output Cardinality Bounds and Information Theory

Hung Q．Ngo

Outline

The Query Optimization (and Evaluation) Problem

Cardinality Bounds and Worst-Case Optimal Joins

The Bound Hierarchy Under Degree Constraints

Research Questions

References

Listing Triangles

In English

Given a (directed/undirected) graph G, find all triangles in G.

In Logic

$$
\begin{aligned}
& Q(a, b, c) \leftarrow E(a, b) \wedge E(b, c) \wedge E(c, a) \\
& Q(a, b, c) \leftarrow E(a, b) \wedge E(b, c) \wedge E(c, a) \wedge a<b \wedge b<c
\end{aligned}
$$

Or, more generally:

$$
Q(a, b, c) \leftarrow R(a, b) \wedge S(b, c) \wedge T(c, a)
$$

4-Cycle Detection

In English
Given a graph G, does it have a 4 -cycle?

In Logic

$$
Q() \leftarrow \exists a, b, c, d \quad E(a, b) \wedge E(b, c) \wedge E(c, d) \wedge E(d, a)
$$

Counting 3-Walks

In English

Given a graph G, how many 3-walks are there in G ?

In Sum-Product Form

$$
Q()=\sum_{a, b, c, d} E(a, b) \cdot E(b, c) \cdot E(c, d)
$$

Counting 3-Paths

In English

Given a graph G, how many 3-paths are there in G ?
In Sum-Product Form

$$
Q()=\sum_{a, b, c, d} E(a, b) \cdot E(b, c) \cdot E(c, d) \cdot \mathbf{1}_{a \neq b} \cdot \mathbf{1}_{a \neq c} \cdot \mathbf{1}_{a \neq d} \cdot \mathbf{1}_{b \neq c} \cdot \mathbf{1}_{b \neq d} \cdot \mathbf{1}_{c \neq d}
$$

All-Pairs Shortest Paths (APSP)

In English

Given a graph G, compute the shortest path lengths between every pair of vertices.

In Datalogo (recursive query!)

$$
\begin{array}{ll}
Q[x, y]=\min \left(E[x, y], \min _{z}\{Q[x, z]+E[z, y]\}\right) & \text { linear-form } \\
Q[x, y]=\min \left(E[x, y], \min _{z}\{Q[x, z]+Q[z, y]\}\right) & \text { binary-form }
\end{array}
$$

The Main Query Optimization / Evaluation Problem

Given Q and \mathbf{D}, compute $Q(\mathbf{D})$ in the most efficient (optimal!?) way possible.

Incremental View Mainteance (IVM) (a.k.a. Dynamic Algorithms)
Given an update to \boldsymbol{D}, how do we update $Q(\boldsymbol{D})$ efficiently?

Precise Problem Formulation

- What do you mean by "query"?
- Full conjunctive queries
- Sum-product queries
- ... First-Order, Second-Order, Rank-Enumeration
- What is in the statistical profile $s(\boldsymbol{D})$?
- Degree constraints
- ... Frequency moment constraints, histograms, samples, ML models
- What do you mean by "optimality"?
- Worst-Case Optimality
- Instance Optimality
- ... Fine-grained complexity.
- Optimizer designed to work before seeing Q.
- Optimizer = Meta-Algorithm (input: problem, output: algorithm)
- Tutorial on 3 meta-algorithms: join, variable elimination, tensor decomposition

Outline

The Query Optimization (and Evaluation) Problem

Cardinality Bounds and Worst-Case Optimal Joins

The Bound Hierarchy Under Degree Constraints

Research Questions

References

Worst-Case Cardinality Bound

Worst-Case Optimal Join (WCOJ) Algorithm

Definition

A "worst-case optimal" join algorithm is an algorithm computing $Q(\boldsymbol{D})$ in time

$$
\tilde{O}\left(|\boldsymbol{D}|+\sup _{\boldsymbol{D}^{\prime} \models s(\boldsymbol{D})}\left|Q\left(\boldsymbol{D}^{\prime}\right)\right|\right)
$$

\tilde{O} hides \log and query dependent factors

(For Now) Q is a Full Conjunctive Queries

In a movie database

Q(director, actor, movie, actor_age, name) \leftarrow
parent(director, actor)
\wedge acted_in(actor, movie)
\wedge director_of(director, movie)
\wedge age(actor, actor_age) \wedge (20 < actor_age \vee actor_age != 10)
\wedge person_name(director, name) \wedge regex_match(".*spiel.*", name)

In a graph database with edge relation E,
$\mathrm{Q}(\mathrm{a}, \mathrm{b}, \mathrm{c}) \leftarrow \mathrm{E}(\mathrm{a}, \mathrm{b}) \wedge \mathrm{E}(\mathrm{a}, \mathrm{c}) \wedge \mathrm{E}(\mathrm{b}, \mathrm{c})$

(For Now) Q is a Full Conjunctive Queries

More generally, $\mathcal{H}=(V, \mathcal{E})$ is the hypergraph of a query:

$$
Q\left(\boldsymbol{X}_{V}\right) \leftarrow \bigwedge_{S \in \mathcal{E}} R_{S}\left(\boldsymbol{X}_{S}\right)
$$

For example $\mathrm{Q}(\mathrm{a}, \mathrm{b}, \mathrm{c}) \leftarrow \mathrm{E}(\mathrm{a}, \mathrm{b}) \wedge \mathrm{E}(\mathrm{a}, \mathrm{c}) \wedge \mathrm{E}(\mathrm{b}, \mathrm{c})$

- $V=\{a, b, c\}$
- $\mathcal{H}=(V, \mathcal{E})=(V,\{a b, a c, b c\})$
- $R_{F}=E$ for all $F \in \mathcal{E}$.

What is in the Statistical Profile $s(\boldsymbol{D})$?

Degree Constraints

Relation R (actor, movie, role), imagine a frequency vector $\boldsymbol{d}_{\text {actor }}$ (billions of entries)

actor	movie	role
alice		
bob		
carol		
carol		

$$
\begin{aligned}
d_{\text {actor }}(\text { alice }) & =1 \quad d_{\text {actor }}(\text { bob })=4 \\
d_{\text {actor }}(\text { carol }) & =2 \\
d_{\text {actor }}(v) & =0 \quad v \notin\{\text { alice, bob, carol }\}
\end{aligned}
$$

The profile $s(\boldsymbol{D})$ contains degree constraints:

- $\left\|d_{\text {actor }}\right\|_{\infty}=4$ (degree constraint!)
- $\left\|\boldsymbol{d}_{\emptyset}\right\|_{\infty}=7=|R|$ (cardinality constraint!)
- $\left\|d_{\text {actor,movie }}\right\|_{\infty}=1$ (functional dependency)

General DC : (X, Y, N) in relation R means $\left|\pi_{Y} \sigma_{X=x} R\right| \leq N, \forall x$

Outline

The Query Optimization (and Evaluation) Problem

Cardinality Bounds and Worst-Case Optimal Joins

The Bound Hierarchy Under Degree Constraints

Research Questions

References

Hierarchy of Set Functions

$h: 2^{[n]} \rightarrow \mathbb{R}_{+}$, non-negative, monotone, $h(\emptyset)=0, h(X) \leq h(Y)$ if $X \subseteq Y$

$$
\mathrm{SA}_{n}:=\{h \mid h \text { is sub-additive }\} \quad h(X \cup Y) \leq h(X)+h(Y)
$$

$$
\Gamma_{n}:=\{h \mid h \text { is submodular }\}=\text { polymatroids }
$$

$$
h(X \cup Y)+h(X \cap Y) \leq h(X)+h(Y)
$$

$\bar{\Gamma}_{n}^{*}$: topological closure of Γ_{n}^{*}, almost entropic

$$
\Gamma_{n}^{*}=\{h: h \text { is entropic }\}
$$

N_{n} : Normal convex-hull of step functions (weighted coverage functions) (non-negative multivariate mutual information)

$$
M_{n}: \text { Modular } \quad h(X)=\sum_{x \in X} h(x)
$$

Size-Bound Hierarchy

$$
\begin{aligned}
\log \sup _{\boldsymbol{D}^{\prime}=s(\boldsymbol{D})}\left|Q\left(\boldsymbol{D}^{\prime}\right)\right| & =\operatorname{combinatorial-bound}(Q, s) \quad \text { computable but impractical } \\
& \leq \text { entropic-bound }(Q, s) \\
& \leq \operatorname{polymatroid-bound}(Q, s) \\
& \leq \text { flow-bound }(Q, s, \sigma) \\
& \leq \operatorname{chain-bound}(Q, s, \sigma) \\
& \leq \operatorname{agm}-\operatorname{bound}(Q, s) \\
& \leq \text { integral-edge-cover }(Q, s)
\end{aligned}
$$

Simple Example

- $Q(a, b, c)=R(a, b) \wedge S(b, c) \wedge T(a, c)$
- $\boldsymbol{D}=\{R, S, T\}$
- $s(D)=\{|R|,|S|,|T|\}$
$|R|,|S|,|T|$ are integers, in the order of 10^{9} or more

$$
Q(a, b, c) \leftarrow R(a, b) \wedge S(b, c) \wedge T(a, c)
$$

$$
s(\boldsymbol{D})=\{|R|,|S|,|T|\}
$$

$$
\begin{array}{rlr}
\max & \sum_{a, b, c} \mathbf{1}_{R(a, b)} \mathbf{1}_{S(a, c)} \mathbf{1}_{T(b, c)} \\
\text { s.t } & \sum_{a, b} \mathbf{1}_{R(a, b)} \leq|R| \\
& \sum_{b, c} \mathbf{1}_{S(b, c)} \leq|S| \\
& \sum_{a, c} \mathbf{1}_{T(a, c)} \leq|T|
\end{array}
$$

Can turn this into a linear integer program, but does not help much.

Entropy Argument [CGFS 86]

$$
Q(a, b, c) \leftarrow R(a, b) \wedge S(b, c) \wedge T(a, c)
$$

$$
s(\boldsymbol{D})=\{|R|,|S|,|T|\}
$$

- Fix a worst-case input R, S, T. Select tuples $(a, b, c) \in Q$ uniformly at random
- Let h be the entropy function of this 3D-distribution, then

$$
\begin{aligned}
\log \sup _{\boldsymbol{D}^{\prime} \models s(\boldsymbol{D})}\left|Q\left(\boldsymbol{D}^{\prime}\right)\right|=h(a, b, c) & \\
h(a, b) & \leq \log |R| \\
h(b, c) & \leq \log |S| \\
h(a, c) & \leq \log |T| \\
h & \in \Gamma_{3}^{*} \quad h \text { is entropic }
\end{aligned}
$$

Entropic Bound

$$
Q(a, b, c) \leftarrow R(a, b) \wedge S(b, c) \wedge T(a, c)
$$

$$
s(\boldsymbol{D})=\{|R|,|S|,|T|\}
$$

$$
\log \sup _{\boldsymbol{D}^{\prime} \mid=s(\boldsymbol{D})}\left|Q\left(\boldsymbol{D}^{\prime}\right)\right| \leq \max \quad h(a, b, c)
$$

$$
\begin{array}{ll}
\text { s.t. } & h(a, b) \leq \log |R|, \\
& h(b, c) \leq \log |S|, \\
& h(a, c) \leq \log |T|, \\
& h \in \Gamma_{3}^{*}
\end{array}
$$

Polymatroid Bound

$$
Q(a, b, c) \leftarrow R(a, b) \wedge S(b, c) \wedge T(a, c)
$$

$$
s(\boldsymbol{D})=\{|R|,|S|,|T|\}
$$

$$
\begin{aligned}
\log \sup _{\boldsymbol{D}^{\prime} \vDash s(\boldsymbol{D})}\left|Q\left(\boldsymbol{D}^{\prime}\right)\right| \leq \max & h(a, b, c) \\
\text { s.t. } & h(a, b) \leq \log |R|, \\
& h(b, c) \leq \log |S|, \\
& h(a, c) \leq \log |T|,
\end{aligned}
$$

$$
h \in \Gamma_{3} \quad h \text { is a polymatroid }
$$

$$
\max \left\{h(a, b, c)|h(a, b) \leq \log | R|, h(b, c) \leq \log | S|, h(a, c) \leq \log | T \mid, h \in \Gamma_{3}\right\}
$$

Define a modular $g \in M_{3}$ as follows, then g satisfies all constraints:

$$
\begin{array}{lll}
g(a)=h(a) & g(a b)=g(a)+g(b) & =h(a b) \\
g(b)=h(b \mid a) & g(b c)=g(b)+g(c)=h(a b c)-h(a) & \leq h(b c) \\
g(c)=h(c \mid a b) & g(a c)=g(a)+g(c)=h(a b c)+h(a)-h(a b) & \leq h(a c) \\
& g(a b c)=h(a b c) &
\end{array}
$$

Problem can be reformulated, optimized over modular functions g :

$$
\begin{aligned}
& \max \quad g(a)+g(b)+g(c) \\
& \quad g(a)+g(b) \leq \log |R|, \quad g(b)+g(c) \leq \log |S|, \quad g(a)+g(c) \leq \log |T| \\
& \quad g(a), g(b), g(c) \geq 0
\end{aligned}
$$

AGM-Bound

The Triangle Query

Vertex packing LP

$\max \quad g(a)+g(b)+g(c)$

$$
\begin{aligned}
& g(a)+g(b) \leq \log |R|, \quad g(b)+g(c) \leq \log |S|, \quad g(a)+g(c) \leq \log |T|, \\
& g(a), g(b), g(c) \geq 0
\end{aligned}
$$

Fractional edge cover LP
[AGM 2008] took the dual of the above LP:

$$
\begin{array}{ll}
\min & \lambda_{a b} \log |R|+\lambda_{b c} \log |S|+\lambda_{a c} \log |T| \\
& \lambda_{a b}+\lambda_{a c} \geq 1 \\
& \lambda_{a b}+\lambda_{b c} \geq 1 \\
& \lambda_{b c}+\lambda_{a c} \geq 1 \\
& \boldsymbol{\lambda} \geq \mathbf{0} .
\end{array}
$$

Integral Edge Cover Bound

$$
Q(a, b, c) \leftarrow R(a, b) \wedge S(b, c) \wedge T(a, c) \quad s(D)=\{|R|,|S|,|T|\}
$$

$$
\log \sup _{\boldsymbol{D}^{\prime} \models=s(\boldsymbol{D})}\left|Q\left(\boldsymbol{D}^{\prime}\right)\right| \leq \log \min \{|R| \cdot|S|,|R| \cdot|T|,|S| \cdot|T|\}
$$

How Tight Are The Bounds?

We used the example to illustrate the following bounds / concepts:

$$
\begin{aligned}
\log \sup _{\boldsymbol{D}^{\prime} \models s(\boldsymbol{D})}\left|Q\left(\boldsymbol{D}^{\prime}\right)\right| & =\operatorname{combinatorial-bound}(Q, s) \quad \text { (computable but impractical) } \\
& \leq \operatorname{entropic-bound}(Q, s) \\
& =\operatorname{polymatroid}-\operatorname{bound}(Q, s) \\
& =\operatorname{modular-bound}(Q, s) \\
& =\operatorname{agm-bound}(Q, s) \\
& \leq \operatorname{integral-edge-cover}(Q, s)
\end{aligned}
$$

How Tight Are The Bounds?

Let g be an optimal solution to the modular bound:
$\max \quad g(a)+g(b)+g(c)$

$$
\begin{aligned}
& g(a)+g(b) \leq \log |R|, \quad g(b)+g(c) \leq \log |S|, \quad g(a)+g(c) \leq \log |T|, \\
& g(a), g(b), g(c) \geq 0
\end{aligned}
$$

Then, $\sup _{\boldsymbol{D}^{\prime} \neq s(\boldsymbol{D})}\left|Q\left(\boldsymbol{D}^{\prime}\right)\right| \leq$ modular-bound $=2^{g(a)+g(b)+g(c)}=2^{g(a)} \times 2^{g(b)} \times 2^{g(c)}$
Construct a database instance \boldsymbol{D}^{\prime}
[AGM 08]

- $R=\left[\left\lfloor 2^{g(a)}\right\rfloor\right] \times\left[\left\lfloor 2^{g(b)}\right\rfloor\right], S=\left[\left\lfloor 2^{g(b)}\right\rfloor\right] \times\left[\left\lfloor 2^{g(c)}\right\rfloor\right], T=\left[\left\lfloor 2^{g(a)}\right\rfloor\right] \times\left[\left\lfloor 2^{g(c)}\right\rfloor\right]$
- Then $\boldsymbol{D}^{\prime} \models s(\boldsymbol{D})$ and $|Q| \geq \frac{1}{8} 2^{g(a)+g(b)+g(c)}=\Omega\left(\sup _{\boldsymbol{D}^{\prime} \models s(\boldsymbol{D})}\left|Q\left(\boldsymbol{D}^{\prime}\right)\right|\right)$

More Generally

- Given a set of degree constraints (DCs)
- Triples (X, Y, N) which says, for each \boldsymbol{x} there are at most $N \boldsymbol{y}$'s
- If $X=\emptyset$, then this is a cardinality constraint (CC)
(e.g. distinct counts)
- If $N=1$, then this is a functional dependency (FD) (very common)
- Entropy argument implies

$$
\log \sup _{\boldsymbol{D}^{\prime} \models=s(\boldsymbol{D})}\left|Q\left(\boldsymbol{D}^{\prime}\right)\right| \leq \text { entropic-bound }
$$

The Entropic and Polymatroid Bounds

Theorem (ANS 17)

If $s(\boldsymbol{D})$ contains only degree constraints, then

$$
\log \sup _{\boldsymbol{D}^{\prime} \models s(\boldsymbol{D})}\left|Q\left(\boldsymbol{D}^{\prime}\right)\right| \leq \sup _{h \in \bar{\Gamma}_{n}^{*} \cap D C} h(V) \leq \max _{h \in \Gamma_{n} \cap D C} h(V)
$$

where $D C$ is the set of linear constraints of the form

$$
h(Y \mid X) \leq \log N
$$

for each degree constraint (X, Y, N).

Example: the Triangle Query

- $R(a, b) \wedge S(b, c) \wedge T(a, c)$

$$
\boldsymbol{D}=\{R, S, T\}
$$

- $s(\boldsymbol{D})=\{|R|,|S|,|T|\}$
- Constraint set:

$$
\mathrm{DC}=\{h|h(a b) \leq \log | R|\wedge h(b c) \leq \log | S|\wedge h(a c) \leq \log | T \mid\}
$$

- Polymatroid bound:

$$
\begin{array}{r}
\max \left\{h(a b c) \mid h \in \Gamma_{3} \cap \mathrm{DC}\right\}=\log \min \{|R| \cdot|S|,|S| \cdot|T|,|T| \cdot|R|, \sqrt{|R| \cdot|S| \cdot|T|}\} \\
\text { e.g. if }|R|,|S|,|T|=N \text {, then }|Q| \leq N^{3 / 2} \text { (Loomis-Whitney inequality!) }
\end{array}
$$

Example: the Triangle Query with Extra FD Information

- $R(a, b) \wedge S(b, c) \wedge T(a, c)$

$$
\boldsymbol{D}=\{R, S, T\}
$$

- $s(\boldsymbol{D})=\{|R|,|S|,|T|, b \rightarrow c\}(b$ is a key in $S)$
- Constraint set:

$$
\mathrm{DC}=\{h|h(a b) \leq \log | R|\wedge h(b c) \leq \log | S|\wedge h(a c) \leq \log | T \mid \wedge h(c \mid b)=0\}
$$

- Polymatroid bound:

$$
\begin{aligned}
\max \left\{h(a b c) \mid h \in \Gamma_{3} \cap \mathrm{DC}\right\}= & \log \min \{|R|,|S| \cdot|T|\} \\
& \text { e.g. }|R|,|S|,|T|=N, \text { then }|Q| \leq N
\end{aligned}
$$

Example: Builtins and FDs

- $R(a) \wedge S(b) \wedge a+b=5$

$$
\boldsymbol{D}=\{R, S\}
$$

- $s(\boldsymbol{D})=\{|R|,|S|, a \rightarrow b, b \rightarrow a\}$
- Constraint set:

$$
\mathrm{DC}=\{h(a) \leq \log |R| \wedge h(b) \leq \log |S| \wedge h(a \mid b)=h(b \mid a)=0\}
$$

- Polymatroid bound:

$$
\max \left\{h(a b) \mid h \in \Gamma_{2} \cap \mathrm{DC}\right\}=\log \min \{|R|,|S|\}
$$

Example: A Non-Trivial Bound

- $R(a, b) \wedge S(b, c) \wedge T(c, d) \wedge f_{1}(a, c)=d \wedge f_{2}(b, d)=a \quad f_{1}, f_{2}$ are UDFs
- $s(\boldsymbol{D})=\{|R|,|S|,|T|, a c \rightarrow d, b d \rightarrow a\}$
- Constraint set:

$$
\mathrm{DC}=\{h|h(a b) \leq \log | R|\wedge h(b c) \leq \log | S|\wedge h(c d) \leq \log | T \mid \wedge h(d \mid a c)=h(a \mid b d)=0\}
$$

- Polymatroid bound:

$$
\max \left\{h(a b c d) \mid h \in \Gamma_{4} \cap \mathrm{DC}\right\}=\log \min \{|R| \cdot|S|,|S| \cdot|T|,|T| \cdot|R|, \sqrt{|R| \cdot|S| \cdot|T|}\}
$$

Outline

The Query Optimization (and Evaluation) Problem

Cardinality Bounds and Worst-Case Optimal Joins

The Bound Hierarchy Under Degree Constraints

Research Questions

References

Main Classes of (Mostly) Open Problems

1. Is the entropic bound computable?
2. Is the polymatroid bound computable in PTIME?
3. Find classes of inputs where the polymatroid bound is computable in PTIME.
4. When is which bound asymptotically tight?
5. Approximate the bounds efficiently. Hardness of approximation.
6. Going beyond conjunctive queries?
7. Dealing with more constraints

- Conditional independence constraints
- Frequency moment constraints
- Histogram constraints
- . .

Hierarchy of Set Functions

$h: 2^{[n]} \rightarrow \mathbb{R}_{+}$, non-negative, monotone, $h(\emptyset)=0, h(X) \leq h(Y)$ if $X \subseteq Y$

$$
\mathrm{SA}_{n}:=\{h \mid h \text { is sub-additive }\} \quad h(X \cup Y) \leq h(X)+h(Y)
$$

$$
\Gamma_{n}:=\{h \mid h \text { is submodular }\}=\text { polymatroids }
$$

$$
h(X \cup Y)+h(X \cap Y) \leq h(X)+h(Y)
$$

$\bar{\Gamma}_{n}^{*}$: topological closure of Γ_{n}^{*}, almost entropic

$$
\Gamma_{n}^{*}=\{h: h \text { is entropic }\}
$$

N_{n} : Normal convex-hull of step functions (weighted coverage functions) (non-negative multivariate mutual information)

$$
M_{n}: \text { Modular } \quad h(X)=\sum_{x \in X} h(x)
$$

A Collection of Optimization Problems

Many bounds can be formulated with two parameters

$$
\sup \{h(V) \mid h \in P \cap \mathrm{DC}\}
$$

- DC $=$ set of constraints $h(Y \mid X) \leq \log N$, one for degree constraint (X, Y, N).
- P is a member in the aforementioned hierarchy of set functions
- $P=\mathrm{M}_{n}$: modular bound
- $P=\mathrm{N}_{n}$: normal bound
- $P=\bar{\Gamma}_{n}^{*}$: entropic bound
- $P=\Gamma_{n}$: polymatroid bound

Bound Hierarchy

1. Computing the Entropic Bound

Define $\boldsymbol{c}=\left(c_{X}\right)_{X \subseteq V}$, where $c_{X}=-1_{X=V}$, then - because C is linear -

$$
\sup \left\{h(V) \mid h \in C \cap \bar{\Gamma}_{n}^{*}\right\}=\inf \left\{\langle\boldsymbol{c}, \boldsymbol{h}\rangle \mid \boldsymbol{A} \boldsymbol{h} \leq \boldsymbol{b} \wedge \boldsymbol{h} \in \bar{\Gamma}_{n}^{*}\right\}
$$

Lagrangian: $\mathcal{L}(\boldsymbol{\delta})=\inf _{\boldsymbol{h} \in \bar{\Gamma}_{n}^{*}}\langle\boldsymbol{c}, \boldsymbol{h}\rangle+\langle\boldsymbol{A} \boldsymbol{h}-\boldsymbol{b}, \boldsymbol{\delta}\rangle=-\langle\boldsymbol{b}, \boldsymbol{\delta}\rangle+\inf _{\boldsymbol{h} \in \bar{\Gamma}_{n}^{*}}\left\langle\boldsymbol{c}+\boldsymbol{A}^{\top} \boldsymbol{\delta}, \boldsymbol{h}\right\rangle$
Lagrangian dual problem
$\left(\bar{\Gamma}_{n}^{*}\right)^{*}$ denotes the dual cone of $\bar{\Gamma}_{n}^{*}$

$$
\sup \{\mathcal{L}(\boldsymbol{\delta}) \mid \boldsymbol{\delta} \geq \mathbf{0}\}=\inf \left\{\langle\boldsymbol{b}, \boldsymbol{\delta}\rangle \mid \boldsymbol{\delta} \geq \mathbf{0} \wedge \boldsymbol{c}+\boldsymbol{A}^{\top} \boldsymbol{\delta} \in\left(\bar{\Gamma}_{n}^{*}\right)^{*}\right\}
$$

Checking whether $\delta \geq \mathbf{0}$ is dual feasible is equivalent to verifying whether

$$
h(V) \leq \sum_{(X, Y) \in \mathrm{DC}} \delta_{Y \mid X} h(Y \mid X) \quad \forall h \in \bar{\Gamma}_{n}^{*}
$$

2. Computational Complexity of Polymatroid Bound

3. Parameterized Complexity of Polymatroid Bound

The polymatroid bound is computable in PTIME for some classes of inputs:

- Acyclic degree constraints
- Simple degree constraints
- Degree constraints with bounded SCCs

4. Tightness of Various Bounds

- For which class of queries does adding conditional independence constraints improves the bound?
- How close can we get to the entropic bound? (Ignore the combinatorial bound)
- How close we can get to combinatorial bound, under which condition?

Theorem

Except for the combinatorial \rightarrow entropic edge, there is an asymptotic gap in between every adjacent bound (connected by \rightarrow in the hierarchy), even if the number of degree constraints is fixed.

4. Tightness of Various Bounds

The following is unsatisfactory:

Proposition (ANS 2017)

For any $\epsilon>0$, there exists a scale-factor k such that, if all $D C s(X, Y, N)$ are scaled up into $\left(X, Y, N^{k}\right)$ then

$$
\text { entropic-bound }=(1-\epsilon) \log \text { combinatorial-bound }
$$

(Made use of group-characterizable entropic functions)

Outline

The Query Optimization (and Evaluation) Problem

Cardinality Bounds and Worst-Case Optimal Joins

The Bound Hierarchy Under Degree Constraints

Research Questions

References

References (and references thereof)

- N. Alon, On the number of subgraphs of prescribed type of graphs with a given number of edges, Israel Journal of Mathematics 38 (1981), 116-130.
CGFS 1986 Fan R. K. Chung, Ronald L. Graham, Peter Frankl, James B. Shearer: Some intersection theorems for ordered sets and graphs. J. Comb. Theory, Ser. A 43(1): 23-37 (1986)
- Ehud Friedgut, Jeff Kahn, On the number of copies of one hypergraph in another. Israel J. Math. 105 (1998), 251-256.
- Ehud Friedgut: Hypergraphs, Entropy, and Inequalities. Am. Math. Mon. 111(9): 749-760 (2004)

AGM 08 Albert Atserias, Martin Grohe, Dániel Marx: Size Bounds and Query Plans for Relational Joins. FOCS 2008: 739-748
GLVV 12 Georg Gottlob, Stephanie Tien Lee, Gregory Valiant, Paul Valiant: Size and Treewidth Bounds for Conjunctive Queries. J. ACM 59(3): 16:1-16:35 (2012)

ANS 16 Mahmoud Abo Khamis, Hung Q. Ngo, Dan Suciu: Computing Join Queries with Functional Dependencies. PODS 2016: 327-342
ANS 17 Mahmoud Abo Khamis, Hung Q. Ngo, Dan Suciu: What Do Shannon-type Inequalities, Submodular Width, and Disjunctive Datalog Have to Do with One Another? PODS 2017: 429-444
AKNS1 20 Mahmoud Abo Khamis, Phokion G. Kolaitis, Hung Q. Ngo, Dan Suciu: Decision Problems in Information Theory. ICALP 2020: 106:1-106:20
AKNS2 20 Mahmoud Abo Khamis, Phokion G. Kolaitis, Hung Q. Ngo, Dan Suciu: Bag Query Containment and Information Theory. PODS 2020: 95-112

- Hung Q. Ngo: On an Information Theoretic Approach to Cardinality Estimation (Invited Talk). ICDT 2022: 1:1-1:21
- Dan Suciu: Applications of Information Inequalities to Database Theory Problems. LICS 2023: 1-30

IMNPS 2023 Sungjin Im, Ben Moseley, Hung Q. Ngo, Kirk Pruhs, and Alireza Samadian: New Efficiently Computable Size Bounds for Joins. 2023.

Thank You!

Outline

Appendix

Outline

Appendix

Some known results on the parametererized complexity of the polymatroid bound Frequency Moment Constraints

Histograms

3. Parameterlized Complexity of Polymatroid Bound

- A set of DCs are simple if $|X| \leq 1$ for all DCs (X, Y, N)
- A set of DCs are acyclic if the constraint dependency graph is acyclic
- Constraint dependency graph: for every degree constraint (X, Y, D), add edges $x \rightarrow y$ for all $x \in X, y \in Y$.

3. Parameterlized Complexity of Polymatroid Bound

Proposition

There is a polymatroid-bound-preserving reduction from an arbitrary instance to an instance where the degree constraints are a union of two sets: $D C=D C_{a} \cup D C_{s}$, where $D C_{s}$ is simple, and $D C_{a}$ is acyclic. Furthermore, for every non-simple $D C$ $(X, Y, N) \in D C_{a}$, we have $|X|=2$ and $|Y| \leq 3$.

Proposition

There is a poly-time algorithm computing a variable ordering σ_{0} so that:

- If all input DCs are simple, then flow-bound $\left(Q, s, \sigma_{0}\right)=$ polymatroid-bound (Q, s)
- If all input DCs are acyclic, then flow-bound $\left(Q, s, \sigma_{0}\right)=$ polymatroid-bound (Q, s)

4. Tightness of Various Bounds

Proposition

If all DCs are acyclic, then there is a σ_{0} for which

$$
\text { chain-bound }\left(Q, s, \sigma_{0}\right)=\operatorname{modular-bound}(Q, s) .
$$

All bounds in between collapse, and are all Θ (combinatorial bound) in data-complexity.

Proposition

If all DCs are simple, then there is a σ_{0} for which

$$
\text { flow-bound }\left(Q, s, \sigma_{0}\right)=\text { normal-bound }(Q, s) \text {. }
$$

All bounds in between collapse, and are all Θ (combinatorial bound) in data-complexity.

Outline

Appendix
Some known results on the parametererized complexity of the polymatroid bound
Frequency Moment Constraints
Histograms

Frequency-Moment Constraints

Relation R (actor, movie, role), imagine a frequency vector $\boldsymbol{d}_{\text {actor }}$ (billions of entries)

actor	movie	role
alice		
bob		
carol		
carol		

$$
\begin{aligned}
d_{\text {actor }}(\text { alice }) & =1 \\
d_{\text {actor }}(\text { bob }) & =4 \\
d_{\text {actor }}(\text { carol }) & =2 \\
d_{\text {actor }}(v) & =0 \quad v \notin\{\text { alice }, \text { bob }, \text { carol }\}
\end{aligned}
$$

The (very small) profile $s(\boldsymbol{D})$ contains

- $\left\|d_{\text {actor }}\right\|_{\infty}=4$ (heaviest frequency)
- $\left\|\boldsymbol{d}_{\text {actor }}\right\|_{0}=3$ (distinct counts)
- $\left\|d_{\text {actor }}\right\|_{1}=7=|R|$

Similarly, we may have $\left\|\boldsymbol{d}_{\text {movie }}\right\| p,\left\|\boldsymbol{d}_{\text {actor,movie }}\right\|_{p},\left\|\boldsymbol{d}_{\text {role }}\right\| \|_{p}$, etc.

FM-Constraints and Histograms

HFM-Constraints

- Partition: $\operatorname{Dom}(x)=B_{1} \cup B_{2} \cup \cdots \cup B_{k} \quad$ (x-histogram)
- Typically about $k \approx 200$ buckets (e.g., MS SQL Server)
- Top 10 heavy hitters are in their own singleton buckets
- For the rest, equi-depth
- $\mathcal{B}:=\left\{B_{1}, \ldots, B_{k}\right\}$
- Give rise to per-bucket frequency vectors:

$$
\boldsymbol{d}_{Y \mid X \in B}(\boldsymbol{x}):= \begin{cases}\left|\pi_{Y} \sigma_{X=x} R\right| & x \in B \\ 0 & \text { o.w. }\end{cases}
$$

- HFM-Constraints ($\mathcal{B}, X, Y, \boldsymbol{c}, \ell, R$)

$$
F_{\ell}\left(\boldsymbol{d}_{Y \mid X \in B}\right) \leq c_{B} \quad B \in \mathcal{B}
$$

Outline

Appendix
Some known results on the parametererized complexity of the polymatroid bound
Frequency Moment Constraints
Histograms

Histograms are More Intricate

Main Question

How to turn $s(\boldsymbol{D})$ into constraints on polymatroids h ?

Answer sketch:

Theorem (KNN 2022, WIP)

Let Q be a conjunctive query and \mathcal{C} be a given set of simple HFM-constraints, then for any database \boldsymbol{D} satisfying \mathcal{C}, we have

$$
\begin{aligned}
\sup _{\boldsymbol{D} \models \mathcal{C}} \log |Q(\boldsymbol{D})| & \leq \max \left\{h(\boldsymbol{V}) \mid h \in \bar{\Gamma}_{n+m}^{*},(h, \boldsymbol{P}, \boldsymbol{C}) \in \mathrm{HC}\right\} \quad \text { (entropic bound) } \\
& \leq \max \left\{h(\boldsymbol{V}) \mid h \in \Gamma_{n+m},(h, \boldsymbol{P}, \boldsymbol{C}) \in \mathrm{HC}\right\} \quad \text { (polymatroid bound) }
\end{aligned}
$$

Example: $R(x, y) \wedge S(y, z)$

- Let \boldsymbol{f}_{y} and \boldsymbol{g}_{y} be the y-frequency vectors in R and S, respectively
- Assume the same partition $\operatorname{dom}(y)=B_{1} \cup \cdots \cup B_{k}$ on both sides
- Suppose $s(\boldsymbol{D})$ contains the following statistics:

$$
r_{B}:=\left\|\boldsymbol{f}_{y \in B}\right\|_{\infty} \quad d_{B}:=\left\|\boldsymbol{f}_{y \in B}\right\|_{0} \quad s_{B}:=\left\|\boldsymbol{g}_{y \in B}\right\|_{\infty} \quad B \in \mathcal{B}
$$

- $r_{B}=$ maximum number of x per y in bucket B
- $d_{B}=$ number of distinct y^{\prime} s in B
- $s_{B}=$ maximum number of z per y in bucket B

Turning $s(\boldsymbol{D})$ into Constraints on h

- Consider the uniform distribution on (X, Y, Z) chosen from $R(x, y) \wedge S(y, z)$
- Let $J \in \mathcal{B}$ be a categorical random variable, where $J=B$ iff $Y \in B$

$$
p_{B}:=\operatorname{Prob}[J=B]
$$

- Then,

$$
\begin{align*}
h(J \mid Y) & =0 \tag{1}\\
h(Y \mid J=B) & \leq \log d_{B}=\log \left\|\boldsymbol{f}_{y \in B}\right\|_{0} \tag{2}\\
h(X \mid J=B) & \leq \log r_{B}=\log \left\|\boldsymbol{f}_{y \in B}\right\|_{\infty} \tag{3}\\
h(Z \mid J=B) & \leq \log s_{B}=\log \left\|\boldsymbol{g}_{y \in B}\right\|_{\infty} \tag{4}\\
h(J) & =-\langle\boldsymbol{p}, \log \boldsymbol{p}\rangle \tag{5}
\end{align*}
$$

$$
\|\boldsymbol{p}\|_{1}=1
$$

$$
\boldsymbol{p} \geq \mathbf{0}
$$

Simplifying the constraints

$$
\begin{align*}
h(J \mid Y) & =0 \tag{6}\\
h(Y \mid J)=\sum_{B} h(Y \mid J=B) \cdot p_{B} & \leq\langle\log \boldsymbol{d}, \boldsymbol{p}\rangle \tag{7}\\
h(X \mid J)=\sum_{B} h(X \mid J=B) \cdot p_{B} & \leq\langle\log \boldsymbol{r}, \boldsymbol{p}\rangle \tag{8}\\
h(Z \mid J)=\sum_{B} h(Z \mid J=B) \cdot p_{B} & \leq\langle\log \boldsymbol{s}, \boldsymbol{p}\rangle \tag{9}\\
h(J) & =-\langle\boldsymbol{p}, \log \boldsymbol{p}\rangle \tag{10}\\
\|\boldsymbol{p}\|_{1} & =1 \tag{11}\\
\boldsymbol{p} & \geq \mathbf{0} \tag{12}
\end{align*}
$$

$$
\begin{array}{rlrl}
\max & & h(X Y Z) & \\
\text { s.t. } & & h(Y \mid J) & \leq\langle\boldsymbol{p}, \lg \boldsymbol{d}\rangle \\
& & h(X \mid J) & \leq\langle\boldsymbol{p}, \lg \boldsymbol{r}\rangle \\
h(Z \mid J) & \leq\langle\boldsymbol{p}, \lg \boldsymbol{s}\rangle \\
h & \in \Gamma_{4} \\
\boldsymbol{p} & \geq 0, \\
h(J) & =-\langle\boldsymbol{p}, \lg \boldsymbol{p}\rangle \tag{20}\\
& & & \\
& & & \\
& & =\boldsymbol{p} \|_{1} & =1 .
\end{array}
$$

$$
h \in \Gamma_{4} \quad \text { join distribution on }(X, Y, Z, J)
$$

Sanity Check: Estimator Makes Sense Combinatorially!

$$
\begin{align*}
\lg |Q| & =h(X Y Z) \tag{22}\\
(\text { since } H[J Y]=H[Y]) & =H[X Y Z J]=H[X Y Z \mid J]+H[J] \tag{23}\\
\left(\text { since } H \in \Gamma_{4}\right) & \leq H[X \mid J]+H[Y \mid J]+H[Z \mid J]+H[J] \tag{24}\\
& \left.\leq \sum_{j \in \mathcal{B}}\left(\lg r_{B}+\lg d_{B}+\lg s_{B}-\lg p_{B}\right)\right) \cdot p_{B} \tag{25}\\
& =\sum_{j \in \mathcal{B}}\left(\lg \left(r_{B} d_{B} s_{B} / p_{B}\right)\right) \cdot p_{B} \tag{26}\\
\text { (Jensen) } & \leq \lg \left(\sum_{B} r_{B} d_{B} s_{B}\right) \tag{27}\\
& |Q| \leq \sum_{B} r_{B} d_{B} s_{B} \tag{28}
\end{align*}
$$

Example - Removing the Simplifying Assumption

$$
R(x, y) \wedge S(y, z)
$$

- $\operatorname{dom}(y)=U_{1} \cup \cdots \cup U_{k}$ on the R-side
- $\operatorname{dom}(y)=V_{1} \cup \cdots \cup V_{\ell}$ on the S-side

	B_{1}	\vdots	B_{2}	B_{3}	B_{4}		B_{5}

Back to the "boundary aligned" model that dom $(y)=B_{1} \cup B_{2} \cup \cdots \cup B_{m}$

Example - Removing the Simplifying Assumption

	U	
	B_{1}	B_{2}

- For $q \in\{0,1\}$ every constraint $\left\|f_{U}^{y}\right\|_{q}$ is broken up into

$$
\left\|f_{U}^{y}\right\|_{q}=\left\|f_{B_{1}}^{y}\right\|_{q}+\left\|f_{B_{2}}^{y}\right\|_{q}+\left\|f_{B_{3}}^{y}\right\|_{q}
$$

where $\left\|f_{B_{j}}^{y}\right\|_{q}$ are new variables in the optimization problem

- For $q=\infty$, set $\left\|f_{B_{i}}^{y}\right\|_{\infty} \leq\left\|\boldsymbol{f}_{B_{i}}^{y}\right\|_{1}$ (or Hölder-type)

$$
\max \left\{\left\|\boldsymbol{f}_{B_{1}}^{y}\right\|_{\infty},\left\|\boldsymbol{f}_{B_{2}}^{y}\right\|_{\infty},\left\|\boldsymbol{f}_{B_{3}}^{y}\right\|_{\infty}\right\} \leq\left\|\boldsymbol{f}_{U}^{y}\right\|_{\infty}
$$

Under histogrammed FM constraints

Repeat the 4 (classes of) questions

- Computability
- Complexity
- Parameterized Complexity
- Tightness

