Trade-Offs in Incremental View Maintenance

Dan Olteanu (University of Zurich)

fdbresearch.github.io

Logic & Algorithms in DB Theory and AI
August 25, 2023
Acknowledgments

DaST IVM team

Ahmet Haozhe Johann Milos

RelationalAI colleagues

Hung ELSeidy Henrik Niko
Setting & Objective of this Lecture

Incremental View Maintenance (IVM)

- Well-established and longstanding research problem
- Confusing naming: incremental vs decremental
 Alternative common naming: *Fully dynamic*
Incremental View Maintenance (IVM)

- Well-established and longstanding research problem
- Confusing naming: incremental vs decremental

 Alternative common naming: *Fully dynamic*

Setting

- Fully dynamic algorithms (i.e., supports inserts and deletes)
- Single-tuple updates to relational databases
- Relational queries (non-recursive)
Incremental View Maintenance (IVM)

- Well-established and longstanding research problem
- Confusing naming: incremental vs decremental

 Alternative common naming: *Fully dynamic*

Setting

- Fully dynamic algorithms (i.e., supports inserts and deletes)
- Single-tuple updates to relational databases
- Relational queries (non-recursive)

Objective

- Overview of recent (and *very preliminary*) results on worst-case optimal IVM, trade-offs, and IVM for complex analytics
We are interested in the trade-off between:

- preprocessing time
- enumeration delay
- update time
The Incremental View Maintenance Problem

Query + Database

preprocess

Data Structure

preprocessing time

User

access request

data structure

enumerate

Answer

We are interested in the trade-off between:

- preprocessing time
- enumeration delay
- update time
We are interested in the trade-off between:

- preprocessing time
- enumeration delay
- update time
The Incremental View Maintenance Problem

We are interested in the trade-off between:

- preprocessing time
- enumeration delay
- update time
The Incremental View Maintenance Problem

Query + Database

preprocess

Data Structure

preprocessing time

access request

User

enumerate

record #1
record #2
...

Answer

We are interested in the trade-off between:

preprocessing time - enumeration delay - update time
The Incremental View Maintenance Problem

We are interested in the trade-off between:

- Preprocessing time
- Enumeration delay
- Update time
We are interested in the trade-off between:

- preprocessing time
- enumeration delay
- update time
We are interested in the trade-off between:

- preprocessing time
- enumeration delay
- update time
The Incremental View Maintenance Problem

We are interested in the trade-off between:
- preprocessing time
- enumeration delay
- update time
The Incremental View Maintenance Problem

We are interested in the trade-off between:

- preprocessing time
- update time
- enumeration delay
We are interested in the trade-off between:
preprocessing time - enumeration delay - update time
Part 1. Main IVM techniques by example
- The triangle count query

Part 2. Constant update time and enumeration delay
- The q-hierarchical queries

Part 3. Update time - enumeration delay trade-offs
- The hierarchical queries and beyond

Part 4. ML models under updates
- Covariance matrix and Chow-Liu trees
1. IVM Techniques By Example
Relations are functions mapping tuples to elements from a ring (here, \(\mathbb{Z} \))

<table>
<thead>
<tr>
<th>(R)</th>
<th>(S)</th>
<th>(T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>(B)</td>
<td>#</td>
</tr>
<tr>
<td>(a_1)</td>
<td>(b_1)</td>
<td>2</td>
</tr>
<tr>
<td>(a_2)</td>
<td>(b_1)</td>
<td>3</td>
</tr>
<tr>
<td>(B)</td>
<td>(C)</td>
<td>#</td>
</tr>
<tr>
<td>(b_1)</td>
<td>(c_1)</td>
<td>2</td>
</tr>
<tr>
<td>(b_1)</td>
<td>(c_2)</td>
<td>1</td>
</tr>
<tr>
<td>(C)</td>
<td>(A)</td>
<td>#</td>
</tr>
<tr>
<td>(c_1)</td>
<td>(a_1)</td>
<td>1</td>
</tr>
<tr>
<td>(c_2)</td>
<td>(a_1)</td>
<td>3</td>
</tr>
<tr>
<td>(c_2)</td>
<td>(a_2)</td>
<td>3</td>
</tr>
</tbody>
</table>
Background: Relations and Queries

- Relations are functions mapping tuples to elements from a ring (here, \mathbb{Z})

<table>
<thead>
<tr>
<th>R</th>
<th>S</th>
<th>T</th>
<th>$R \cdot S \cdot T$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>a_1</td>
<td>b_1</td>
<td>b_1</td>
<td>c_1</td>
</tr>
<tr>
<td>a_2</td>
<td>b_1</td>
<td>b_1</td>
<td>c_2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$4 + 6 + 9 = 19$

Triangle Count Query:
$\Delta \{ (a_1, b_1, c_1) \}$
Relations are functions mapping tuples to elements from a ring (here, \mathbb{Z})

<table>
<thead>
<tr>
<th>R</th>
<th>S</th>
<th>T</th>
<th>$R \cdot S \cdot T$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>a_1</td>
<td>b_1</td>
<td>c_1</td>
<td>a_1</td>
</tr>
<tr>
<td>a_2</td>
<td>b_1</td>
<td>c_2</td>
<td>a_1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b_1</td>
<td>a_1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c_1</td>
<td>a_1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c_2</td>
<td>a_1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>c_2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a_2</td>
</tr>
<tr>
<td>b_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c_2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Background: Relations and Queries

- Relations are functions mapping tuples to elements from a ring (here, \(\mathbb{Z} \))
- Triangle Count Query: \(Q = \sum_{a,b,c} R(a,b) \cdot S(b,c) \cdot T(c,a) \)

<table>
<thead>
<tr>
<th>(R)</th>
<th>(S)</th>
<th>(T)</th>
<th>(R \cdot S \cdot T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>(B)</td>
<td>#</td>
<td>(A)</td>
</tr>
<tr>
<td>(a_1)</td>
<td>(b_1)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(a_2)</td>
<td>(b_1)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>(b_1)</td>
<td>(c_1)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(b_1)</td>
<td>(c_2)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(c_1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(c_2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(c_2)</td>
</tr>
</tbody>
</table>

\[Q \]

\[\emptyset \]

\[() | 4 + 6 + 9 = 19 \]
Background: Relations and Queries

- Relations are functions mapping tuples to elements from a ring (here, \(\mathbb{Z}\))
- Triangle Count Query: \(Q = \sum_{a,b,c} R(a, b) \cdot S(b, c) \cdot T(c, a)\)
- A single-tuple update is a relation mapping a tuple to a non-zero value (positive for insertions, negative for deletions)

Relations

<table>
<thead>
<tr>
<th>(R)</th>
<th>(S)</th>
<th>(T)</th>
<th>(R \cdot S \cdot T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>(B)</td>
<td>(#)</td>
<td>(B)</td>
</tr>
<tr>
<td>(a_1)</td>
<td>(b_1)</td>
<td>2</td>
<td>(b_1)</td>
</tr>
<tr>
<td>(a_2)</td>
<td>(b_1)</td>
<td>3</td>
<td>(b_1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Updates

- \(\delta R = \{(a_2, b_1) \mapsto -2\}\)

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>(#)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_2)</td>
<td>(b_1)</td>
<td>(-2)</td>
</tr>
</tbody>
</table>

- \(Q\)

<table>
<thead>
<tr>
<th>(\emptyset)</th>
<th>(#)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\))</td>
<td>(4 + 6 + 9 = 19)</td>
</tr>
</tbody>
</table>
Background: Relations and Queries

- Relations are functions mapping tuples to elements from a ring (here, \(\mathbb{Z} \))
- Triangle Count Query: \(Q = \sum_{a, b, c} R(a, b) \cdot S(b, c) \cdot T(c, a) \)
- A single-tuple update is a relation mapping a tuple to a non-zero value (positive for insertions, negative for deletions)

<table>
<thead>
<tr>
<th>(R)</th>
<th>(S)</th>
<th>(T)</th>
<th>(R \cdot S \cdot T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>(B)</td>
<td>#</td>
<td>(A)</td>
</tr>
<tr>
<td>(a_1)</td>
<td>(b_1)</td>
<td>2</td>
<td>(b_1)</td>
</tr>
<tr>
<td>(a_2)</td>
<td>(b_1)</td>
<td>3</td>
<td>(b_1)</td>
</tr>
</tbody>
</table>

\(\delta R = \{(a_2, b_1) \mapsto -2\} \)

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_2)</td>
<td>(b_1)</td>
<td>-2</td>
</tr>
</tbody>
</table>

\[Q \]

<table>
<thead>
<tr>
<th>(\emptyset)</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>()</td>
<td>4 + 6 + 9 = 19</td>
</tr>
</tbody>
</table>
Background: Relations and Queries

- Relations are functions mapping tuples to elements from a ring (here, \(\mathbb{Z} \))
- Triangle Count Query: \(Q = \sum_{a,b,c} R(a,b) \cdot S(b,c) \cdot T(c,a) \)
- A single-tuple update is a relation mapping a tuple to a non-zero value (positive for insertions, negative for deletions)

\[
\begin{array}{c|c|c|c|c|c}
\hline
R & S & T & R \cdot S \cdot T \\
A & B & \# & B & C & \# & C & A & \# \\
\hline
a_1 & b_1 & 2 & b_1 & c_1 & 2 & c_1 & a_1 & 1 \\
\hline
a_2 & b_1 & 3 & b_1 & c_2 & 1 & c_2 & a_1 & 3 \\
\hline
a_2 & b_1 & 1 & c_2 & a_2 & 3 \\
\hline
\end{array}
\]

\[
\delta R = \{(a_2, b_1) \mapsto -2\}
\]

\[
\begin{array}{c|c|c|c|c|c}
\hline
A & B & \# & \hline
\emptyset & \# \\
\hline
a_2 & b_1 & -2 \\
\hline
() & 4 + 6 + 9 = 19
\end{array}
\]

\(Q \)
Background: Relations and Queries

- Relations are functions mapping tuples to elements from a ring (here, \mathbb{Z})
- Triangle Count Query: $Q = \sum_{a,b,c} R(a,b) \cdot S(b,c) \cdot T(c,a)$
- A single-tuple update is a relation mapping a tuple to a non-zero value (positive for insertions, negative for deletions)

<table>
<thead>
<tr>
<th>R</th>
<th>S</th>
<th>T</th>
<th>$R \cdot S \cdot T$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>a_1</td>
<td>b_1</td>
<td>b_1</td>
<td>c_1</td>
</tr>
<tr>
<td>a_1</td>
<td>b_1</td>
<td>b_1</td>
<td>c_2</td>
</tr>
<tr>
<td>a_2</td>
<td>b_1</td>
<td>b_1</td>
<td>c_2</td>
</tr>
<tr>
<td>a_2</td>
<td>b_1</td>
<td>c_2</td>
<td>c_2</td>
</tr>
</tbody>
</table>

$\delta R = \{(a_2, b_1) \mapsto -2\}$

Q

| \emptyset | $#$ |
| $()$ | $4 + 6 + 9 = 19$ |
Background: Relations and Queries

- Relations are functions mapping tuples to elements from a ring (here, \(\mathbb{Z} \)).

- Triangle Count Query: \(Q = \sum_{a,b,c} R(a,b) \cdot S(b,c) \cdot T(c,a) \).

- A single-tuple update is a relation mapping a tuple to a non-zero value (positive for insertions, negative for deletions).

\[
\begin{align*}
R & \quad S & \quad T & \quad R \cdot S \cdot T \\
A & B & \# & B & C & \# & C & A & \# \\
a_1 & b_1 & 2 & b_1 & c_1 & 2 & c_1 & a_1 & 1 \\
a_2 & b_1 & 3 & b_1 & c_2 & 1 & c_2 & a_1 & 3 \\
a_2 & b_1 & 1 & & & & c_2 & a_2 & 3 \\
\end{align*}
\]

\[Q = \emptyset \]

\[Q = () \]
\[4 + 6 + 9 = 19\]
Background: Relations and Queries

- Relations are functions mapping tuples to elements from a ring (here, \mathbb{Z})
- Triangle Count Query: $Q = \sum_{a,b,c} R(a, b) \cdot S(b, c) \cdot T(c, a)$
- A single-tuple update is a relation mapping a tuple to a non-zero value (positive for insertions, negative for deletions)

<table>
<thead>
<tr>
<th>R</th>
<th>S</th>
<th>T</th>
<th>$R \cdot S \cdot T$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>a_1</td>
<td>b_1</td>
<td>#</td>
<td>b_1</td>
</tr>
<tr>
<td>c_1</td>
<td>a_1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>a_2</td>
<td>b_1</td>
<td>#</td>
<td>b_1</td>
</tr>
<tr>
<td>c_2</td>
<td>a_1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>a_2</td>
<td>b_1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

$\delta R = \{(a_2, b_1) \mapsto -2\}$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_2</td>
<td>b_1</td>
<td>-2</td>
</tr>
</tbody>
</table>

Q

<table>
<thead>
<tr>
<th>\emptyset</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>()</td>
<td>4 + 6 + 9 = 19</td>
</tr>
<tr>
<td>()</td>
<td>4 + 6 + 3 = 13</td>
</tr>
</tbody>
</table>
The Triangle Count Query

The triangle count query Q returns the number of tuples in the join of R, S, and T:

$$Q = \sum_{a,b,c} R(a, b) \cdot S(b, c) \cdot T(c, a)$$

Problem: Maintain Q under single-tuple updates to R, S, and T.
Much Ado about Triangles

The Triangle Query Served as Milestone in Many Fields

- Worst-case optimal join algorithms \([Algorithmica 1997, SIGMOD R. 2013]\)
- Parallel query evaluation \([Found. & Trends DB 2018]\)
- Randomized approximation in static settings \([FOCS 2015]\)
- Randomized approximation in data streams

Answering Queries under Updates

- Theoretical developments \([PODS 2017, ICDT 2018]\)
- Lower bounds \([STOC 2015, ICM 2018]\)
Much Ado about Triangles

The Triangle Query Served as Milestone in Many Fields

- Worst-case optimal join algorithms [Algorithmica 1997, SIGMOD R. 2013]
- Parallel query evaluation [Found. & Trends DB 2018]
- Randomized approximation in static settings [FOCS 2015]

Answering Queries under Updates

- Theoretical developments [PODS 2017, ICDT 2018]
- Lower bounds [STOC 2015, ICM 2018]

Is there a **fully dynamic algorithm** that can maintain the **exact triangle count** in **worst-case optimal** time?
Naïve Maintenance

“Recompute from scratch”

\[Q = \sum_{a,b,c} R(a,b) \cdot S(b,c) \cdot T(c,a) \]

\[\delta R = \{ (\alpha,\beta) \mapsto m \} \]

N is the database size

Update time: \(O(N^{1.5}) \) using worst-case optimal join algorithms

[Algorithmica 1997, SIGMOD R. 2013, ICDT 2014]

Slightly better using Strassen-like matrix multiplication

Space: \(O(N) \) to store input relations
Naïve Maintenance

"Recompute from scratch"

\[\delta R = \{ (\alpha, \beta) \mapsto m \} \]

\[Q = \sum_{a,b,c} R(a, b) + \delta R(a, b) \]

\[S(b, c) \]

\[T(c, a) \]

N is the database size

Update time: \(O(N^{1.5}) \) using worst-case optimal join algorithms

[Algorithmica 1997, SIGMOD R. 2013, ICDT 2014]

Slightly better using Strassen-like matrix multiplication

Space: \(O(N) \) to store input relations
Naïve Maintenance

“Recompute from scratch”

\[\delta R = \{(\alpha, \beta) \mapsto m\} \]

\[Q = \sum_{a,b,c} R(a, b) + \delta R(a, b) \]

\[\cdot \]

\[S(b, c) \cdot \]

\[T(c, a) \]
Naïve Maintenance

"Recompute from scratch"

\[\delta R = \{ (\alpha, \beta) \mapsto m \} \]

\[Q = \sum_{a,b,c} R(a, b) + \delta R(a, b) \]

\[S(b, c) \] \[T(c, a) \]

- \(N \) is the database size
- Update time: \(O(N^{1.5}) \) using worst-case optimal join algorithms

 \[\text{[Algorithmica 1997, SIGMOD R. 2013, ICDT 2014]} \]

 Slightly better using Strassen-like matrix multiplication
- Space: \(O(N) \) to store input relations
First-Order Incremental View Maintenance

“Compute the delta”

$\delta Q = \delta R(\alpha, \beta) \cdot \sum_{c} S(\beta, c) \cdot T(c, \alpha)$

Update time: $O(N)$ to intersect C-values from S and T

Space: $O(N)$ to store input relations
“Compute the delta”

\[\delta R = \{(\alpha, \beta) \mapsto m\} \]

\[Q = \sum_{a,b,c} \]

\[\delta Q = \sum_{c} \]

\[R(a,b) \quad S(b,c) \quad T(c,a) \]

\[\delta R(\alpha, \beta) \quad S(\beta, c) \quad T(c, \alpha) \]

Update time: \(O(N) \) to intersect \(C \)-values from \(S \) and \(T \)

Space: \(O(N) \) to store input relations
First-Order Incremental View Maintenance

“Compute the delta”

\[\delta R = \{ (\alpha, \beta) \mapsto m \} \]

\[Q = \sum_{a,b,c} R(a, b) \cdot S(b, c) \cdot T(c, a) \]

\[\delta Q = \sum_c \delta R(\alpha, \beta) \cdot S(\beta, c) \cdot T(c, \alpha) \]

Update time: \(O(N) \) to intersect \(C \)-values from \(S \) and \(T \)

Space: \(O(N) \) to store input relations
First-Order Incremental View Maintenance

“Compute the delta”

\[\delta R = \{ (\alpha, \beta) \mapsto m \} \]

\[Q = \sum_{a,b,c} R(a,b) \cdot S(b,c) \cdot T(c,a) \]

\[\delta Q = \alpha \beta \sum_c \delta R(\alpha, \beta) \cdot S(\beta, c) \cdot T(c, \alpha) \]

Update time: \(O(N) \) to intersect \(C \)-values from \(S \) and \(T \)

Space: \(O(N) \) to store input relations

[Found. & Trends DB 2018]
First-Order Incremental View Maintenance

"Compute the delta"

\[\delta R = \left\{ (\alpha, \beta) \mapsto m \right\} \]

\[Q = \sum_{a,b,c} R(a,b) \cdot S(b,c) \cdot T(c,a) \]

\[\delta Q = \alpha \beta \sum_{c} \delta R(\alpha, \beta) \]

Update time: \(O(N) \) to intersect \(C \)-values from \(S \) and \(T \)
Space: \(O(N) \) to store input relations
“Compute the delta”

\[
\delta R = \{(\alpha, \beta) \mapsto m\}
\]

\[
Q = \sum_{a,b,c} R(a,b)
\]

\[
\delta R(\alpha, \beta)
\]

\[
\delta Q = \alpha \beta \cdot \sum_c S(\beta, c) T(c, \alpha)
\]

\[
Q = Q + \delta Q
\]
First-Order Incremental View Maintenance

“Compute the delta”

\[\delta R = \{ (\alpha, \beta) \mapsto m \} \]

\[Q = \sum_{a,b,c} R(a,b) \cdot S(b,c) \cdot T(c,a) \]

\[\delta R(\alpha, \beta) \]

\[\delta Q = \alpha \beta \cdot \sum_{c} \cdot O(N) \cdot O(N) \cdot O(N) \]

\[Q = Q + \delta Q \]

- Update time: \(O(N) \) to intersect \(C \)-values from \(S \) and \(T \)
- Space: \(O(N) \) to store input relations
"Compute the delta using materialized views"

\[\delta R = \{ (\alpha, \beta) \mapsto \cdot \} \]

\[Q = \sum_{a, b, c} R(a, b) \cdot S(b, c) \cdot T(c, a) \]

Time for updates to \(R \): \(O(1) \) to look up in \(VST \)
“Compute the delta using materialized views” [VLDB J 2014]

\[\delta R = \{(\alpha, \beta) \mapsto m\} \]

\[Q = \sum_{a, b, c} R(a, b) \cdot S(b, c) \cdot T(c, a) \]

\[V_{ST}(b, a) = \sum_{c} S(b, c) \cdot T(c, a) \]
Higher-Order Incremental View Maintenance

"Compute the delta using materialized views" [VLDB J 2014]

\[\delta R = \{ (\alpha, \beta) \mapsto m \} \]

\[Q = \sum_{a,b} R(a, b) \cdot V_{ST}(b, a) \]

\[\Delta Q = \sum_{a,b} \delta R(\alpha, \beta) \cdot V_{ST}(\beta, \alpha) \]

Time for updates to \(R \): \(O(1) \) to look up in \(V_{ST} \)
"Compute the delta using materialized views"

\[\delta R = \{(\alpha, \beta) \mapsto m\} \]

\[
Q = \sum_{a, b} R(a, b)
\]

\[
\delta Q = \sum_{a, b} \delta R(a, b)
\]

\[
\delta Q = \sum_{\alpha, \beta} \delta R(\alpha, \beta)
\]

\[
Q = Q + \delta Q
\]

Time for updates to \(R \): \(O(1) \) to look up in \(V_{ST} \)
Higher-Order Incremental View Maintenance

“Compute the delta using materialized views”

$\delta R = \{ (\alpha, \beta) \mapsto m \}$

$Q = \sum_{a,b} R(a, b)$

$\delta Q = \sum_{a,b} \delta R(\alpha, \beta)$

$Q = Q + \delta Q$
Higher-Order Incremental View Maintenance

“Compute the delta using materialized views”

\[\delta R = \{ (\alpha, \beta) \mapsto m \} \]

\[Q = \sum_{a,b} R(a, b) \]
\[\delta Q = \sum_{a,b} \delta R(\alpha, \beta) \]
\[Q = Q + \delta Q \]
"Compute the delta using materialized views"

\[\delta R = \{(\alpha, \beta) \mapsto m\} \]

\[Q = \sum_{a,b} R(a, b) \]

\[\delta Q = \sum_{a,b} \delta R(\alpha, \beta) \]

\[Q = Q + \delta Q \]

- Time for updates to \(R \): \(O(1) \) to look up in \(V_{ST} \)
Higher-Order Incremental View Maintenance

Maintain V_{ST} under updates

$$V_{ST}(b, a) = \sum_c S(b, c) \cdot T(c, a)$$
Maintain V_{ST} under updates

$$\delta S = \{ (\beta, \gamma) \rightarrow m \}$$

$V_{ST}(b, a) = \sum_c S(b, c)$

$$\delta V_{ST}(\beta, a) = \delta S(\beta, \gamma) \cdot T(\gamma, a)$$

Time for updates to S and T: $O(N)$ to maintain V_{ST}

Space: $O(N^2)$ to store input relations and V_{ST}
Maintain V_{ST} under updates

$$\delta S = \{(\beta, \gamma) \mapsto m\}$$

$$V_{ST}(b, a) = \sum_c S(b, c) \cdot T(c, a)$$

$$\delta V_{ST}(\beta, a) = \delta S(\beta, \gamma) \cdot T(\gamma, a)$$
Maintain V_{ST} under updates

$$\delta S = \{(\beta, \gamma) \mapsto m\}$$

$$V_{ST}(b, a) = \sum_c S(b, c) \cdot T(c, a)$$

$$\delta V_{ST}(\beta, a) = \delta S(\beta, \gamma) \cdot T(\gamma, a)$$

Time for updates to S and T: $O(N)$ to maintain V_{ST}

Space: $O(N^2)$ to store input relations and V_{ST}
Higher-Order Incremental View Maintenance

Maintain V_{ST} under updates

$$\delta S = \{(\beta, \gamma) \mapsto m\}$$

$$V_{ST}(b, a) = \sum_c S(b, c) \cdot T(c, a)$$

$$\delta V_{ST}(\beta, a) = \delta S(\beta, \gamma) \cdot T(\gamma, a)$$

$$V_{ST}(\beta, a) = V_{ST}(\beta, a) + \delta V_{ST}(\beta, a)$$

Time for updates to S and T: $O(N)$ to maintain V_{ST}

Space: $O(N^2)$ to store input relations and V_{ST}
Maintain V_{ST} under updates

$$
\delta S = \{(\beta, \gamma) \mapsto m\}
$$

$$
V_{ST}(b, a) = \sum_c S(b, c) \cdot \delta S(\beta, \gamma) \cdot T(c, a)
$$

$$
\delta V_{ST}(\beta, a) = \delta S(\beta, \gamma) \cdot T(\gamma, a)
$$

$$
V_{ST}(\beta, a) = V_{ST}(\beta, a) + \delta V_{ST}(\beta, a)
$$

- Time for updates to S and T: $O(N)$ to maintain V_{ST}
- Space: $O(N^2)$ to store input relations and V_{ST}
Lower Bound for Maintaining the Triangle Count
Let D be the database instance and N the number of tuples in D. For any $\gamma > 0$, there is no algorithm that incrementally maintains Q_b with update time enumeration delay $O(N^{1.2 - \gamma})$ unless the Online Vector-Matrix-Vector Multiplication (OuMv) Conjecture fails.
The Boolean Triangle Detection Problem

Boolean Triangle Detection Query

\[Q_b = \bigvee_{a,b,c} R(a, b) \land S(b, c) \land T(c, a) \]

Let \(D \) be the database instance and \(N \) the number of tuples in \(D \).
For any \(\gamma > 0 \), there is no algorithm that incrementally maintains \(Q_b \) with

\[
\begin{align*}
\text{update time} & \quad \text{enumeration delay} \\
\mathcal{O}(N^{\frac{1}{2} - \gamma}) & \quad \mathcal{O}(N^{1-\gamma})
\end{align*}
\]

unless the Online Vector-Matrix-Vector Multiplication (OuMv) Conjecture fails.
The OuMv problem:

- **Input:** An $n \times n$ Boolean matrix M and n pairs $(u_1, v_1), \ldots, (u_n, v_n)$ of Boolean column-vectors of size n arriving one after the other.
- **Goal:** After seeing each pair (u_r, v_r), output $u_r^\top M v_r$.
Online Vector-Matrix-Vector Multiplication

The OuMv problem:

- Input: An $n \times n$ Boolean matrix M and n pairs $(u_1, v_1), \ldots, (u_n, v_n)$ of Boolean column-vectors of size n arriving one after the other.
- Goal: After seeing each pair (u_r, v_r), output $u_r^T M v_r$

The OuMv Conjecture [STOC 2015]

For any $\gamma > 0$, there is no algorithm that solves OuMv in time $O(n^{3-\gamma})$.

Online Vector-Matrix-Vector Multiplication

The OuMv problem:

- **Input:** An $n \times n$ Boolean matrix M and n pairs $(u_1, v_1), \ldots, (u_n, v_n)$ of Boolean column-vectors of size n arriving one after the other.
- **Goal:** After seeing each pair (u_r, v_r), output $u_r^\top M v_r$

The OuMv Conjecture [STOC 2015]

For any $\gamma > 0$, there is no algorithm that solves OuMv in time $O(n^{3-\gamma})$.

The OuMv Conjecture is implied by the OMv Conjecture [STOC 2015]

The OMv problem:

- **Input:** An $n \times n$ Boolean matrix M and n Boolean column-vectors v_1, \ldots, v_n of size n arriving one after the other
- **Goal:** After seeing each vector v_r, output $M v_r$
Online Vector-Matrix-Vector Multiplication

The OuMv problem:

- Input: An $n \times n$ Boolean matrix M and n pairs $(u_1, v_1), \ldots, (u_n, v_n)$ of Boolean column-vectors of size n arriving one after the other.
- Goal: After seeing each pair (u_r, v_r), output $u_r^\top M v_r$

The OuMv Conjecture [STOC 2015]

For any $\gamma > 0$, there is no algorithm that solves OuMv in time $O(n^{3-\gamma})$.

The OuMv Conjecture is implied by the OMv Conjecture [STOC 2015]

The OMv problem:

- Input: An $n \times n$ Boolean matrix M and n Boolean column-vectors v_1, \ldots, v_n of size n arriving one after the other
- Goal: After seeing each vector v_r, output $M v_r$

The OMv Conjecture

For any $\gamma > 0$, there is no algorithm that solves OMv in time $O(n^{3-\gamma})$.
Proof Idea

■ Assume there is an algorithm \mathcal{A} that can maintain Triangle Detection Query Q_b with

\[
\begin{align*}
\text{amortized update time} & : \mathcal{O}(N^{1/2-\gamma}) \\
\text{enumeration delay} & : \mathcal{O}(N^{1-\gamma})
\end{align*}
\]

for some $\gamma > 0$.

■ We design an algorithm \mathcal{B} that uses the oracle \mathcal{A} to solve OuMv in subcubic time in n. \implies Contradicts the OuMv Conjecture!
Proof Idea

- Assume there is an algorithm A that can maintain Triangle Detection Query Q_b with
 amortized update time $\mathcal{O}(N^{\frac{1}{2} - \gamma})$
 enumeration delay $\mathcal{O}(N^{1-\gamma})$
 for some $\gamma > 0$.

- We design an algorithm B that uses the oracle A to solve OuMv in subcubic time in n. \implies **Contradicts the OuMv Conjecture!**

Algorithm B

- Relation S encodes the matrix M: $S(i, j) = M[i, j]$

- In each round $r \in [n]$:
 - Relation R encodes the vector u_r: $R(a, i) = u_r[i]$, for constant a
 - Relation T encodes the vector v_r: $T(j, a) = v_r[j]$, for constant a
 - Then $u_r^T M v_r = Q_b$
 - Check whether $Q_b = 1$ using algorithm A.
Example Encoding for \(u, M, \) and \(v \)

\[
\begin{align*}
\mathbf{u}^\top & \quad \mathbf{M} & \quad \mathbf{v} \\
\begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} & \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} & \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
\mathbf{u}^\top \mathbf{M} \mathbf{v} & \quad \mathbf{u}^\top \mathbf{M} \mathbf{v} \\
1 & \quad 1
\end{align*}
\]

\[
\begin{array}{lll}
R & S & T \\
\hline
\begin{array}{lll}
A & B & \text{val} \\
a & 2 & 1
\end{array} & \begin{array}{lll}
B & C & \text{val} \\
2 & 1 & 1 \\
3 & 1 & 1 \\
1 & 2 & 1 \\
2 & 2 & 1 \\
3 & 3 & 1
\end{array} & \begin{array}{lll}
C & A & \text{val} \\
1 & a & 1 \\
\emptyset & \text{val} \\
\end{array}
\end{array}
\]

\[
\begin{array}{lll}
Q_b & \\
\hline
\emptyset & \text{val} \\
(& 1
\end{array}
\]
Proof Sketch: Algorithm \mathcal{B}

(1) For $i, j \in [n]$: $S(i, j) = M[i, j]$ \hspace{1cm} (\leq n^2$ insertions$)$
Proof Sketch: Algorithm B

(1) For $i, j \in [n]$: $S(i, j) = M[i, j]$ \hspace{1cm} ($\leq n^2$ insertions)

(2) In each round $r \in [n]$:
 - Delete all tuples in R and T \hspace{1cm} ($\leq 2n$ deletions)
Proof Sketch: Algorithm \mathcal{B}

(1) For $i, j \in [n]$: $S(i, j) = M[i, j]$ \hspace{1cm} ($\leq n^2$ insertions)

(2) In each round $r \in [n]$:

- Delete all tuples in R and T \hspace{1cm} ($\leq 2n$ deletions)

- Insert into R and T:
 For $i, j \in [n]$: $R(a, i) = u_r[i]$ and $T(j, a) = v_r[j]$ \hspace{1cm} ($\leq 2n$ insertions)
Proof Sketch: Algorithm \mathcal{B}

(1) For $i, j \in [n]$: $S(i, j) = M[i, j]$ \hspace{1cm} (\leq n^2$ insertions$)

(2) In each round $r \in [n]$:
 - Delete all tuples in R and T \hspace{1cm} (\leq 2n$ deletions$)
 - Insert into R and T:
 - For $i, j \in [n]$:
 - $R(a, i) = u_r[i] \quad$ and $\quad T(j, a) = v_r[j]$ \hspace{1cm} (\leq 2n$ insertions$)
 - Check $Q_b = 1$: This holds if and only if $u_r^T M v_r = 1$
 - $u_r^T M v_r = 1 \iff \exists i, j \in [n] : u_r[i] = 1, M[i, j] = 1, v_r[j] = 1$
Proof Sketch: Algorithm \mathcal{B}

(1) For $i, j \in [n]$: $S(i, j) = M[i, j]$
\hspace{1cm} ($\leq n^2$ insertions)

(2) In each round $r \in [n]$:
\hspace{1cm} ▶ Delete all tuples in R and T
\hspace{1.5cm} ($\leq 2n$ deletions)

\hspace{1cm} ▶ Insert into R and T:
\hspace{1.5cm} For $i, j \in [n]$: $R(a, i) = u_r[i]$ and $T(j, a) = v_r[j]$
\hspace{1.5cm} ($\leq 2n$ insertions)

\hspace{1cm} ▶ Check $Q_b = 1$: This holds if and only if $u_r^T M v_r = 1$
\hspace{1.5cm} $u_r^T M v_r = 1 \Leftrightarrow \exists i, j \in [n]: u_r[i] = 1, M[i, j] = 1, v_r[j] = 1$

\mathcal{B} constructs a database of size $N = \mathcal{O}(n^2)$.
Proof Sketch: Time Analysis

Recall \mathcal{A} needs $O((n^2)^{\frac{1}{2} - \gamma})$ update time and $O((n^2)^{1 - \gamma})$ delay

(1) For $i, j \in [n]$: $S(i, j) = M[i, j]

(2) In each round $r \in [n]$
 ▶ Delete all tuples in R and T
 ▶ Insert into R and T: For $i, j \in [n]$: $R(a, i) = u_r[i]$ and $T(j, a) = v_r[j]$

 ▶ Check $Q_b = 1$: This holds if and only if $u_r^T M v_r = 1$
Proof Sketch: Time Analysis

Recall A needs $O((n^2)^{\frac{1}{2}-\gamma})$ update time and $O((n^2)^{1-\gamma})$ delay

(1) For $i, j \in [n]$: $S(i, j) = M[i, j]$

$$O(\underbrace{\# \text{updates}}_{\text{update time}} \cdot \underbrace{n^2 \cdot (n^2)^{\frac{1}{2}-\gamma}}_{\text{update time}}) = O(n^{3-2\gamma})$$

(2) In each round $r \in [n]$:

- Delete all tuples in R and T
- Insert into R and T: For $i, j \in [n]$: $R(a, i) = u_r[i]$ and $T(j, a) = v_r[j]$

- Check $Q_b = 1$: This holds if and only if $u_r^T M v_r = 1$
Proof Sketch: Time Analysis

Recall A needs $O((n^2)^{\frac{1}{2}-\gamma})$ update time and $O((n^2)^{1-\gamma})$ delay

(1) For $i,j \in [n]$: $S(i,j) = M[i,j]$

$$O(\sqrt{n^2 \cdot (n^2)^{\frac{1}{2}-\gamma}}) = O(n^{3-2\gamma})$$

(2) In each round $r \in [n]$

- Delete all tuples in R and T
- Insert into R and T: For $i,j \in [n]$: $R(a, i) = u_r[i]$ and $T(j, a) = v_r[j]$

$$O(4n \cdot (n^2)^{\frac{1}{2}-\gamma}) = O(n^{2-2\gamma})$$

- Check $Q_b = 1$: This holds if and only if $u_r^T M v_r = 1$
Proof Sketch: Time Analysis

Recall \mathcal{A} needs $O((n^2)^{\frac{1}{2} - \gamma})$ update time and $O((n^2)^{1-\gamma})$ delay

(1) For $i,j \in [n]$: $S(i,j) = M[i,j]$

\[
O(\frac{n^2}{\text{#updates}} \cdot (n^2)^{\frac{1}{2} - \gamma}) = O(n^{3-2\gamma})
\]

(2) In each round $r \in [n]$:
- Delete all tuples in R and T
- Insert into R and T: For $i,j \in [n]$: $R(a,i) = u_r[i]$ and $T(j,a) = v_r[j]$

\[
O(\frac{4n}{\text{#updates}} \cdot (n^2)^{\frac{1}{2} - \gamma}) = O(n^{2-2\gamma})
\]

- Check $Q_b = 1$: This holds if and only if $u_r^T M v_r = 1$

\[
O((n^2)^{1-\gamma}) = O(n^{2-2\gamma})
\]

\[\Rightarrow\] Contradicts OuMv Conjecture!
Recall \mathcal{A} needs $O((n^2)^{\frac{1}{2} - \gamma})$ update time and $O((n^2)^{1 - \gamma})$ delay

1. For $i, j \in [n]$: $S(i, j) = M[i, j]$

\[
O\left(\sqrt{n^2} \cdot (n^2)^{\frac{1}{2} - \gamma}\right) = O(n^{3-2\gamma})
\]

(2) In each round $r \in [n]$:
- Delete all tuples in R and T
- Insert into R and T: For $i, j \in [n]$: $R(a, i) = u_r[i]$ and $T(j, a) = v_r[j]$

\[
O(4n \cdot (n^2)^{\frac{1}{2} - \gamma}) = O(n^{2-2\gamma})
\]

- Check $Q_b = 1$: This holds if and only if $u_r^T M v_r = 1$

\[
O((n^2)^{1-\gamma}) = O(n^{2-2\gamma})
\]

For n rounds: $O(n(n^{2-2\gamma} + n^{2-2\gamma})) = O(n^{3-2\gamma})$
Proof Sketch: Time Analysis

Recall A needs $O((n^2)^{1/2-\gamma})$ update time and $O((n^2)^{1-\gamma})$ delay

(1) For $i,j \in [n]$: $S(i,j) = M[i,j]$

\[
O\left(\frac{n^2}{\text{#updates}} \cdot (n^2)^{1/2-\gamma} \right) = O(n^{3-2\gamma})
\]

(2) In each round $r \in [n]$:
 - Delete all tuples in R and T
 - Insert into R and T: For $i,j \in [n]$: $R(a,i) = u_r[i]$ and $T(j,a) = v_r[j]$

\[
O\left(\frac{4n}{\text{#updates}} \cdot (n^2)^{1/2-\gamma} \right) = O(n^{2-2\gamma})
\]

- Check $Q_b = 1$: This holds if and only if $u_r^T M v_r = 1$

\[
O\left((n^2)^{1-\gamma} \right) = O(n^{2-2\gamma})
\]

For n rounds: $O(n(n^{2-2\gamma} + n^{2-2\gamma})) = O(n^{3-2\gamma})$

Overall time: $O(n^{3-2\gamma} + n^{3-2\gamma}) = O(n^{3-2\gamma}) \Rightarrow$ Contradicts OuMv Conjecture!
Closing the Complexity Gap
Closing the Complexity Gap

Complexity bounds for the maintenance of the triangle count

Known Upper Bound

- Update Time: $O(N)$
- Space: $O(N)$

Known Lower Bound

- Update time: not $O(N^{\frac{1}{2} - \gamma})$ for any $\gamma > 0$
- under the OuMv Conjecture
Closing the Complexity Gap

Complexity bounds for the maintenance of the triangle count

Known Upper Bound

Update Time: $O(N)$

Space: $O(N)$

Can the triangle count be maintained with sublinear update time?

Known Lower Bound

Update time: not $O(N^{\frac{1}{2}-\gamma})$ for any $\gamma > 0$

under the OuMv Conjecture
Closing the Complexity Gap

Complexity bounds for the maintenance of the triangle count

<table>
<thead>
<tr>
<th>Known Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update Time:</td>
</tr>
<tr>
<td>Space:</td>
</tr>
</tbody>
</table>

Can the triangle count be maintained with sublinear update time?

Yes: IVMε
Amortized update time:
$O(N^{\frac{1}{2}})$
This is worst-case optimal

<table>
<thead>
<tr>
<th>Known Lower Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update time:</td>
</tr>
</tbody>
</table>
IVM$^\varepsilon$ Exhibits a Time-Space Tradeoff

Given $\varepsilon \in [0, 1]$, IVM$^\varepsilon$ maintains the triangle count with

- $O(N^{\max\{\varepsilon, 1-\varepsilon\}})$ amortized update time
- $O(N^{1+\min\{\varepsilon, 1-\varepsilon\}})$ space
- $O(N^{\frac{3}{2}})$ preprocessing time
- $O(1)$ answer time.

(Linear space possible with a slightly more involved argument)
Inside IVM^ε
Main Techniques used in IVM

- Compute the delta like in first-order IVM
- Materialize views like in higher-order IVM

New ingredient: Use adaptive processing based on data skew

⇒ Treat *heavy* values differently from *light* values
Heavy/Light Partitioning of Relations

Partition R based on A into

- a light part $R_L = \{ t \in R \mid |\sigma_{A=t} A| < N^\epsilon \}$,
- a heavy part $R_H = R \setminus R_L$.

Derived Bounds

- from light part:
 - for all A-values a, $|\sigma_{A=a} R_L| < N^\epsilon$

- from heavy part:
 - for all A-values a, $|\sigma_{A=a} R_H| \geq N^\epsilon$
 - and $|\pi_A R_H| \cdot N^\epsilon \leq N$
 - $\Rightarrow |\pi_A R_H| \leq N^{1-\epsilon}$
Heavy/Light Partitioning of Relations

Define partition R based on A into
- a light part $R_L = \{ t \in R \mid |\sigma_{A=t}.A| < N^\epsilon \}$,
- a heavy part $R_H = R \setminus R_L$.

Derived Bounds

- From light part:
 for all A-values a, $|\sigma_{A=a} R_L| < N^\epsilon$

- From heavy part:
 for all A-values a, $|\sigma_{A=a} R_H| \geq N^\epsilon$
 and $|\pi_A R_H| \cdot N^\epsilon \leq N$
Heavy/Light Partitioning of Relations

Likewise, partition

- $S = S_L \cup S_H$ based on B, and
- $T = T_L \cup T_H$ based on C!

Q is the sum of skew-aware queries

$$Q = \sum_{a,b,c} R_U(a, b) \cdot S_V(b, c) \cdot T_W(c, a), \text{ for } U, V, W \in \{L, H\}.$$
Given an update $\delta R_* = \{(\alpha, \beta) \mapsto m\}$, compute the delta for each of the following skew-aware queries using a different strategy:

$$Q_{*LL} = \sum_{a,b,c} R_*(a, b) \cdot S_L(b, c) \cdot T_L(c, a)$$

$$Q_{*HH} = \sum_{a,b,c} R_*(a, b) \cdot S_H(b, c) \cdot T_H(c, a)$$

$$Q_{*LH} = \sum_{a,b,c} R_*(a, b) \cdot S_L(b, c) \cdot T_H(c, a)$$

$$Q_{*HL} = \sum_{a,b,c} R_*(a, b) \cdot S_H(b, c) \cdot T_L(c, a)$$
Adaptive Maintenance Strategy

Given an update \(\delta R_\ast = \{(\alpha, \beta) \mapsto m\} \), compute the delta for each of the following skew-aware queries using a different strategy:

\[
\delta Q_{\ast LL} = \delta R_\ast (\alpha, \beta) \cdot \sum_c S_L(\beta, c) \cdot T_L(c, \alpha)
\]

\[
\delta Q_{\ast HH} = \delta R_\ast (\alpha, \beta) \cdot \sum_c S_H(\beta, c) \cdot T_H(c, \alpha)
\]

\[
\delta Q_{\ast LH} = \delta R_\ast (\alpha, \beta) \cdot \sum_c S_L(\beta, c) \cdot T_H(c, \alpha)
\]

\[
\delta Q_{\ast HL} = \delta R_\ast (\alpha, \beta) \cdot \sum_c S_H(\beta, c) \cdot T_L(c, \alpha)
\]
Adaptive Maintenance Strategy

\[\delta Q_{*LL} = \delta R_*(\alpha, \beta) \cdot \sum_c S_L(\beta, c) \cdot T_L(c, \alpha) \]
Adaptive Maintenance Strategy

$$
\delta Q_{*LL} = \delta R_*(\alpha, \beta) \cdot \sum_c S_L(\beta, c) \cdot T_L(c, \alpha)
$$

$$
\delta Q_{*LL} = \delta R_*(\alpha, \beta) \cdot \sum_c S_L(\beta, c) \cdot T_L(c, \alpha)
$$
Adaptive Maintenance Strategy

$$\delta Q_{*LL} = \delta R_*(\alpha, \beta) \cdot \sum_c S_L(\beta, c) \cdot T_L(c, \alpha)$$

$$\delta Q_{*LL} = \alpha \beta \cdot \sum_c S_L(\beta, c) \cdot T_L(c, \alpha)$$

Update time: $O(N^\varepsilon)$ to intersect the lists of C-values from S_L and T_L
Adaptive Maintenance Strategy

$$\delta Q_{*HH} = \delta R_*(\alpha, \beta) \cdot \sum_c S_H(\beta, c) \cdot T_H(c, \alpha)$$
Adaptive Maintenance Strategy

\[\delta Q_{*HH} = \delta R_*(\alpha, \beta) \cdot \sum_c S_H(\beta, c) \cdot T_H(c, \alpha) \]

\[\delta Q_{*HH} = \delta R_*(\alpha, \beta) \cdot \sum_c \beta \cdot c \cdot S_H(\beta, c) \cdot T_H(c, \alpha) \]

Update time: \(O(N^{1-\varepsilon}) \) to intersect the lists of \(C \)-values from \(S_H \) and \(T_H \).
Adaptive Maintenance Strategy

\[\delta Q_{*HH} = \delta R_*(\alpha, \beta) \cdot \sum_c S_H(\beta, c) \cdot T_H(c, \alpha) \]

Update time: \(\mathcal{O}(N^{1-\varepsilon}) \) to intersect the lists of \(C \)-values from \(S_H \) and \(T_H \)
\[\delta Q_{*LH} = \delta R_*(\alpha, \beta) \cdot \sum_c S_L(\beta, c) \cdot T_H(c, \alpha) \]
Adaptive Maintenance Strategy

$$\delta Q_{\ast LH} = \delta R_{\ast}(\alpha, \beta) \cdot \sum_{c} S_{L}(\beta, c) \cdot T_{H}(c, \alpha)$$
Adaptive Maintenance Strategy

$$\delta Q^{*}_{LH} = \delta R^{*}(\alpha, \beta) \cdot \sum_{c} S_{L}(\beta, c) \cdot T_{H}(c, \alpha)$$

$$\delta R^{*}(\alpha, \beta)$$

$$\delta Q^{*}_{LH} = \begin{array}{cc} \alpha & \beta \end{array} \cdot \sum_{c}$$

$$S_{L}(\beta, c)$$

$$T_{H}(c, \alpha)$$
Adaptive Maintenance Strategy

\[\delta Q_{LH} = \delta R_*(\alpha, \beta) \cdot \sum_c S_L(\beta, c) \cdot T_H(c, \alpha) \]

- \(\delta R_*(\alpha, \beta) \)
- \(S_L(\beta, c) \)
- \(T_H(c, \alpha) \)

Update time: \(O(N^{\min\{\varepsilon, 1-\varepsilon\}}) \) to intersect the lists of C-values from \(S_L \) and \(T_H \)
Adaptive Maintenance Strategy

$$\delta Q_{HL} = \delta R_{\star}(\alpha, \beta) \cdot \sum_c S_H(\beta, c) \cdot T_L(c, \alpha)$$

$$\delta Q_{HL} = \sum_c \delta R_{\star}(\alpha, \beta) \cdot S_H(\beta, c) \cdot T_L(c, \alpha)$$

$$V_{ST}(b, a) = \sum_c S_H(b, c) \cdot T_L(c, a)$$
Adaptive Maintenance Strategy

\[\delta Q_{*HL} = \delta R_*(\alpha, \beta) \cdot \sum_c S_H(\beta, c) \cdot T_L(c, \alpha) \]
Adaptive Maintenance Strategy

\[\delta Q_{*HL} = \delta R_{*}(\alpha, \beta) \cdot \sum_c S_H(\beta, c) \cdot T_L(c, \alpha) \]
Adaptive Maintenance Strategy

$$\delta Q_{*HL} = \delta R_*(\alpha, \beta) \cdot \sum_c S_H(\beta, c) \cdot T_L(c, \alpha)$$

Update time: $O(1)$ to look up in V_{ST}, assuming V_{ST} is already materialized
Summary of Adaptive Maintenance Strategies

Maintenance for an update $\delta R_* = \{(\alpha, \beta) \mapsto m\}$:

<table>
<thead>
<tr>
<th>Skew-aware View</th>
<th>Evaluation from left to right</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sum_{a,b,c} R_*(a, b) \cdot S_L(b, c) \cdot T_L(c, a)$</td>
<td>$\delta R_*(\alpha, \beta) \cdot \sum_c S_L(\beta, c) \cdot T_L(c, \alpha)$</td>
<td>$\mathcal{O}(N^\varepsilon)$</td>
</tr>
<tr>
<td>$\sum_{a,b,c} R_*(a, b) \cdot S_H(b, c) \cdot T_H(c, a)$</td>
<td>$\delta R_*(\alpha, \beta) \cdot \sum_c T_H(c, \alpha) \cdot S_H(\beta, c)$</td>
<td>$\mathcal{O}(N^{1-\varepsilon})$</td>
</tr>
<tr>
<td>$\sum_{a,b,c} R_*(a, b) \cdot S_L(b, c) \cdot T_H(c, a)$</td>
<td>$\delta R_*(\alpha, \beta) \cdot \sum_c S_L(\beta, c) \cdot T_H(c, \alpha)$</td>
<td>$\mathcal{O}(N^\varepsilon)$</td>
</tr>
<tr>
<td>or $\delta R_*(\alpha, \beta) \cdot \sum_c T_H(c, \alpha) \cdot S_L(\beta, c)$</td>
<td>$\mathcal{O}(N^{1-\varepsilon})$</td>
<td></td>
</tr>
<tr>
<td>$\sum_{a,b,c} R_*(a, b) \cdot S_H(b, c) \cdot T_L(c, a)$</td>
<td>$\delta R_*(\alpha, \beta) \cdot V_{ST}(\beta, \alpha)$</td>
<td>$\mathcal{O}(1)$</td>
</tr>
</tbody>
</table>

Overall update time: $\mathcal{O}(N^{\max(\varepsilon,1-\varepsilon)})$
Auxiliary Materialized Views

\[V_{RS}(a, c) = \sum_b R_H(a, b) \cdot S_L(b, c) \]

\[V_{ST}(b, a) = \sum_c S_H(b, c) \cdot T_L(c, a) \]

\[V_{TR}(a, c) = \sum_a T_H(c, a) \cdot R_L(a, b) \]
Maintain $V_{ST}(b, a) = \sum_{c} S_H(b, c) \cdot T_L(c, a)$ under update $\delta S_H = \{(\beta, \gamma) \mapsto m\}$

$\delta V_{ST}(\beta, a) = \delta S_H(\beta, \gamma) \cdot T_L(\gamma, a)$

Update time: $O(N\varepsilon)$ to iterate over a-values paired with γ from T_L
Maintain \(V_{ST}(b, a) = \sum_c S_H(b, c) \cdot T_L(c, a) \) under update \(\delta S_H = \{(\beta, \gamma) \mapsto m\} \)

\[
\delta V_{ST}(\beta, a) = \langle \delta S_H(\beta, \gamma) \cdot T_L(\gamma, a) \rangle < N^\varepsilon
\]
Maintain $V_{ST}(b, a) = \sum_c S_H(b, c) \cdot T_L(c, a)$ under update $\delta S_H = \{((\beta, \gamma) \mapsto m)\}$

$$\delta V_{ST}(\beta, a) = \delta S_H(\beta, \gamma) \cdot T_L(\gamma, a) < N^\varepsilon$$

Update time: $\mathcal{O}(N^\varepsilon)$ to iterate over a-values paired with γ from T_L
Maintain $V_{ST}(b, a) = \sum_c S_H(b, c) \cdot T_L(c, a)$ under update $\delta T_L = \{(\gamma, \alpha) \mapsto m\}$

$\delta V_{ST}(b, \alpha) = \delta T_L(\gamma, \alpha) \cdot S_H(b, \gamma)$
Maintenance of Auxiliary Views

Maintain $V_{ST}(b, a) = \sum_c S_H(b, c) \cdot T_L(c, a)$ under update $\delta T_L = \{(\gamma, \alpha) \mapsto m\}$

$$\delta V_{ST}(b, \alpha) = \delta T_L(\gamma, \alpha) \cdot S_H(b, \gamma)$$

$N^{1-\varepsilon} \geq$
Maintenance of Auxiliary Views

Maintain $V_{ST}(b, a) = \sum_c S_H(b, c) \cdot T_L(c, a)$ under update $\delta T_L = \{(\gamma, \alpha) \mapsto m\}$

$\delta V_{ST}(b, \alpha) = \delta T_L(\gamma, \alpha) \cdot S_H(b, \gamma)$

Update time: $\mathcal{O}(N^{1-\varepsilon})$ to iterate over b-values paired with γ from S_H
Maintenance of Auxiliary Views: Summary

\[V_{RS}(a, c) = \sum_{b} R_H(a, b) \cdot S_L(b, c) \]

\[V_{ST}(b, a) = \sum_{c} S_H(b, c) \cdot T_L(c, a) \]

\[V_{TR}(a, c) = \sum_{a} T_H(c, a) \cdot R_L(a, b) \]

Maintenance Complexity

- **Time:** \(\mathcal{O}(N^{\max\{\varepsilon, 1-\varepsilon\}}) \)
- **Space:** \(\mathcal{O}(N^{1+\min\{\varepsilon, 1-\varepsilon\}}) \)
Updates can change frequencies of values & heavy/light threshold
Rebalancing Partitions

Updates can change the frequencies of values in the relation parts

R_L

Insertions

Threshold

a is light

a is heavy

Minor Rebalancing

- Transfer $O(N^\varepsilon)$ tuples from one to the other part of the same relation
- Time complexity: $O(N^{\varepsilon + \max\{\varepsilon, 1-\varepsilon\}})$
Rebalancing Partitions

Updates can change the heavy-light threshold!

\[R_H \]

Database size increases

Threshold

\[a \quad \cdots \quad b \]

\[b \]

\[a \quad \cdots \quad b \]

\[a \]

\[b \]

\[a \]

\[b \]

Threshold

\[a \quad \cdots \quad b \]

\[b \]

\[a \quad \cdots \quad b \]

\[a \]

\[b \]

\[a \]

\[b \]

\[a \]

\[b \]

Major Rebalancing

- Recompute partitions and views from scratch

- Time complexity: \(O(N^{1+\max\{\varepsilon, 1-\varepsilon\}}) \)
Amortization of Rebalancing Times

- Both forms of rebalancing require superlinear time
Amortization of Rebalancing Times

- Both forms of rebalancing require superlinear time
- The rebalancing times amortize over sequences of updates
 - Amortized minor rebalancing time: $\mathcal{O}(N^{\max\{\varepsilon,1-\varepsilon\}})$
 - Amortized major rebalancing time: $\mathcal{O}(N^{\max\{\varepsilon,1-\varepsilon\}})$
Amortization of Rebalancing Times

- Both forms of rebalancing require superlinear time
- The rebalancing times amortize over sequences of updates
 - Amortized minor rebalancing time: $O(N^{\max\{\varepsilon, 1-\varepsilon\}})$
 - Amortized major rebalancing time: $O(N^{\max\{\varepsilon, 1-\varepsilon\}})$
- Overall amortized rebalancing time: $O(N^{\max\{\varepsilon, 1-\varepsilon\}})$
Follow-up work & Open Questions

Follow-up work

- **TODS 2020**
 - Triangle queries with different free variables
 - Strong and weak Pareto optimality

- **APOCS 2021**
 - Extend the triangle counting algorithm to k-clique counting
 - Parallel batch-dynamic triangle count algorithm based on the (sequential single-tuple dynamic) triangle count algorithm

- **ICDT 2021**
 - Update time-approximation quality trade-off for triangle counting
 - Complexity of triangle counting based on the arboricity of the data graph
Follow-up Work & Open Questions

Follow-up work

- **TODS 2020**
 - Triangle queries with different free variables
 - Strong and weak Pareto optimality

- **APOCS 2021**
 - Extend the triangle counting algorithm to k-clique counting
 - Parallel batch-dynamic triangle count algorithm based on the (sequential single-tuple dynamic) triangle count algorithm

- **ICDT 2021**
 - Update time-approximation quality trade-off for triangle counting
 - Complexity of triangle counting based on the arboricity of the data graph

Open questions

- Worst-case optimal (and beyond) maintenance and the update-space trade-off for functional aggregate queries
- Single-tuple updates versus batch updates

[PODS 2017] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. *Answering Conjunctive Queries Under Updates.*

[ICDT 2018] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering UCQs Under Updates and in the Presence of Integrity Constraints.

[SIGMOD 2018] Nikolic, Milos, and Dan Olteanu. Incremental view maintenance with triple lock factorization benefits.

2. Constant Update Time & Enumeration Delay
Q: Which queries admit constant update time and enumeration delay in the worst-case?
Queries with Constant Update Time & Delay

Q: Which queries admit constant update time and enumeration delay in the worst-case?

A: Q-hierarchical queries [PODS 2017]

A: Queries that become q-hierarchical under functional dependencies [ICDE 2009, VLDBJ 2023, RelationalAI]

A: Queries with free access patterns Q(out | in) whose fractures are q-hierarchical [ICDT 2023]

A: Queries that become q-hierarchical under rewritings using q-hierarchical views and specific enumeration order [UZH 2023]
Q: Which queries admit constant update time and enumeration delay in the worst-case?

A: Q-hierarchical queries [PODS 2017]

A: Queries that become q-hierarchical under functional dependencies [ICDE 2009, VLDBJ 2023, RelationalAI]
Q: Which queries admit constant update time and enumeration delay in the worst-case?

A: \(Q\)-hierarchical queries \[PODS 2017\]

A: Queries that become \(q\)-hierarchical under functional dependencies \[ICDE 2009, VLDBJ 2023, RelationalAI\]

A: Queries with free access patterns \(Q(out|in)\) whose fractures are \(q\)-hierarchical \[ICDT 2023\]
Q: Which queries admit constant update time and enumeration delay in the worst-case?

A: Q-hierarchical queries [PODS 2017]

A: Queries that become q-hierarchical under functional dependencies [ICDE 2009, VLDBJ 2023, RelationalAI]

A: Queries with free access patterns $Q(out|in)$ whose fractures are q-hierarchical [ICDT 2023]

A: Queries that become q-hierarchical under rewritings using q-hierarchical views and specific enumeration order [UZH 2023]
A query is **hierarchical** if for any two variables, their sets of atoms in the query are either disjoint or one is contained in the other.

\[Q(b, d) = \sum_{a,c,e,f} R(a, b, d) \cdot S(a, b) \cdot T(a, c, e) \cdot U(a, c, f) \]

[VLDB 2004]
Hierarchical Queries

A query is **hierarchical** if for any two variables, their sets of atoms in the query are either disjoint or one is contained in the other.

\[Q(b, d) = \sum_{a, c, e, f} R(a, b, d) \cdot S(a, b) \cdot T(a, c, e) \cdot U(a, c, f) \]

not hierarchical

\[Q(a, b) = R(a) \cdot S(a, b) \cdot T(b) \]
A query is \(q \)-hierarchical if it is hierarchical and the free variables dominate the bound variables.

\[
q \text{-hierarchical} \quad Q(a, b, c) = \sum_{d,e,f} R(a, b, d) \cdot S(a, b) \cdot T(a, c, e) \cdot U(a, c, f)
\]

[PODS 2017]
A query is *q*-hierarchical if it is hierarchical and the free variables dominate the bound variables.

\[
q\text{-hierarchical} \\
Q(a, b, c) = \sum_{d,e,f} R(a, b, d) \cdot S(a, b) \cdot T(a, c, e) \cdot U(a, c, f)
\]

hierarchical but not *q*-hierarchical

\[
Q(a) = \sum_{b} S(a, b) \cdot T(b)
\]
Let Q be any conjunctive query without self-joins and D a database.

- If Q is \textbf{q-hierarchical}, then the query answer admits $O(1)$ single-tuple updates and enumeration delay.

- If Q is \textbf{not q-hierarchical}, then there is no algorithm with $O(|D|^{1/2-\gamma})$ update time and enumeration delay for any $\gamma > 0$, unless the OMv conjecture fails.

[PODS 2017]
Rewriting queries under functional dependencies [ICDE 2009]

- Given: Query Q and set Σ of functional dependencies

- Replace the set of variables of each atom in Q by its closure under Σ called Σ-reduct

 Under $\Sigma = \{x \rightarrow y, y \rightarrow z\}$, the closure of $\{x\}$ is $\{x, y, z\}$

- If the Σ-reduct is q-hierarchical, then Q admits constant update time and enumeration delay [VLDB J 2023]
Maintenance of Q-Hierarchical Queries

How to achieve constant update time and enumeration delay?

Recipe: [PODS 2017]

- Construct a factorized representation of the query answer [ICDT 2012]
- Such factorizations admit constant-delay enumeration
- Apply updates directly on the factorization

F-IVM system [https://github.com/fdbresearch/FIVM] [SIGMOD 2018]

- Factorize the query answer as a tree of views
- Materialize the views to speed up updates and enumeration
Example: Query Rewriting

\[Q(w, x, y, z) = R(w, x) \cdot S(x, y) \cdot T(y, z) \]

Assume the functional dependencies: \(X \rightarrow Y \) and \(Y \rightarrow Z \)

\(Q \) is not \(q \)-hierarchical, but its rewriting under FDs is:

\[Q'(w, x, y, z) = R'(w, x, y, z) \cdot S'(x, y, z) \cdot T'(y, z) \]
Example: Variable Order

\[Q'(w, x, y, z) = R'(w, x, y, z) \cdot S'(x, y, z) \cdot T'(y, z) \]

Top-down construction of variable order for \(Q' \):
- \(Z \) and \(Y \) are first as they dominate \(X \) and \(W \)
- Then \(X \), which dominates \(W \)
- Finally \(W \)

We use this variable order also for \(Q \)
Example: View Tree

View tree construction:

- Place relations at leaves
- Create parent view to join children

\[V'_Z(z, y) = T(y, z) \cdot V_X(y) \]
\[V'_X(y, x) = S(x, y) \cdot V_W(x) \]
- Aggregate away variables not needed for further joins

\[V_Z() = \sum_z V_Y(z) \]
\[V_Y(z) = \sum_y V'_Z(y, z) \]
\[V_X(y) = \sum_x V'_X(x, y) \]
\[V_W(x) = \sum_w R'(x, w) \]
Example: Single-Tuple Update to T

$V_Z()$

$V_Y(z)$

$V'_Z(z, y)$

$V'_X(y, x)$

$V_W(x)$

$R(x, w)$

$S(x, y)$

Single-tuple update to T

$\delta V'_Z(z_0, y_0) = \delta T(y_0, z_0) \cdot V_X(y_0)$

$\delta V'_Y(z_0) = \sum_{y_0} \delta V'_Z(z_0, y_0) = \delta V'_Z(z_0, y_0)$
Example: Single-Tuple Update to T

$$V_Z()$$

$$V_Y(z)$$

$$V_Y'(z, y)$$

$$V_Z'(z, y)$$

$$V_X(y)$$

$$V_X'(y, x)$$

$$V_X'(y, x)$$

$$V_W(x)$$

$$R(x, w)$$

$$S(x, y)$$

Single-tuple update to T

$$\delta T(y_0, z_0)$$

$$\delta V_Z'(z_0, y_0) = \delta V_Y(z_0) = \delta V_Z(z_0)$$

For each updated view/relation A:

$$A := A + \delta A$$

Each view update takes $O(1)$ time
Example: Single-Tuple Update to T

$$
\delta V'_{Z}(z_0, y_0) = \delta T(y_0, z_0) \cdot V_X(y_0)
$$
Example: Single-Tuple Update to T

Single-tuple update to T

\[
\delta V'_Z(z_0, y_0) = \delta T(y_0, z_0) \cdot V_X(y_0)
\]

\[
\delta V_Y(z_0) = \sum_{y_0} \delta V'_Z(z_0, y_0) = \delta V'_Z(z_0, y_0)
\]

For each updated view/relation A:

\[
A := A + \delta A
\]

Each view update takes $O(1)$ time.
Example: Single-Tuple Update to T

Single-tuple update to T

$$
\delta V'_Z(z_0, y_0) = \delta T(y_0, z_0) \cdot V_X(y_0)
$$

$$
\delta V_Y(z_0) = \sum_{y_0} \delta V'_Z(z_0, y_0) = \delta V'_Z(z_0, y_0)
$$

$$
\delta V'_Z(z_0, y_0) = \delta V'_Y(z_0) = \delta V_Y(z_0)
$$

For each updated view/relation A: $A := A + \delta A$

Each view update takes $O(1)$ time
Example: Single-Tuple Update to S

For each updated view/relation A:

$$A := A + \delta A$$

Each view update takes $O(1)$ time.
Example: Single-Tuple Update to S

Single-tuple update to S

$$V_Z()$$

$$V_Y(z)$$

$$V_Z'(z, y)$$

$$V_X(y)$$

$$T(y, z)$$

$$V_X'(y, x)$$

$$V_W(x)$$

$$R(x, w)$$

$$\delta S(x_0, y_0)$$

For each updated view/relation A:

$$A := A + \delta A$$

Each view update takes $O(1)$ time
Example: Single-Tuple Update to S

$V_Z()$

$V_Y(z)$

$V_Y'(z, y)$

$V_Z'(z, y)$

$V_X(y)$

$T(y, z)$

$\delta V'_X(y_0, x_0) = \delta S(x_0, y_0) \cdot V_W(x_0)$

$\delta S(x_0, y_0)$

For each updated view/relation A:

$A := A + \delta A$

Each view update takes $O(1)$ time
Example: Single-Tuple Update to S

For each updated view/relation A:

$$A := A + \delta A$$

Each view update takes $O(1)$ time.

Single-tuple update to S

$$\delta V'_X(y_0, x_0) = \delta S(x_0, y_0) \cdot V_W(x_0)$$

$$\delta V'_X(y_0) = \sum_{x_0} \delta V'_X(y_0, x_0) = \delta V'_X(y_0, x_0)$$

$$\delta V_Y(z_0) = \sum_{y_0} \delta V'_Z(z_0, y_0) = \delta V'_Z(z_0, y_0)$$

$$\delta V_Z() = \delta S(x_0, y_0)$$

For each updated view/relation A:
Example: Single-Tuple Update to S

Single-tuple update to S

\[
\delta V'_X(y_0, x_0) = \delta S(x_0, y_0) \cdot V_W(x_0)
\]

\[
\delta V_X(y_0) = \sum_{x_0} \delta V'_X(y_0, x_0) = \delta V'_X(y_0, x_0)
\]

\[
\delta V'_Z(z_0, y_0) : \delta V'_X(y_0) \cdot T(y_0, z)^{y \rightarrow z} = \delta V'_X(y_0) \cdot T(y_0, z_0)
\]
Example: Single-Tuple Update to S

Single-tuple update to S

\[
\delta V'_X(y_0, x_0) = \delta S(x_0, y_0) \cdot V_W(x_0)
\]

\[
\delta V_X(y_0) = \sum_{x_0} \delta V'_X(y_0, x_0) = \delta V'_X(y_0, x_0)
\]

\[
\delta V'_Z(z_0, y_0) : \delta V'_X(y_0) \cdot T(y_0, z) \rightleftarrows \delta V'_X(y_0) \cdot T(y_0, z_0)
\]

\[
\delta V_Y(z_0) = \sum_{y_0} \delta V'_Z(z_0, y_0) = \delta V'_Z(z_0, y_0)
\]

For each updated view/relation A:

\[
A := A + \delta A
\]

Each view update takes $O(1)$ time
Example: Single-Tuple Update to S

Single-tuple update to S

\[\delta V_Z() \]
\[\delta V_Y(z_0) \]
\[\delta V_Z'(z_0, y_0) \]
\[\delta V_X(y_0) \]
\[\delta V_X'(y_0, x_0) \]
\[V_W(x) \]
\[R(x, w) \]
\[\delta S(x_0, y_0) \]

\[\delta V_Z'(z_0, y_0) : \delta V_X'(y_0) \cdot T(y_0, z) \overset{\gamma \rightarrow z}{\Longrightarrow} \delta V_X'(y_0) \cdot T(y_0, z_0) \]

\[\delta V_Y(z_0) = \sum_{y_0} \delta V_Z'(z_0, y_0) = \delta V_Z'(z_0, y_0) \]

\[\delta V_X(y_0) = \sum_{x_0} \delta V_X'(y_0, x_0) = \delta V_X'(y_0, x_0) \]

\[\delta V_Z() = \sum_{z_0} \delta V_Y(z_0) = \delta V_Y(z_0) \]

\[\delta V'_X(y_0, x_0) = \delta S(x_0, y_0) \cdot V_W(x_0) \]

\[\delta V'_X(y_0, x_0) = \delta S(x_0, y_0) \cdot V_W(x_0) \]

For each updated view/relation A: $A := A + \delta A$

Each view update takes $O(1)$ time
Example: Single-Tuple Update to R

Single-tuple update to R

$V_Z()$

$V_Y(z)$

$V'_Z(z, y)$

$V'_X(y, x)$

$V_W(x)$

$R(x, w)$

$S(x, y)$
Single-tuple update to R

For each updated view/relation A:

\[A = A + \delta A \]

Each view update takes $O(1)$ time
Example: Single-Tuple Update to R

Single-tuple update to R

$$\delta V_{W}(x_0) = \sum_{w_0} \delta R(x_0, w_0) = \delta R(x_0, w_0)$$
Example: Single-Tuple Update to R

Single-tuple update to R

$$
\delta V_W(x_0) = \sum_{w_0} \delta R(x_0, w_0) = \delta R(x_0, w_0)
$$

$$
\delta V'_X(y_0, x_0) : \delta V_W(x_0) \cdot S(x_0, y) \xrightarrow{x \rightarrow y} \delta V_W(x_0) \cdot S(x_0, y_0)
$$

For each updated view/relation A:

$A := A + \delta A$

Each view update takes $O(1)$ time
Example: Single-Tuple Update to R

Single-tuple update to R

\[\delta V_W(x_0) = \sum_{w_0} \delta R(x_0, w_0) = \delta R(x_0, w_0) \]

\[\delta V'_X(y_0, x_0) : \delta V_W(x_0) \cdot S(x_0, y) \xrightarrow{\text{equiv}} \delta V_W(x_0) \cdot S(x_0, y_0) \]

\[\delta V_X(y_0) = \sum_{x_0} \delta V'_X(y_0, x_0) = \delta V'_X(y_0, x_0) \]

For each updated view/relation A:

\[A := A + \delta A \]

Each view update takes $O(1)$ time.
Example: Single-Tuple Update to R

Single-tuple update to R

\[
\delta V_W(x_0) = \sum_{w_0} \delta R(x_0, w_0) = \delta R(x_0, w_0)
\]

\[\delta V'_Z(z_0, y_0) : \delta V_W(x_0) \cdot S(x_0, y) \xrightarrow{x \leftrightarrow y} \delta V_W(x_0) \cdot S(x_0, y_0)\]

\[\delta V'_X(y_0) : \delta V'_X(y_0) \cdot T(y_0, z) \xrightarrow{y \leftrightarrow z} \delta V'_X(y_0) \cdot T(y_0, z_0)\]

For each updated view/relation A:

\[A := A + \delta A\]

Each view update takes $O(1)$ time
Single-tuple update to R

$$\delta V_W(x_0) = \sum_{w_0} \delta R(x_0, w_0) = \delta R(x_0, w_0)$$

$$\delta V'_X(y_0, x_0) : \delta V_W(x_0) \cdot S(x_0, y) \xrightarrow{y \to y} \delta V_W(x_0) \cdot S(x_0, y_0)$$

$$\delta V_X(y_0) = \sum_{x_0} \delta V'_X(y_0, x_0) = \delta V'_X(y_0, x_0)$$

$$\delta V'_Z(z_0, y_0) : \delta V'_X(y_0) \cdot T(y_0, z) \xrightarrow{y \to z} \delta V'_X(y_0) \cdot T(y_0, z_0)$$

$$\delta V_Y(z_0) = \sum_{y_0} \delta V'_Z(z_0, y_0) = \delta V'_Z(z_0, y_0)$$

For each updated view/relation A:

$$A := A + \delta A$$

Each view update takes $O(1)$ time
Example: Single-Tuple Update to R

Single-tuple update to R

- $\delta V_Z()$
 - $\delta V_W(x_0) = \sum_{w_0} \delta R(x_0, w_0) = \delta R(x_0, w_0)$
 - $\delta V'_X(y_0, x_0) = \delta V'_Z(z_0, y_0) \cdot T(y_0, z_0) = T(y_0, z_0) \delta V'_X(y_0, x_0)$
 - $\delta V'_Y(z_0) = \delta V'_Z(z_0, y_0) \cdot T(y_0, z_0) = T(y_0, z_0) \delta V'_Z(z_0, y_0)$
- $\delta V_Y(z_0)$
 - $\delta V'_Y(z_0) = \delta V'_Z(z_0, y_0) \cdot T(y_0, z_0) = T(y_0, z_0) \delta V'_Z(z_0, y_0)$
 - $\delta V_Z() = \sum_{z_0} \delta V'_Y(z_0) = \delta V'_Y(z_0)$

For each updated view/relation A: $A := A + \delta A$

Each view update takes $O(1)$ time
Example: Enumeration of Query Answers

Enumeration for $Q(z, y, x, w)$ with constant delay

- Top-down in the view tree
- Views calibrated for variables underneath
- Guaranteed to get matching tuples in views below

Diagram:

- $V_Z()$
- $V_Y(z)$
- $V'_Z(y, z)$
- $V_X(y)$
- $T(y, z)$
- $V'_X(x, y)$
- $V_W(x)$
- $R(x, w)$
- $S(x, y)$
Example: Enumeration of Query Answers

Enumeration for $Q(z, y, x, w)$ with constant delay

- Top-down in the view tree
- Views calibrated for variables underneath
- Guaranteed to get matching tuples in views below

Enumeration from the join:

$$1_{V_Z} \cdot 1_{V_Y(z)} \cdot 1_{V'_Z(z, y)} \cdot 1_{V'_X(y, x)} \cdot T(z, y) \cdot S(x, y) \cdot R(x, w)$$

with variable order: $Z - Y - X - W$
Example: Enumeration of Query Answers

Enumeration for $Q(z, y, x, w)$ with constant delay

- Top-down in the view tree
- Views calibrated for variables underneath
- Guaranteed to get matching tuples in views below

Enumeration from the join:

$$1_{V_Z} \cdot 1_{V_Y(z)} \cdot 1_{V'_Z(z, y)} \cdot 1_{V'_X(y, x)} \cdot T(z, y) \cdot S(x, y) \cdot R(x, w)$$

with variable order: $Z - Y - X - W$

- Is $V_Z()$ empty? If yes, stop.
- Iterate over z’s in $V_Y(z)$
- For each z, iterate over y’s in index $V'_Z(z, y)$
- For each y, iterate over x’s in index $V'_X(y, x)$
- Iterate over $T(z, y), S(x, y), R(x, w)$
Open Questions

Can we achieve worst-case optimality per single-tuple update beyond the q-hierarchical queries?
Open Questions

- Can we achieve worst-case optimality per single-tuple update beyond the q-hierarchical queries?

- In practice, *average* constant time might be enough.

Which queries admit average constant time for single-tuple updates?
Open Questions

- Can we achieve worst-case optimality per single-tuple update beyond the q-hierarchical queries?

- In practice, *average* constant time might be enough.

Which queries admit average constant time for single-tuple updates?

- What is the complexity trade-off between update time and enumeration delay if we drop:

 - the "q" property?

 - the hierarchical property?

[PODS 2017] Christoph Berkholz, Jens Keppeler, Nicole Schweikardt. Answering Conjunctive Queries under Updates.

[UZH 2023] Johann Schwabe. *CaVieR: CAscading VIEw tRees.* MSc thesis, University of Zurich
3. Beyond “Q”
Simplest Hierarchical Query without “Q” Property

\[Q(a) = \sum_{b} R(a, b) \cdot S(b) \]
Simplest Hierarchical Query without “Q” Property

\[Q(a) = \sum_b R(a, b) \cdot S(b) \]

Lower bound

For this query, there is no algorithm that admits

- preprocessing time arbitrary
- update time \(\mathcal{O}(N^{1/2-\gamma}) \)
- enumeration delay \(\mathcal{O}(N^{1/2-\gamma}) \)

for any \(\gamma > 0 \), unless the OMv Conjecture fails

[PODS 2017]
Simplest Hierarchical Query without “Q” Property

\[
Q(a) = \sum_b R(a, b) \cdot S(b)
\]

Known approach: **Eager** update, quick enumeration

- **Preprocessing**: Materialize the result.
- **Upon update**: Maintain the materialized result.
- **Enumeration**: Enumerate from materialized result.

Lower bound

For this query, there is no algorithm that admits

\[O(N^{1/2 - \gamma})\]

for any \(\gamma > 0\), unless the OMv Conjecture fails [PODS 2017]

Yet, there is an algorithm that admits

sub-linear update time and sub-linear enumeration delay

Weak Pareto optimality
Simplest Hierarchical Query without “Q” Property

\[Q(a) = \sum_b R(a, b) \cdot S(b) \]

Known approach: Lazy update, heavy enumeration

- Preprocessing: Eliminate dangling tuples
- Upon update: Update only base relations
- Enumeration: Eliminate dangling tuples and enumerate from \(R \)
Simplest Hierarchical Query without “Q” Property

\[Q(a) = \sum_b R(a, b) \cdot S(b) \]

\[
\log_N \text{delay} \\
\log_N \text{preprocessing time} \\
\log_N \text{update time}
\]

\[
\delta = \frac{1}{2}
\]

\[(1, 0, 1) \]

\[
(1, 0, 1/2)
\]

Yet, there is an algorithm that admits

sub-linear update time and sub-linear enumeration delay
Simplest Hierarchical Query without “Q” Property

$$Q(a) = \sum_b R(a, b) \cdot S(b)$$

known approach: Eager update, quick enumeration
- Preprocessing: Materialize the result.
- Upon update: Maintain the materialized result.
- Enumeration: Enumerate from materialized result.

known approach: Lazy update, heavy enumeration
- Preprocessing: Eliminate dangling tuples
- Upon update: Update only base relations
- Enumeration: Eliminate dangling tuples and enumerate from R

lower bound
- For this query, there is no algorithm that admits preprocessing time, update time, enumeration delay in $O(N^{1/2-\gamma})$ for any $\gamma > 0$, unless the OMv Conjecture fails [PODS 2017]
- Yet, there is an algorithm that admits sub-linear update time and sub-linear enumeration delay

weak pareto optimality
Relation Partitioning

$$Q(a) = \sum_b R(a, b) \cdot S(b)$$

Partition R based on the values b into

- a **light part** $R^L = \{(a, b) \in R \mid |\sigma_{B=b}R| < N^\varepsilon\}$
- a **heavy part** $R^H = R - R^L$
Relation Partitioning

\[Q(a) = \sum_b R(a, b) \cdot S(b) \]

Partition \(R \) based on the values \(b \) into

- a light part \(R^L = \{ (a, b) \in R \mid |\sigma_{B=b} R| < N^\varepsilon \} \)
- a heavy part \(R^H = R - R^L \)

\[Q(a) = Q_L(a) + Q_H(a) \]

\[Q_L(a) = \sum_b R^L(a, b) \cdot S(b) \]

\[Q_H(a) = \sum_b R^H(a, b) \cdot S(b) \]
Light Case

\[Q_L(a) = \sum_b R^L(a, b) \cdot S(b) \]

Materialize the result
Light Case

\[Q_L(a) = \sum_b R^L(a, b) \cdot S(b) \]

Materialize the result

\[Q_L(a) = \sum_b R^L(a, b) \cdot S(b) \]

\[R^L(a, b) \]

\[S(b) \]

\[a_i \]

\[... \]

\[a_j \]

\[a_1 \]

\[b_1 \]

\[... \]

\[a_n \]

\[b_n \]

\[b'_1 \]

\[... \]

\[b'_m \]

\[Q_L(A) \text{ can be computed in time } O(N) \]

\[Q_L(A) \text{ allows constant-time lookups and constant-delay enumeration} \]
Preprocessing in the Light Case

\[Q_L(a) = \sum_b R^L(a, b) \cdot S(b) \]

- \(Q_L \) can be computed in time \(\mathcal{O}(N) \)
Enumeration in the Light Case

$$Q_L(a) = \sum_b R^L(a, b) \cdot S(b)$$

- Q_L allows constant-time lookups and constant-delay enumeration
Updates in the Light Case

\[Q_L(a) = \sum_b R^L(a, b) \cdot S(b) \]

Updates to \(R^L \):
- \(O(1) \)

Updates to \(S \):
- \(O(N^\varepsilon) \)

- Update \(a_0 \) \(b_0 \)
- Iterate over values
 - \(a_1 \)...
 - \(a_n \) with \(N \in \varepsilon > 0 \)
 - Propagate updates

Diagram:
- \(R^L(a, b) \) and \(S(b) \) connected to \(Q_L(a) \)
- Update arrow \(a_0 \) \(b_0 \)
Updates in the Light Case

\[Q_L(a) = \sum_b R^L(a, b) \cdot S(b) \]
Updates in the Light Case

\[Q_L(a) = \sum_b R_L(a, b) \cdot S(b) \]

- update \(a_0 \) \(b_0 \)
- propagate update \(a_0 \)
- look up \(b_0 \)
Updates in the Light Case

\[Q_L(a) = \sum_b R^L(a, b) \cdot S(b) \]

- Update: \(a_0 b_0 \) → \(a_0 \) and \(b_0 \)
- Propagate update: \(a_0 \) → \(a_1 \)...
- Look up: \(b_0 \)

- Updates to \(R^L \): \(O(1) \)
Updates in the Light Case

\[Q_L(a) = \sum_b R_L(a, b) \cdot S(b) \]

- Updates to \(R_L \): \(O(1) \)

- Updates to \(S \): \(O(N\varepsilon) \)
Updates in the Light Case

$Q_L(a) = \sum_b R^L(a, b) \cdot S(b)$

iterate over values a

$N^\epsilon \xrightarrow{\text{iterate over values } a} \left\{ \begin{array}{c} a_1 \\ \vdots \\ b_0 \\ a_n \end{array} \right\}$

Updates to R^L: $O(1)$
Updates in the Light Case

\[Q_L(a) = \sum_b R_L(a, b) \cdot S(b) \]

- **Iterate over values** \(a \)
- **Propagate update** \(R_L(a, b) \)
- **Update** \(S(b) \)

Updates to \(R_L \): \(\mathcal{O}(1) \)
Updates in the Light Case

\[Q_L(a) = \sum_b R^L(a, b) \cdot S(b) \]

- Iterate over values of \(a \)
- Propagate update

- \(R^L(a, b) \)
- \(S(b) \)

- \(N^\varepsilon \)

- Updates to \(R^L \): \(O(1) \)
- Updates to \(S \): \(O(N^\varepsilon) \)
Heavy Case

\[Q_H(a) = \sum_{b} R_H^H(a, b) \cdot S(b) \]

Materialize the \(b \) values in the join result
Heavy Case

\[Q_H(a) = \sum_{b} R^H(a, b) \cdot S(b) \]

Materialize the b values in the join result

\[V_{RS}(b) = V_R(b) \cdot S(b) \]

\[V_R(b) = \sum_a R^H(a, b) \]

\[R^H(a, b) \]

\[a_1 b_1 \]

\[\ldots \]

\[a_n b_n \]

\[b_1 \]

\[\ldots \]

\[b_i \]

\[b_j \]

\[\leq N^{1-\epsilon} \]

\[S(b) \]

\[b'_1 \]

\[\ldots \]

\[b'_m \]

\[\leq N^{1-\epsilon} \]

For each \(b \) value, tuples \((a, b)\) in the join of \(R_H \) and \(S \) admit constant lookup time and enumeration delay.
Preprocessing in the Heavy Case

\[Q_H(a) = \sum_b R^H(a, b) \cdot S(b) \]

Materialize the \(b \) values in the join result

\[V_{RS}(b) = V_R(b) \cdot S(b) \]

\[V_R(b) = \sum_a R^H(a, b) \]

\[R^H(a, b) \]

\[a_1 \ b_1 \]

\[\ldots \ldots \]

\[a_n \ b_n \]

\[b_i \]

\[\ldots \]

\[b_j \]

\[b_1' \]

\[\ldots \]

\[b_m' \]

\[S(b) \]

\[\leq N^{1-\varepsilon} \]

\[\leq N^{1-\varepsilon} \]

\[\leq N^{1-\varepsilon} \]

\[V_{RS} \] can be computed in time \(\mathcal{O}(N^{1-\varepsilon}) \) and has at most \(N^{1-\varepsilon} \) values
Enumeration in the Heavy Case

\[Q_H(a) = \sum_b R^H(a, b) \cdot S(b) \]

\[V_{RS}(b) = V_R(b) \cdot S(b) \leq N^{1-\epsilon} \]

\[V_R(b) = \sum_a R^H(a, b) \leq N^{1-\epsilon} \]

\[R^H(a, b) \leq N^{1-\epsilon} \]

- \(V_{RS} \) contains at most \(N^{1-\epsilon} \) values \(b \)
- For each value \(b \) in \(V_{RS} \), the values \(a \) in \(R^H \) paired with \(b \) admit constant enumeration delay
Enumeration of Distinct Tuples from Union

- $V_{RS}(b)$ contains at most $N^{1-\varepsilon}$ values

- For each value b in V_{RS}, the values a in R^H paired with b admit constant enumeration delay

- Yet: For two distinct b_1 and b_2, the sets of values a in $R^H(a, b_1)$ and $R^H(a, b_2)$ may not be disjoint

 \implies Enumerating all the values a in $R^H(a, b_1)$ and $R^H(a, b_2)$ can lead to duplicates
Enumeration of Distinct Tuples from Union

- $V_{RS}(b)$ contains at most $N^{1-\varepsilon}$ values

- For each value b in V_{RS}, the values a in R^H paired with b admit constant enumeration delay

- Yet: For two distinct b_1 and b_2, the sets of values a in $R^H(a, b_1)$ and $R^H(a, b_2)$ may not be disjoint

 \implies Enumerating all the values a in $R^H(a, b_1)$ and $R^H(a, b_2)$ can lead to duplicates

Union Algorithm [CSL 2011]

- The distinct values a can be enumerated with $\mathcal{O}(N^{1-\varepsilon})$ delay
The Union Algorithm: Example

Enumeration of the distinct tuples in the union of two sets

- Both sets allow lookup time ℓ and enumeration delay d

\implies The union of the sets can be enumerated with $O(\ell + d)$ delay

S_1 a_3 a_4 a_1 a_2 EOF S_2 a_5 a_6 a_2 a_4 EOF $S_1 \cup S_2$
The Union Algorithm: Example

Enumeration of the distinct tuples in the union of two sets

- Both sets allow lookup time ℓ and enumeration delay d

\implies The union of the sets can be enumerated with $O(\ell + d)$ delay

\begin{align*}
S_1 &= \{a_3, a_4, a_1, a_2\} \quad \text{EOF} \\
S_2 &= \{a_5, a_6, a_2, a_4\} \quad \text{EOF}
\end{align*}

$S_1 \cup S_2$
The Union Algorithm: Example

Enumeration of the distinct tuples in the union of two sets

- Both sets allow lookup time ℓ and enumeration delay d

\Rightarrow The union of the sets can be enumerated with $O(\ell + d)$ delay

S\textsubscript{1} \text{\ \ \ } a_{3} \text{ a_{4} a_{1} a_{2} EOF \ \ \ \ } S\textsubscript{2} \text{\ \ \ a_{5} a_{6} a_{2} a_{4} EOF \ \ \ \ a_{3} \text{ } S_{1} \cup S_{2}$
The Union Algorithm: Example

Enumeration of the distinct tuples in the union of two sets

- Both sets allow lookup time ℓ and enumeration delay d

\implies The union of the sets can be enumerated with $O(\ell + d)$ delay

$S_1 \cup S_2$

$S_1 = \{a_1, a_2, a_3, a_4\}$

$S_2 = \{a_5, a_6, a_2, a_4\}$
The Union Algorithm: Example

Enumeration of the distinct tuples in the union of two sets

- Both sets allow lookup time ℓ and enumeration delay d

\implies The union of the sets can be enumerated with $O(\ell + d)$ delay
The Union Algorithm: Example

Enumeration of the distinct tuples in the union of two sets

- Both sets allow lookup time ℓ and enumeration delay d
- The union of the sets can be enumerated with $O(\ell + d)$ delay
The Union Algorithm: Example

Enumeration of the distinct tuples in the union of two sets

- Both sets allow lookup time ℓ and enumeration delay d

\implies The union of the sets can be enumerated with $O(\ell + d)$ delay

\[
\begin{align*}
S_1 & \quad S_2 & \quad S_1 \cup S_2 \\
a_3 & a_4 & a_1 & a_2 & EOF & \uparrow a_5 & a_6 & a_2 & a_4 & EOF & \uparrow a_3 & a_5 & a_1 & a_6 & a_2
\end{align*}
\]
The Union Algorithm: Example

Enumeration of the distinct tuples in the union of two sets

- Both sets allow lookup time ℓ and enumeration delay d

\implies The union of the sets can be enumerated with $O(\ell + d)$ delay
The Union Algorithm: Example

Enumeration of the distinct tuples in the union of two sets

- Both sets allow lookup time ℓ and enumeration delay d

\implies The union of the sets can be enumerated with $O(\ell + d)$ delay

Generalization: Enumeration from the union of n sets

- Each set allows lookup time ℓ and enumeration delay d
- The union of the sets can be enumerated with $O(n(\ell + d))$ delay
Updates in the Heavy Case

\[V_{RS}(b) = V_R(b) \cdot S(b) \]

\[V_R(b) = \sum_a R^H(a, b) \]

\[R^H(a, b) \]

update → \(a_0 \ b_0\)
Updates in the Heavy Case

\[V_{RS}(b) = V_R(b) \cdot S(b) \]

\[V_R(b) = \sum_a R^H(a, b) \]

propagate update \(\rightarrow \) \(b_0 \)

update \(\rightarrow \) \(a_0 \ b_0 \)
Updates in the Heavy Case

\[V_{RS}(b) = V_R(b) \cdot S(b) \]

\[V_R(b) = \sum_a R^H(a, b) \]

propagate update \(-\rightarrow\) \(b_0\)

look up \(-\rightarrow\) \(b_0\)

update \(-\rightarrow\) \(a_0 b_0\)
Updates in the Heavy Case

\[V_{RS}(b) = V_R(b) \cdot S(b) \]

\[V_R(b) = \sum_a R^H(a, b) \]

update \(a_0 \), \(b_0 \) → \(R^H(a, b) \) → \(b_0 \)

propagate update \(b_0 \) → \(S(b) \)

look up \(b_0 \)
Updates in the Heavy Case

\[V_{RS}(b) = V_{R}(b) \cdot S(b) \]

\[V_{R}(b) = \sum_{a} R^{H}(a, b) \]

- Propagate update \(\rightarrow b_0 \)
- Look up \(\rightarrow b_0 \)
- Update \(\rightarrow a_0 \quad b_0 \)

- Updates to \(R^{H} \): \(\mathcal{O}(1) \)
Updates in the Heavy Case

\[V_{RS}(b) = V_R(b) \cdot S(b) \]

\[V_R(b) = \sum_a R^H(a, b) \]

- Updates to \(R^H \): \(\mathcal{O}(1) \)

\(R^H(a, b) \)

\(S(b) \)

\(b_0 \)

update - - →
Updates in the Heavy Case

\[V_{RS}(b) = V_R(b) \cdot S(b) \]

\[V_R(b) = \sum_a R^H(a, b) \]

- **Updates to** \(R^H \): \(\mathcal{O}(1) \)

- Look up \(b_0 \) from \(R^H(a, b) \)
- Update \(S(b) \) to \(b_0 \)

\(R^H(a, b) \)
Updates in the Heavy Case

\[V_{RS}(b) = V_R(b) \cdot S(b) \]

\[V_R(b) = \sum_a R^H(a, b) \]

\[R^H(a, b) \]

\[b_0 \]

\[S(b) \]

- Updates to \(R^H \): \(\mathcal{O}(1) \)
Updates in the Heavy Case

\[V_{RS}(b) = V_R(b) \cdot S(b) \]

- Updates to \(R^H \): \(\mathcal{O}(1) \)
- Updates to \(S \): \(\mathcal{O}(1) \)
Summing Up

\[Q(a) = R(a, b) \cdot S(b) \]

Preprocessing Time

<table>
<thead>
<tr>
<th></th>
<th>light case</th>
<th>heavy case</th>
<th>overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>(O(N))</td>
<td>(O(N^{1-\varepsilon}))</td>
<td>(O(N))</td>
</tr>
</tbody>
</table>

Enumeration Delay

<table>
<thead>
<tr>
<th></th>
<th>light case</th>
<th>heavy case</th>
<th>overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay</td>
<td>(O(1))</td>
<td>(O(N^{1-\varepsilon}))</td>
<td>(O(N^{1-\varepsilon}))</td>
</tr>
</tbody>
</table>

Update Time

<table>
<thead>
<tr>
<th></th>
<th>light case</th>
<th>heavy case</th>
<th>overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>(O(N^\varepsilon))</td>
<td>(O(1))</td>
<td>(O(N^\varepsilon))</td>
</tr>
</tbody>
</table>
Are there more queries with the same weak Pareto optimality as our previous example?
For any bound variable X and any atom α of X, there is at most one other atom β so that all free variables dominated by X are covered by α and β together.

The query is hierarchical and not q-hierarchical.
\(\delta_1 \)-Hierarchical Queries

- For any bound variable \(X \) and any atom \(\alpha \) of \(X \), there is at most one other atom \(\beta \) so that all free variables dominated by \(X \) are covered by \(\alpha \) and \(\beta \) together.
- The query is hierarchical and not \(q \)-hierarchical.

\[
\delta_1\text{-hierarchical}
Q(a, d, e, g) = R(a, b, d) \cdot S(a, b, e) \cdot T(a, c, f) \cdot U(a, c, g)
\]

\[
hierarchical \text{ but not } \delta_1\text{-hierarchical}
Q(d, g) = R(a, b, d) \cdot S(a, b, e) \cdot T(A, C, F) \cdot U(a, c, g)
\]
For any δ_1-hierarchical query, there is no algorithm that admits preprocessing time, update time, and enumeration delay that are arbitrary $O(N^{1/2-\gamma})$. For any $\gamma > 0$, unless the OMv Conjecture (*) fails, any δ_1-hierarchical query can be maintained with preprocessing time, update time, and enumeration delay $O(N^{1+\epsilon})$, $O(N^{\epsilon})$, and $O(N^{1-\epsilon})$. Except for $\epsilon = 1/2$, this is weakly Pareto optimal, unless OMv Conjecture (*) fails.

(*) Online Matrix-Vector Multiplication cannot be solved in sub-cubic time.
Optimality for δ_1-Hierarchical Queries

- For any δ_1-hierarchical query, there is no algorithm that admits preprocessing time, update time, and enumeration delay arbitrary $O(N^{1/2-\gamma})$ for any $\gamma > 0$, unless the OMv Conjecture (*) fails.

- Any δ_1-hierarchical query can be maintained with preprocessing time, update time, and enumeration delay $O(N^{1+\epsilon})$, $O(N^{\epsilon})$, and $O(N^{1-\epsilon})$.

(*) Online Matrix-Vector Multiplication cannot be solved in sub-cubic time.
For any δ_1-hierarchical query, there is no algorithm that admits preprocessing time, update time, and enumeration delay that is arbitrary $O(N^{1/2-\gamma})$ for any $\gamma > 0$, unless the OMv Conjecture (*) fails.

Any δ_1-hierarchical query can be maintained with preprocessing time, update time, and enumeration delay $O(N^{1+\varepsilon})$, $O(N^{\varepsilon})$, and $O(N^{1-\varepsilon})$.

For $\varepsilon = 1/2$, this is weakly Pareto optimal, unless OMv Conjecture fails.

(*) Online Matrix-Vector Multiplication cannot be solved in sub-cubic time.

Optimality for δ_1-Hierarchical Queries
We can define syntactically classes of δ_i-hierarchical queries ($i \in \mathbb{N}$)

- with $O(N^{i\varepsilon})$ update time and $O(N^{1-\varepsilon})$ enumeration delay.
- δ_0-hierarchical $=$ Q-hierarchical

[LMCS 2023]
Any hierarchical query can be maintained with

preprocessing time \(\mathcal{O}(N^{1+(w-1)\varepsilon}) \)
update time \(\mathcal{O}(N^{\delta\varepsilon}) \)
enumeration delay \(\mathcal{O}(N^{1-\varepsilon}) \)

where

- static width \(w \) = the fractional hypertree width for CQs
- dynamic width \(\delta = \max_{\delta \text{ queries}} \text{static width} \)

[PODS 2020]
Any hierarchical query can be maintained with

\[
\begin{align*}
\text{preprocessing time} & = \mathcal{O}(N^{1+(w-1)\epsilon}) \\
\text{update time} & = \mathcal{O}(N^{\delta \epsilon}) \\
\text{enumeration delay} & = \mathcal{O}(N^{1-\epsilon})
\end{align*}
\]

where

- static width \(w \) = the fractional hypertree width for CQs
- dynamic width \(\delta = \max_{\text{delta queries}} \text{static width} \)

Open question: Lower bounds for hierarchical queries
Hierarchical queries admit sublinear update time and enumeration delay
Trade-Offs Beyond Hierarchical

- No nice closed-form expression for complexities seem possible
- For some α-acyclic queries, trade-offs seem not possible
- First steps already made for α-acyclic queries [CSL 2023]
conjunctive
\(\mathcal{O}(N^w)/\mathcal{O}(N^\delta)/\mathcal{O}(1)\) [SIGMOD ’18]
IVM Landscape (Partial)

Preprocessing time/Update time/Enumeration delay

conjunctive
\(O(N^w)/O(N^\delta)/O(1)\) [SIGMOD '18]

triangle join \(O(N^{1.5})/O(N^{0.5})/O(1)\) [TODS '20]
IVM Landscape (Partial)

Preprocessing time/Update time/Enumeration delay

conjunctive

\[O(N^w) / O(N^\delta) / O(1) \quad \text{[SIGMOD '18]} \]

triangle join

\[O(N^{1.5}) / O(N^{0.5}) / O(1) \quad \text{[TODS '20]} \]

\(\alpha\)-acyclic

free-connex

\[O(N) / O(N) / O(1) \quad \text{[SIGMOD '17]} \]
conjunctive
\[\mathcal{O}(N^w)/\mathcal{O}(N^\delta)/\mathcal{O}(1) \] [SIGMOD ’18]

triangle join
\[\mathcal{O}(N^{1.5})/\mathcal{O}(N^{0.5})/\mathcal{O}(1) \] [TODS ’20]

\(\alpha\)-acyclic

hierarchical [PODS ’20]
\[\mathcal{O}(N^{1+(w−1)\varepsilon})/\mathcal{O}(N^{\delta\varepsilon})/\mathcal{O}(N^{1−\varepsilon}) \]
\(\varepsilon \in [0, 1]\)

free-connex
\[\mathcal{O}(N)/\mathcal{O}(N)/\mathcal{O}(1) \] [SIGMOD ’17]
Preprocessing time/Update time/Enumeration delay

conjunctive
\[\mathcal{O}(N^w)/\mathcal{O}(N^\delta)/\mathcal{O}(1) \] [SIGMOD '18]

triangle join
\[\mathcal{O}(N^{1.5})/\mathcal{O}(N^{0.5})/\mathcal{O}(1) \] [TODS '20]

\(\alpha\)-acyclic

hierarchical [PODS '20]
\[\mathcal{O}(N^{1+(w-1)\varepsilon})/\mathcal{O}(N^{\delta\varepsilon})/\mathcal{O}(N^{1-\varepsilon}) \]
\[\varepsilon \in [0, 1] \]

q-hierarchical
\[\mathcal{O}(N)/\mathcal{O}(N)/\mathcal{O}(1) \] [PODS '17]

\(\delta_0\)-hierarchical
\[w = 1, \delta = 0 \]

free-connex
[SIGMOD '17]
Preprocessing time/Update time/Enumeration delay

conjunctive
\[O(N^w) / O(N^\delta) / O(1) \] [SIGMOD '18]

triangle join
\[O(N^{1.5}) / O(N^{0.5}) / O(1) \] [TODS '20]

\(\alpha\)-acyclic

hierarchical [PODS '20]
\[O(N^{1+(w-1)\varepsilon}) / O(N^{\delta\varepsilon}) / O(N^{1-\varepsilon}) \]
\(\varepsilon \in [0, 1]\)

q-hierarchical
\[\delta_0\text{-hierarchical} = \]
\(w = 1, \delta = 0\)

\(\delta_1\text{-hierarchical}
\(w \in \{1, 2\}, \delta = 1\)

free-connex
\[O(N) / O(N) / O(1) \] [SIGMOD '17]
Recovery of Prior Results

- Preprocessing time: $O(N^{1+(w-1)\varepsilon})$
- Update time: $O(N^{\delta\varepsilon})$
- Enumeration delay: $O(N^{1-\varepsilon})$
Recovery of Prior Results

Preprocessing time: \(O(N^{1+(w-1)\varepsilon}) \)

Update time: \(O(N^{\delta\varepsilon}) \)

Enumeration delay: \(O(N^{1-\varepsilon}) \)
Recovery of Prior Results

\[\log_N \text{update time} = O(N^{1+(w-1)\varepsilon}) \]

\[\log_N \text{preprocessing time} = O(N^{\delta_0}) \]

\[\log_N \text{delay} = O(N^{1-\varepsilon}) \]

\[\text{conjunctive} \]

\[\delta_0\text{-hierarchical} \]

\[(w = 1, \delta = 0) \]

\[\delta_1\text{-hierarchical} \]

\[(w = 1, \delta = 1) \]

\[\text{free-connex} \]

\[\log N \text{ time} = O(N^{\delta_0}) \]

\[\log N \text{ time} = O(N^{1-\varepsilon}) \]

4. Maintaining ML Models over Evolving Relational Data
Maintain Models under Updates

1. Polynomial Regression: Find parameters Θ best satisfying

<table>
<thead>
<tr>
<th>Size (m²)</th>
<th>#beds</th>
<th>Year</th>
<th>Region 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>403</td>
<td>7</td>
<td>1925</td>
<td>1</td>
</tr>
<tr>
<td>189</td>
<td>6</td>
<td>1948</td>
<td>1</td>
</tr>
<tr>
<td>568</td>
<td>8</td>
<td>1935</td>
<td>0</td>
</tr>
<tr>
<td>420</td>
<td>4</td>
<td>1908</td>
<td>0</td>
</tr>
<tr>
<td>246</td>
<td>5</td>
<td>1928</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Price (CHF)</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,450,000</td>
<td>3</td>
</tr>
<tr>
<td>2,750,000</td>
<td>2</td>
</tr>
<tr>
<td>6,000,000</td>
<td>4</td>
</tr>
<tr>
<td>4,600,000</td>
<td>1</td>
</tr>
<tr>
<td>3,250,000</td>
<td>2</td>
</tr>
</tbody>
</table>

- Features X and labels Y are given by database joins
Maintain Models under Updates

1. Polynomial Regression: Find parameters Θ best satisfying

\[
\begin{array}{c|c|c|c|c}
\text{Size (m}^2\text{)} & \#\text{beds} & \text{Year} & \text{Region 1} \\
403 & 7 & 1925 & 1 \\
189 & 6 & 1948 & 1 \\
568 & 8 & 1935 & 0 \\
420 & 4 & 1908 & 0 \\
246 & 5 & 1928 & 1 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
\text{Price (CHF)} & \text{Rating} \\
3,450,000 & 3 \\
2,750,000 & 2 \\
6,000,000 & 4 \\
4,600,000 & 1 \\
3,250,000 & 2 \\
\end{array}
\]

- Features X and labels Y are given by database joins
- Solved using iterative gradient computation:
 \[
 \Theta_{i+1} = \Theta_i - \alpha X^T (X \Theta_i - Y) \quad \text{(repeat until convergence)}
 \]

2. Chow-Liu Trees: based on pairwise mutual information

Approach for both: Maintain the Covariance Matrix $[X \ Y]^T [X \ Y]$

[SIGMOD 2018 & 2020, VLDB J 2023]
Covariance Matrix Defined by Queries

Covariance matrix \([X \ Y]^T [X \ Y]\) can be expressed in SQL

\[
Q = \text{SELECT } \text{SUM}(1 \times 1), \text{SUM}(1 \times X), \ldots \text{SUM}(1 \times X_n), \text{SUM}(1 \times Y), \\
\text{SUM}(X \times 1), \text{SUM}(X \times X), \ldots \text{SUM}(X \times X_n), \text{SUM}(X \times Y), \\
\ldots \\
\text{SUM}(X_n \times 1), \text{SUM}(X_n \times X), \ldots \text{SUM}(X_n \times X_n), \text{SUM}(X_n \times Y) \\
\text{SUM}(Y \times 1), \text{SUM}(Y \times X), \ldots \text{SUM}(Y \times X_n), \text{SUM}(Y \times Y) \\
\text{FROM } R1 \text{ JOIN } R2 \text{ JOIN } \ldots \text{ JOIN } Rn
\]
Covariance Matrix Defined by Queries

Covariance matrix \([\mathbf{X} \mathbf{Y}]^T [\mathbf{X} \mathbf{Y}]\) can be expressed in SQL

\[
Q = \text{SELECT} \begin{bmatrix}
\text{SUM}(1 \ast 1), & \text{SUM}(1 \ast X_1), & \ldots & \text{SUM}(1 \ast X_n), & \text{SUM}(1 \ast Y), \\
\text{SUM}(X_1 \ast 1), & \text{SUM}(X_1 \ast X_1), & \ldots & \text{SUM}(X_1 \ast X_n), & \text{SUM}(X_1 \ast Y), \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\text{SUM}(X_n \ast 1), & \text{SUM}(X_n \ast X_1), & \ldots & \text{SUM}(X_n \ast X_n), & \text{SUM}(X_n \ast Y), \\
\text{SUM}(Y \ast 1), & \text{SUM}(Y \ast X_1), & \ldots & \text{SUM}(Y \ast X_n), & \text{SUM}(Y \ast Y)
\end{bmatrix}
\]

\[
\text{FROM} \ R1 \ JOIN \ R2 \ JOIN \ldots \ JOIN \ R_n
\]

We compute and maintain under data updates:

- \(\text{COUNT} = \text{SUM}(1) = \text{database join size}\)
- vector of \(\text{SUM}(\mathbf{X}_i)\) for feature/label \(\mathbf{X}_i\)
- matrix of \(\text{SUM}(\mathbf{X}_i \cdot \mathbf{X}_j)\) for features/label \(\mathbf{X}_i\) and \(\mathbf{X}_j\)
The Covariance Ring

Covariance Ring has the support:

- Set of triples \((\mathbb{Z}, \mathbb{R}^m, \mathbb{R}^{m \times m})\)

\[
\left(\text{COUNT}, \text{ vector of } \sum(X_i), \text{ matrix of } \sum(X_i \cdot X_j) \right)
\]

- Neutral elements for sum and product operations:

\[
0 = (0, 0_{m \times 1}, 0_{m \times m})
\]
\[
1 = (1, 0_{m \times 1}, 0_{m \times m})
\]
Covariance Ring has the sum and product operations:

\[a = (\square, \begin{bmatrix} \square \\ \square \end{bmatrix}, \begin{bmatrix} \square \\ \square \end{bmatrix}) \quad b = (\square, \begin{bmatrix} \square \\ \square \end{bmatrix}, \begin{bmatrix} \square \\ \square \end{bmatrix}) \]
The Covariance Ring

Covariance Ring has the sum and product operations:

\[
a = \left(\begin{array}{c}
\text{ },
\begin{bmatrix}
\text{ }, & \text{ }, & \text{ },
\end{bmatrix}
\end{array}
\right)
\quad b = \left(\begin{array}{c}
\text{ },
\begin{bmatrix}
\text{ }, & \text{ }, & \text{ },
\end{bmatrix}
\end{array}
\right)
\]

\[
a + b = \left(\begin{array}{c}
\text{ },
\begin{bmatrix}
\text{ }, & \text{ }, & \text{ },
\end{bmatrix}
\end{array}
\right)
\]
The Covariance Ring

Covariance Ring has the sum and product operations:

\[a = \left(\begin{array}{c} \text{ }, \\
\text{ }, \\
\text{ } \end{array} \right), \begin{array}{c} \text{ }, \\
\text{ }, \\
\text{ } \end{array} \right) \]

\[b = \left(\begin{array}{c} \text{ }, \\
\text{ }, \\
\text{ } \end{array} \right), \begin{array}{c} \text{ }, \\
\text{ }, \\
\text{ } \end{array} \right) \]

\[a + b = \left(\begin{array}{c} \text{ } + \\
\text{ } \end{array} \right), \begin{array}{c} \text{ }, \\
\text{ }, \\
\text{ } \end{array} \right), \begin{array}{c} \text{ }, \\
\text{ }, \\
\text{ } \end{array} \right) \]

\[a \ast b = \left(\begin{array}{c} \text{ } \cdot \\
\text{ } \end{array} \right), \begin{array}{c} \text{ }, \\
\text{ }, \\
\text{ } \end{array} \right), \begin{array}{c} \text{ }, \\
\text{ }, \\
\text{ } \end{array} \right) \]

Thank You!