Trade-Offs in Incremental View Maintenance

Dan Olteanu (University of Zurich)

fdbresearch.github.io

Logic & Algorithms in DB Theory and Al August 25, 2023

Acknowledgments

DaST IVM team

Ahmet

Haozhe

Johann

Milos

RelationalAI colleagues

Hung

ElSeidy

Henrik

Niko

Setting & Objective of this Lecture

Incremental View Maintenance (IVM)

- Well-established and longstanding research problem
- Confusing naming: incremental vs decremental Alternative common naming: *Fully dynamic*

Setting & Objective of this Lecture

Incremental View Maintenance (IVM)

- Well-established and longstanding research problem
- Confusing naming: incremental vs decremental

Alternative common naming: Fully dynamic

Setting

- Fully dynamic algorithms (i.e., supports inserts and deletes)
- Single-tuple updates to relational databases
- Relational queries (non-recursive)

Setting & Objective of this Lecture

Incremental View Maintenance (IVM)

- Well-established and longstanding research problem
- Confusing naming: incremental vs decremental

Alternative common naming: Fully dynamic

Setting

- Fully dynamic algorithms (i.e., supports inserts and deletes)
- Single-tuple updates to relational databases
- Relational queries (non-recursive)

Objective

 Overview of recent (and very preliminary) results on worst-case optimal IVM, trade-offs, and IVM for complex analytics

Answer

Answer

update

We are interested in the trade-off between: preprocessing time - enumeration delay - update time

Agenda

Part 1. Main IVM techniques by example

- The triangle count query
- Part 2. Constant update time and enumeration delay
 - The *q*-hierarchical queries
- Part 3. Update time enumeration delay trade-offs
 - The hierarchical queries and beyond

Part 4. ML models under updates

Covariance matrix and Chow-Liu trees

1. IVM Techniques By Example

Relations are functions mapping tuples to elements from a ring (here, \mathbb{Z})

R		5		Т	
ΑΒ	#	ВC	#	СA	#
$a_1 \ b_1$	2	$b_1 c_1$	2	$c_1 a_1$	1
$a_2 b_1$	3	$b_1 c_2$	1	<i>c</i> ₂ <i>a</i> ₁	3
				<i>c</i> ₂ <i>a</i> ₂	3

Relations are functions mapping tuples to elements from a ring (here, \mathbb{Z})

R	5	Т	$R \cdot S \cdot T$
A B #	B C #	<i>C A</i> #	A B C #
<i>a</i> ₁ <i>b</i> ₁ 2	$b_1 c_1 = 2$	<i>c</i> ₁ <i>a</i> ₁ 1	$a_1 \ b_1 \ c_1 \ \left \ 2 \cdot 2 \cdot 1 = 4 \right $
$a_2 b_1 = 3$	$b_1 c_2 1$	$c_2 a_1 = 3$	
		$c_2 a_2 = 3$	

Relations are functions mapping tuples to elements from a ring (here, \mathbb{Z})

R	S	Т	R ·	$S \cdot T$
A B #	B C #	<i>C A</i> #	АВС	#
<i>a</i> ₁ <i>b</i> ₁ 2	$b_1 c_1 \mid 2$	$c_1 a_1 \mid 1$	$a_1 \ b_1 \ c_1$	$2 \cdot 2 \cdot 1 = 4$
$a_2 b_1 = 3$	$b_1 c_2 = 1$	$c_2 a_1 = 3$	$a_1 \ b_1 \ c_2$	$2 \cdot 1 \cdot 3 = 6$
		$c_2 a_2 = 3$	$a_2 b_1 c_2$	$3 \cdot 1 \cdot 3 = 9$

 \blacksquare Relations are functions mapping tuples to elements from a ring (here, $\mathbb{Z})$

Triangle Count Query:
$$Q = \sum_{a,b,c} R(a,b) \cdot S(b,c) \cdot T(c,a)$$

R	S	Т	R ·	$S \cdot T$
A B #	B C #	<i>C A</i> #	АВС	#
<i>a</i> ₁ <i>b</i> ₁ 2	$b_1 c_1 = 2$	$c_1 a_1 1$	$a_1 \ b_1 \ c_1$	$2 \cdot 2 \cdot 1 = 4$
<i>a</i> ₂ <i>b</i> ₁ 3	$b_1 c_2 \mid 1$	$c_2 a_1 = 3$	$a_1 \ b_1 \ c_2$	$2\cdot 1\cdot 3=6$
		c2 a2 3	$a_2 b_1 c_2$	$3 \cdot 1 \cdot 3 = 9$

Relations are functions mapping tuples to elements from a ring (here, \mathbb{Z})

• Triangle Count Query:
$$Q = \sum_{a,b,c} R(a,b) \cdot S(b,c) \cdot T(c,a)$$

R	S	Т	$R \cdot S \cdot T$
A B #	B C #	<i>C A</i> #	A B C #
$\begin{array}{c c} a_1 & b_1 & 2 \\ a_2 & b_1 & 3 \end{array}$	$\begin{array}{c ccc} b_1 & c_1 & 2 \\ b_1 & c_2 & 1 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
		$c_2 a_2 3$	$\begin{array}{c c} a_2 & b_1 & c_2 & 3 \cdot 1 \cdot 3 = 9 \end{array}$

 r –	
•	

$\delta R = \{(a_2, b_1) \mapsto -2\}$		
A B	#	
a ₂ b ₁	-2	

Relations are functions mapping tuples to elements from a ring (here, \mathbb{Z})

• Triangle Count Query:
$$Q = \sum_{a,b,c} R(a,b) \cdot S(b,c) \cdot T(c,a)$$

R	S	Т	$R \cdot S \cdot T$
A B #	B C #	<i>C A</i> #	A B C #
$\begin{array}{c c} a_1 & b_1 & 2 \\ a_2 & b_1 & 3 \end{array}$	$\begin{array}{c c} b_1 c_1 & 2 \\ b_1 c_2 & 1 \end{array}$	$ \begin{array}{c cccc} c_1 & a_1 & 1 \\ c_2 & a_1 & 3 \\ c_2 & a_2 & 3 \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

- 1	

$\delta R = \{(a_2, b_1) \mapsto -2\}$		
ΑΒ	#	
$a_2 b_1$	-2	

Relations are functions mapping tuples to elements from a ring (here, \mathbb{Z})

• Triangle Count Query:
$$Q = \sum_{a,b,c} R(a,b) \cdot S(b,c) \cdot T(c,a)$$

 A single-tuple update is a relation mapping a tuple to a non-zero value (positive for insertions, negative for deletions)

R	5	Т	$R \cdot S \cdot T$
A B #	B C #	<i>C A</i> #	A B C #
$a_1 b_1 2$	$b_1 c_1 \mid 2$	$c_1 a_1 1$	$a_1 \ b_1 \ c_1 \ 2 \cdot 2 \cdot 1 = 4$
$-a_2 b_1 - 3$	$D_1 C_2 \mid 1$	$c_2 a_1 \mid 3$	$a_1 \ b_1 \ c_2 \ 2 \cdot 1 \cdot 3 = 0$
$a_2 b_1 \mid 1$		$c_2 a_2 = 3$	$a_2 \ b_1 \ c_2 \ \ 3 \cdot 1 \cdot 3 = 9$

1

$\delta R = \{(a_2, b_1) \mapsto -2\}$		
A B	#	
$a_2 b_1$	-2	

Relations are functions mapping tuples to elements from a ring (here, \mathbb{Z})

• Triangle Count Query:
$$Q = \sum_{a,b,c} R(a,b) \cdot S(b,c) \cdot T(c,a)$$

R	S	Т	$R \cdot S \cdot T$
A B #	B C #	<i>C A</i> #	A B C #
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} b_1 c_1 & 2 \\ b_1 c_2 & 1 \end{array}$	$ \begin{array}{c c} c_1 & a_1 & 1 \\ c_2 & a_1 & 3 \\ c_2 & a_2 & 3 \end{array} $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

$\delta R = \{(a_2, b_1) \mapsto -2\}$			
A B	#		
$a_2 b_1$	-2		

Relations are functions mapping tuples to elements from a ring (here, \mathbb{Z})

• Triangle Count Query:
$$Q = \sum_{a,b,c} R(a,b) \cdot S(b,c) \cdot T(c,a)$$

R	<u> </u>	T	$R \cdot S \cdot T$
A B #	<i>B C #</i>	<i>C A</i> #	A B C #
<i>a</i> ₁ <i>b</i> ₁ 2	$b_1 c_1 = 2$	$c_1 a_1 1$	$a_1 b_1 c_1 2 \cdot 2 \cdot 1 = 4$
$-a_2 b_1 - 3$	$b_1 c_2 \mid 1$	$c_2 a_1 3$	$a_1 \ b_1 \ c_2 \ \ 2 \cdot 1 \cdot 3 = 6$
$a_2 b_1 = 1$		$c_2 a_2 = 3$	$-a_2 b_1 c_2 3 \cdot 1 \cdot 3 = 9$
·			$a_2 \ b_1 \ c_2 \ \ 1 \cdot 1 \cdot 3 = 3$
1			\downarrow
$\delta R = \{(a_2, b_1) \mapsto -2\}$			Q
A B	#		Ø #
$a_2 b_1$	-2		() 4+6+9=19

Relations are functions mapping tuples to elements from a ring (here, \mathbb{Z})

• Triangle Count Query:
$$Q = \sum_{a,b,c} R(a,b) \cdot S(b,c) \cdot T(c,a)$$

R	S	T	$R \cdot S \cdot T$
A B #	B C #	<i>C A</i> #	A B C #
$a_1 b_1 = 2$	$b_1 c_1 = 2$	$c_1 a_1 1$	$a_1 b_1 c_1 \begin{vmatrix} 2 \cdot 2 \cdot 1 = 4 \end{vmatrix}$
$-a_2 b_1 - 3$	$D_1 C_2 \mid 1$	$c_2 a_1 = 3$	$a_1 \ b_1 \ c_2 \ 2 \cdot 1 \cdot 3 = 6$
$a_2 b_1 \mid 1$		$c_2 a_2 3$	$-a_2 b_1 c_2 3 \cdot 1 \cdot 3 = 9$
			$a_2 \ b_1 \ c_2 \ 1 \cdot 1 \cdot 3 = 3$
1			\downarrow
$\delta R = \{(a_2, b_1) \mapsto -2\}$			
$\delta R = \{(a_2, b_2)\}$	$(p_1)\mapsto -2\}$		Q
$\delta R = \{(a_2, b_1, b_2, b_3, b_4, b_3, b_4, b_1, b_2, b_3, b_4, b_4, b_5, b_6, b_6, b_6, b_6, b_6, b_6, b_6, b_6$	$(b_1) \mapsto -2$ }		Q Ø #

The Triangle Count Query

The triangle count query Q returns the number of tuples in the join of R, S, and T:

$$Q = \sum_{a,b,c} R(a,b) \cdot S(b,c) \cdot T(c,a)$$

Problem: Maintain Q under single-tuple updates to R, S, and T

Much Ado about Triangles

The Triangle Query Served as Milestone in Many Fields

- Worst-case optimal join algorithms [Algorithmica 1997, SIGMOD R. 2013]
- Parallel query evaluation [Found. & Trends DB 2018]
- Randomized approximation in static settings [FOCS 2015]
- Randomized approximation in data streams
 [SODA 2002, COCOON 2005, PODS 2006, PODS 2016, Theor. Comput. Sci. 2017]

Answering Queries under Updates

- Theoretical developments [PODS 2017, ICDT 2018]
- Systems developments [F. & T. DB 2012, VLDB J. 2014, SIGMOD 2017, 2018]
- Lower bounds [STOC 2015, ICM 2018]

Much Ado about Triangles

The Triangle Query Served as Milestone in Many Fields

- Worst-case optimal join algorithms [Algorithmica 1997, SIGMOD R. 2013]
- Parallel query evaluation [Found. & Trends DB 2018]
- Randomized approximation in static settings [FOCS 2015]
- Randomized approximation in data streams
 [SODA 2002, COCOON 2005, PODS 2006, PODS 2016, Theor. Comput. Sci. 2017]

Answering Queries under Updates

- Theoretical developments [PODS 2017, ICDT 2018]
- Systems developments [F. & T. DB 2012, VLDB J. 2014, SIGMOD 2017, 2018]
- Lower bounds [STOC 2015, ICM 2018]

Is there a **fully dynamic algorithm** that can maintain the **exact triangle count** in **worst-case optimal** time?

"Recompute from scratch"

"Recompute from scratch" $\delta R = \{(\alpha, \beta) \mapsto m\}$

"Recompute from scratch" $\delta R = \{(\alpha, \beta) \mapsto m\}$

"Recompute from scratch" $\delta R = \{(\alpha, \beta) \mapsto m\}$

- N is the database size
- Update time: O(N^{1.5}) using worst-case optimal join algorithms [Algorithmica 1997, SIGMOD R. 2013, ICDT 2014]
 Slightly better using Strassen-like matrix multiplication
- Space: $\mathcal{O}(N)$ to store input relations

First-Order Incremental View Maintenance

• Update time: $\mathcal{O}(N)$ to intersect C-values from S and T

■ Space: O(N) to store input relations

• Time for updates to R: $\mathcal{O}(1)$ to look up in V_{ST}

Maintain V_{ST} under updates

 $V_{ST}(\beta, a) = V_{ST}(\beta, a) + \delta V_{ST}(\beta, a)$

 $V_{ST}(\beta, a) = V_{ST}(\beta, a) + \delta V_{ST}(\beta, a)$

Time for updates to S and T: O(N) to maintain V_{ST}
Space: O(N²) to store input relations and V_{ST}

Lower Bound for Maintaining the Triangle Count

The Boolean Triangle Detection Problem

Boolean Triangle Detection Query

$$Q_b = \bigvee_{a,b,c} R(a,b) \wedge S(b,c) \wedge T(c,a)$$

The Boolean Triangle Detection Problem

Boolean Triangle Detection Query

$$Q_b = \bigvee_{a,b,c} R(a,b) \wedge S(b,c) \wedge T(c,a)$$

Let **D** be the database instance and N the number of tuples in **D**. For any $\gamma > 0$, there is no algorithm that incrementally maintains Q_b with

update time	enumeration delay	
$\mathcal{O}(N^{\frac{1}{2}-\gamma})$	$\mathcal{O}(N^{1-\gamma})$	

unless the Online Vector-Matrix-Vector Multiplication (OuMv) Conjecture fails.

The OuMv problem:

- Input: An n × n Boolean matrix M and n pairs (u₁, v₁), ..., (u_n, v_n) of Boolean column-vectors of size n arriving one after the other.
- Goal: After seeing each pair $(\mathbf{u}_r, \mathbf{v}_r)$, output $\mathbf{u}_r^\top \mathbf{M} \mathbf{v}_r$

The OuMv problem:

- Input: An n × n Boolean matrix M and n pairs (u₁, v₁), ..., (u_n, v_n) of Boolean column-vectors of size n arriving one after the other.
- **Goal:** After seeing each pair $(\mathbf{u}_r, \mathbf{v}_r)$, output $\mathbf{u}_r^\top \mathbf{M} \mathbf{v}_r$

The OuMv Conjecture

[STOC 2015]

For any $\gamma > 0$, there is no algorithm that solves OuMv in time $\mathcal{O}(n^{3-\gamma})$.

The OuMv problem:

- Input: An n × n Boolean matrix M and n pairs (u₁, v₁), ..., (u_n, v_n) of Boolean column-vectors of size n arriving one after the other.
- Goal: After seeing each pair $(\mathbf{u}_r, \mathbf{v}_r)$, output $\mathbf{u}_r^\top \mathbf{M} \mathbf{v}_r$

The OuMv Conjecture

[STOC 2015]

For any $\gamma > 0$, there is no algorithm that solves OuMv in time $\mathcal{O}(n^{3-\gamma})$.

The OuMv Conjecture is implied by the OMv Conjecture [STOC 2015] The OMv problem:

- Input: An $n \times n$ Boolean matrix **M** and *n* Boolean column-vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ of size *n* arriving one after the other
- Goal: After seeing each vector **v**_r, output **Mv**_r

The OuMv problem:

- Input: An n × n Boolean matrix M and n pairs (u₁, v₁), ..., (u_n, v_n) of Boolean column-vectors of size n arriving one after the other.
- Goal: After seeing each pair $(\mathbf{u}_r, \mathbf{v}_r)$, output $\mathbf{u}_r^\top \mathbf{M} \mathbf{v}_r$

The OuMv Conjecture

[STOC 2015]

For any $\gamma > 0$, there is no algorithm that solves OuMv in time $\mathcal{O}(n^{3-\gamma})$.

The OuMv Conjecture is implied by the OMv Conjecture [STOC 2015] The OMv problem:

- Input: An $n \times n$ Boolean matrix **M** and *n* Boolean column-vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ of size *n* arriving one after the other
- Goal: After seeing each vector **v**_r, output **Mv**_r

The OMv Conjecture

For any $\gamma > 0$, there is no algorithm that solves OMv in time $\mathcal{O}(n^{3-\gamma})$.

Proof Idea

Assume there is an algorithm ${\mathcal A}$ that can maintain Triangle Detection Query ${\mathcal Q}_b$ with

```
amortized update time enumeration delay \mathcal{O}(N^{\frac{1}{2}-\gamma}) \mathcal{O}(N^{1-\gamma})
```

```
for some \gamma > 0.
```

■ We design an algorithm B that uses the oracle A to solve OuMv in subcubic time in n. ⇒ Contradicts the OuMv Conjecture!

Proof Idea

Assume there is an algorithm ${\mathcal A}$ that can maintain Triangle Detection Query ${\mathcal Q}_b$ with

```
amortized update time enumeration delay \mathcal{O}(N^{\frac{1}{2}-\gamma}) \mathcal{O}(N^{1-\gamma})
```

```
for some \gamma > 0.
```

■ We design an algorithm B that uses the oracle A to solve OuMv in subcubic time in n. ⇒ Contradicts the OuMv Conjecture!

Algorithm \mathcal{B}

- **•** Relation S encodes the matrix \mathbf{M} : $S(i,j) = \mathbf{M}[i,j]$
- In each round $r \in [n]$:
 - ▶ Relation R encodes the vector \mathbf{u}_r : $R(\mathbf{a}, i) = \mathbf{u}_r[i]$, for constant \mathbf{a}
 - ▶ Relation T encodes the vector \mathbf{v}_r : $T(j, \mathbf{a}) = \mathbf{v}_r[j]$, for constant \mathbf{a}
 - ► Then $\mathbf{u}_r^\top \mathbf{M} \mathbf{v}_r = Q_b$
 - Check whether $Q_b = 1$ using algorithm A.

Example Encoding for u, M, and v

$\mathbf{u}^ op$	М	v	u [⊤] Mv
0 1 0	0 1 0 1 1 0 1 0 1	1 0 0	1
R	S	Т	Q_b
A B val	B C val	C A val	Ø val
a 2 1	2 1 1	1 a 1	() 1
	3 1 1		
	1 2 1		
	2 2 1		

1

3 3

.

(1) For $i, j \in [n]$: S(i, j) = M[i, j]

 $(\leq n^2 \text{ insertions})$

(1) For $i, j \in [n]$: S(i, j) = M[i, j]

 $(\leq n^2 \text{ insertions})$

(2) In each round $r \in [n]$:

• Delete all tuples in R and T

 $(\leq 2n \text{ deletions})$

(1) For $i, j \in [n]$: S(i, j) = M[i, j] ($\leq n$

 $(\leq n^2 \text{ insertions})$

(2) In each round $r \in [n]$:

• Delete all tuples in R and T

 $(\leq 2n \text{ deletions})$

▶ Insert into R and T:
For
$$i, j \in [n]$$
: $R(\mathbf{a}, i) = \mathbf{u}_r[i]$ and $T(j, \mathbf{a}) = \mathbf{v}_r[j]$ (≤ 2n insertions)

(1) For $i, j \in [n]$: S(i, j) = M[i, j] ($\leq n^2$ insertions)

(2) In each round $r \in [n]$:

Delete all tuples in R and T

 $(\leq 2n \text{ deletions})$

Insert into R and T:
For
$$i, j \in [n]$$
: $R(a, i) = \mathbf{u}_r[i]$ and $T(j, a) = \mathbf{v}_r[j]$ ($\leq 2n$ insertions)

• Check $Q_b = 1$: This holds if and only if $\mathbf{u}_r^T \mathbf{M} \mathbf{v}_r = 1$

 $\mathbf{u}_{r}^{T}\mathbf{M}\mathbf{v}_{r} = 1 \Leftrightarrow \exists i, j \in [n]: \mathbf{u}_{r}[i] = 1, \mathbf{M}[i, j] = 1, \mathbf{v}_{r}[j] = 1$

(1) For $i, j \in [n]$: S(i, j) = M[i, j] ($\leq n^2$ insertions)

(2) In each round $r \in [n]$:

Delete all tuples in R and T

 $(\leq 2n \text{ deletions})$

► Insert into R and T: For $i, j \in [n]$: $R(\mathbf{a}, i) = \mathbf{u}_r[i]$ and $T(j, \mathbf{a}) = \mathbf{v}_r[j]$ ($\leq 2n$ insertions)

• Check $Q_b = 1$: This holds if and only if $\mathbf{u}_r^T \mathbf{M} \mathbf{v}_r = 1$

 $\mathbf{u}_r^T \mathbf{M} \mathbf{v}_r = 1 \Leftrightarrow \exists i, j \in [n] : \mathbf{u}_r[i] = 1, \mathbf{M}[i, j] = 1, \mathbf{v}_r[j] = 1$

 \mathcal{B} constructs a database of size $N = \mathcal{O}(n^2)$.

Proof Sketch: Time Analysis

Recall $\mathcal A$ needs $\mathcal O((n^2)^{rac{1}{2}-\gamma})$ update time and $\mathcal O((n^2)^{1-\gamma})$ delay

(1) For $i, j \in [n]$: S(i, j) = M[i, j]

(2) In each round $r \in [n]$:

- ▶ Delete all tuples in *R* and *T*
- ▶ Insert into R and T: For $i, j \in [n]$: $R(a, i) = \mathbf{u}_r[i]$ and $T(j, a) = \mathbf{v}_r[j]$

• Check $Q_b = 1$: This holds if and only if $\mathbf{u}_r^T \mathbf{M} \mathbf{v}_r = 1$

Proof Sketch: Time Analysis

Recall \mathcal{A} needs $\mathcal{O}((n^2)^{rac{1}{2}-\gamma})$ update time and $\mathcal{O}((n^2)^{1-\gamma})$ delay

(1) For $i, j \in [n]$: S(i, j) = M[i, j]

(2) In each round $r \in [n]$:

- Delete all tuples in R and T
- ▶ Insert into R and T: For $i, j \in [n]$: $R(a, i) = \mathbf{u}_r[i]$ and $T(j, a) = \mathbf{v}_r[j]$

• Check $Q_b = 1$: This holds if and only if $\mathbf{u}_r^T \mathbf{M} \mathbf{v}_r = 1$
Recall \mathcal{A} needs $\mathcal{O}((n^2)^{rac{1}{2}-\gamma})$ update time and $\mathcal{O}((n^2)^{1-\gamma})$ delay

(1) For $i, j \in [n]$: S(i, j) = M[i, j]

(2) In each round $r \in [n]$:

- Delete all tuples in R and T
- ▶ Insert into R and T: For $i, j \in [n]$: $R(a, i) = \mathbf{u}_r[i]$ and $T(j, a) = \mathbf{v}_r[j]$

$$\mathcal{O}(\underbrace{4n}_{\#\text{updates}} \cdot \underbrace{(n^2)^{\frac{1}{2}-\gamma}}_{\text{update time}}) = \mathcal{O}(n^{2-2\gamma})$$

• Check $Q_b = 1$: This holds if and only if $\mathbf{u}_r^T \mathbf{M} \mathbf{v}_r = 1$

Recall \mathcal{A} needs $\mathcal{O}((n^2)^{rac{1}{2}-\gamma})$ update time and $\mathcal{O}((n^2)^{1-\gamma})$ delay

(1) For $i, j \in [n]$: S(i, j) = M[i, j]

(2) In each round $r \in [n]$:

- Delete all tuples in R and T
- ▶ Insert into R and T: For $i, j \in [n]$: $R(a, i) = \mathbf{u}_r[i]$ and $T(j, a) = \mathbf{v}_r[j]$

$$\mathcal{O}(\underbrace{4n}_{\#\text{updates}} \cdot \underbrace{(n^2)^{\frac{1}{2}-\gamma}}_{\text{update time}}) = \mathcal{O}(n^{2-2\gamma})$$

• Check $Q_b = 1$: This holds if and only if $\mathbf{u}_r^T \mathbf{M} \mathbf{v}_r = 1$

$$\mathcal{O}(\underbrace{(n^2)^{1-\gamma}}_{\text{delay}}) = \mathcal{O}(n^{2-2\gamma})$$

Recall \mathcal{A} needs $\mathcal{O}((n^2)^{rac{1}{2}-\gamma})$ update time and $\mathcal{O}((n^2)^{1-\gamma})$ delay

(1) For $i, j \in [n]$: S(i, j) = M[i, j]

(2) In each round $r \in [n]$:

- Delete all tuples in R and T
- ▶ Insert into R and T: For $i, j \in [n]$: $R(a, i) = \mathbf{u}_r[i]$ and $T(j, a) = \mathbf{v}_r[j]$

$$\mathcal{O}(\underbrace{4n}_{\#\text{updates}} \cdot \underbrace{(n^2)^{\frac{1}{2}-\gamma}}_{\text{update time}}) = \mathcal{O}(n^{2-2\gamma})$$

• Check $Q_b = 1$: This holds if and only if $\mathbf{u}_r^T \mathbf{M} \mathbf{v}_r = 1$

$$\mathcal{O}(\underbrace{(n^2)^{1-\gamma}}_{\text{delay}}) = \mathcal{O}(n^{2-2\gamma})$$

For *n* rounds: $\mathcal{O}(n(n^{2-2\gamma} + n^{2-2\gamma})) = \mathcal{O}(n^{3-2\gamma})$

Recall \mathcal{A} needs $\mathcal{O}((n^2)^{rac{1}{2}-\gamma})$ update time and $\mathcal{O}((n^2)^{1-\gamma})$ delay

(1) For $i, j \in [n]$: S(i, j) = M[i, j]

(2) In each round $r \in [n]$:

- Delete all tuples in R and T
- ▶ Insert into R and T: For $i, j \in [n]$: $R(a, i) = \mathbf{u}_r[i]$ and $T(j, a) = \mathbf{v}_r[j]$

$$\mathcal{O}(\underbrace{4n}_{\#\text{updates}} \cdot \underbrace{(n^2)^{\frac{1}{2}-\gamma}}_{\text{update time}}) = \mathcal{O}(n^{2-2\gamma})$$

• Check $Q_b = 1$: This holds if and only if $\mathbf{u}_r^T \mathbf{M} \mathbf{v}_r = 1$

$$\mathcal{O}(\underbrace{(n^2)^{1-\gamma}}_{\text{delay}}) = \mathcal{O}(n^{2-2\gamma})$$

For *n* rounds: $\mathcal{O}(n(n^{2-2\gamma}+n^{2-2\gamma})) = \mathcal{O}(n^{3-2\gamma})$

Overall time: $\mathcal{O}(n^{3-2\gamma} + n^{3-2\gamma}) = \mathcal{O}(n^{3-2\gamma}) \Rightarrow$ Contradicts OuMv Conjecture!

Complexity bounds for the maintenance of the triangle count

Known Upper Bound	
Update Time:	0(N)
Space:	0(N)

Update time: not $\mathcal{O}(N^{\frac{1}{2}-\gamma})$ for any $\gamma > 0$

under the OuMv Conjecture

Complexity bounds for the maintenance of the triangle count

Known Upper Bound		
Update Time:	<i>O</i> (<i>N</i>)	
Space:	$\mathcal{O}(N)$	

Can the triangle count be maintained with sublinear update time?

Complexity bounds for the maintenance of the triangle count

Known Upper Bound	
Update Time:	$\mathcal{O}(N)$
Space:	$\mathcal{O}(N)$

Can the triangle count be maintained with sublinear update time? Yes: IVM^{ε} Amortized update time: $\mathcal{O}(N^{\frac{1}{2}})$ This is worst-case optimal

Known Lower Bound

Update time: not $\mathcal{O}(N^{\frac{1}{2}-\gamma})$ for any $\gamma > 0$

under the OuMv Conjecture

IVM^ε Exhibits a Time-Space Tradeoff

Given $\varepsilon \in [0,1], \, \mathsf{IVM}^{\varepsilon}$ maintains the triangle count with

- $\mathcal{O}(N^{\max\{\varepsilon,1-\varepsilon\}})$ amortized update time
- $\mathcal{O}(N^{1+\min\{\varepsilon,1-\varepsilon\}})$ space
- $\mathcal{O}(N^{\frac{3}{2}})$ preprocessing time
- $\mathcal{O}(1)$ answer time.

(Linear space possible with a slightly more involved argument)

Inside IVM $^{\varepsilon}$

Main Techniques used in IVM $^{\varepsilon}$

- Compute the delta like in first-order IVM
- Materialize views like in higher-order IVM
- New ingredient: Use adaptive processing based on data skew
 Treat *heavy* values differently from *light* values

Heavy/Light Partitioning of Relations

Partition R based on A into

- a light part $R_L = \{t \in R \mid |\sigma_{A=t.A}| < N^{\varepsilon}\},\$
- a heavy part $R_H = R \setminus R_L!$

Derived Bounds

from light part: for all A-values a, $|\sigma_{A=a}R_L| < N^2$.

from heavy part:

- for all A-values a, $|\sigma_{A=a}R_H| \ge N^{\epsilon}$ and $|\pi_A R_H| \cdot N^{\epsilon} \le N$
- $\implies |\pi_A R_H| \le N^{1-\epsilon}$

Heavy/Light Partitioning of Relations

Partition R based on A into

- a light part $R_L = \{t \in R \mid |\sigma_{A=t,A}| < N^{\varepsilon}\},\$
- a heavy part $R_H = R \setminus R_L!$

Derived Bounds

Heavy/Light Partitioning of Relations

Likewise, partition

- $S = S_L \cup S_H$ based on B, and
- $T = T_L \cup T_H$ based on C!

Q is the sum of skew-aware queries

$$Q = \sum_{a,b,c} R_U(a,b) \cdot S_V(b,c) \cdot T_W(c,a), \text{ for } U,V,W \in \{L,H\}.$$

Given an update $\delta R_* = \{(\alpha, \beta) \mapsto m\}$, compute the delta for each of the following skew-aware queries using a different strategy:

$$Q_{*LL} = \sum_{a,b,c} R_*(a,b) \cdot S_L(b,c) \cdot T_L(c,a)$$

$$Q_{*HH} = \sum_{a,b,c} R_*(a,b) \cdot S_H(b,c) \cdot T_H(c,a)$$

$$Q_{*LH} = \sum_{a,b,c} R_*(a,b) \cdot S_L(b,c) \cdot T_H(c,a)$$

$$Q_{*HL} = \sum_{a,b,c} R_*(a,b) \cdot S_H(b,c) \cdot T_L(c,a)$$

Given an update $\delta R_* = \{(\alpha, \beta) \mapsto m\}$, compute the delta for each of the following skew-aware queries using a different strategy:

$$\delta Q_{*LL} = \delta R_*(\alpha, \beta) \cdot \sum_c S_L(\beta, c) \cdot T_L(c, \alpha)$$

$$\delta Q_{*HH} = \delta R_*(\alpha,\beta) \cdot \sum_c S_H(\beta,c) \cdot T_H(c,\alpha)$$

$$\delta Q_{*LH} = \delta R_*(\alpha, \beta) \cdot \sum_c S_L(\beta, c) \cdot T_H(c, \alpha)$$

$$\delta Q_{*HL} = \delta R_*(\alpha,\beta) \cdot \sum_c S_H(\beta,c) \cdot T_L(c,\alpha)$$

$$\delta Q_{*LL} = \delta R_*(\alpha,\beta) \cdot \sum_c S_L(\beta,c) \cdot T_L(c,\alpha)$$

$$\delta Q_{*LL} = \delta R_*(\alpha, \beta) \cdot \sum_c S_L(\beta, c) \cdot T_L(c, \alpha)$$

Update time: $\mathcal{O}(N^{\varepsilon})$ to intersect the lists of *C*-values from S_L and T_L

Update time: $\mathcal{O}(N^{1-\varepsilon})$ to intersect the lists of C-values from S_H and T_H

Update time: $\mathcal{O}(N^{\min\{\varepsilon,1-\varepsilon\}})$ to intersect the lists of C-values from S_L and T_H

$$\delta Q_{*HL} = \delta R_*(\alpha,\beta) \cdot \sum_c S_H(\beta,c) \cdot T_L(c,\alpha)$$

 $V_{ST}(b,a) = \sum S_H(b,c) \cdot T_L(c,a)$

$$\delta Q_{*HL} = \delta R_*(\alpha,\beta) \cdot \sum_c S_H(\beta,c) \cdot T_L(c,\alpha)$$

$$V_{ST}(b,a) = \sum_{c} S_H(b,c) \cdot T_L(c,a)$$

 $T_L(c, \alpha)$

$$\delta Q_{*HL} = \delta R_*(\alpha,\beta) \cdot \sum_c S_H(\beta,c) \cdot T_L(c,\alpha)$$

 $V_{ST}(b, a) = \sum S_H(b, c) \cdot T_L(c, a)$

 $V_{ST}(b, a) = \sum S_H(b, c) \cdot T_L(c, a)$

Update time: O(1) to look up in V_{ST} , assuming V_{ST} is already materialized

Summary of Adaptive Maintenance Strategies

Maintenance for an update $\delta R_* = \{(\alpha, \beta) \mapsto m\}$:

Skew-aware View Evaluation from left to right Time $\sum R_*(a,b) \cdot S_L(b,c) \cdot T_L(c,a) \quad \delta R_*(\alpha,\beta) \cdot \sum S_L(\beta,c) \cdot T_L(c,\alpha)$ $\mathcal{O}(N^{\varepsilon})$ a.b.c $\sum R_*(a,b) \cdot S_H(b,c) \cdot T_H(c,a) \quad \frac{\delta R_*(\alpha,\beta)}{\delta R_*(\alpha,\beta)} \cdot \sum T_H(c,\alpha) \cdot S_H(\beta,c)$ $\mathcal{O}(N^{1-\varepsilon})$ a,b,c $\delta R_*(\alpha,\beta) \cdot \sum S_L(\beta,c) \cdot T_H(c,\alpha)$ $\mathcal{O}(N^{\varepsilon})$ $\sum R_*(a,b) \cdot S_L(b,c) \cdot T_H(c,a)$ or a,b,c $\mathcal{O}(N^{1-\varepsilon})$ $\delta R_*(\alpha,\beta) \cdot \sum T_H(c,\alpha) \cdot S_L(\beta,c)$ $\sum R_*(a,b) \cdot S_H(b,c) \cdot T_L(c,a) = \frac{\delta R_*(\alpha,\beta)}{\delta R_*(\alpha,\beta)} \cdot V_{ST}(\beta,\alpha)$ $\mathcal{O}(1)$ a.b.c

Overall update time: $\mathcal{O}(N^{\max(\varepsilon,1-\varepsilon)})$

Auxiliary Materialized Views

$$V_{RS}(a,c) = \sum_{b} R_{H}(a,b) \cdot S_{L}(b,c)$$

$$V_{ST}(b,a) = \sum_{c} S_{H}(b,c) \cdot T_{L}(c,a)$$

$$V_{TR}(a,c) = \sum_{a} T_H(c,a) \cdot R_L(a,b)$$

Maintain $V_{ST}(b, a) = \sum_{c} S_{H}(b, c) \cdot T_{L}(c, a)$ under update $\delta S_{H} = \{(\beta, \gamma) \mapsto m\}$

Maintain $V_{ST}(b, a) = \sum_{c} S_{H}(b, c) \cdot T_{L}(c, a)$ under update $\delta S_{H} = \{(\beta, \gamma) \mapsto m\}$

Maintain $V_{ST}(b, a) = \sum_{c} S_{H}(b, c) \cdot T_{L}(c, a)$ under update $\delta S_{H} = \{(\beta, \gamma) \mapsto m\}$

Update time: $\mathcal{O}(N^{\varepsilon})$ to iterate over *a*-values paired with γ from T_L

 $\text{Maintain } V_{ST}(b,a) = \sum_{c} S_{H}(b,c) \cdot T_{L}(c,a) \text{ under update } \delta T_{L} = \{(\gamma,\alpha) \mapsto m\}$

Maintenance of Auxiliary Views

Maintain $V_{ST}(b, a) = \sum_{c} S_{H}(b, c) \cdot T_{L}(c, a)$ under update $\delta T_{L} = \{(\gamma, \alpha) \mapsto m\}$

Maintenance of Auxiliary Views

Maintain $V_{ST}(b, a) = \sum_{c} S_{H}(b, c) \cdot T_{L}(c, a)$ under update $\delta T_{L} = \{(\gamma, \alpha) \mapsto m\}$

Update time: $\mathcal{O}(N^{1-\varepsilon})$ to iterate over *b*-values paired with γ from S_H

Maintenance of Auxiliary Views: Summary

$$V_{RS}(a,c) = \sum_{b} R_{H}(a,b) \cdot S_{L}(b,c)$$

$$V_{ST}(b,a) = \sum_{c} S_H(b,c) \cdot T_L(c,a)$$

$$V_{TR}(a,c) = \sum_{a} T_H(c,a) \cdot R_L(a,b)$$

Maintenance Complexity

Time: $\mathcal{O}(N^{\max\{\varepsilon,1-\varepsilon\}})$

Updates can change frequencies of values & heavy/light threshold

Rebalancing Partitions

Updates can change the frequencies of values in the relation parts

Minor Rebalancing

• Transfer $\mathcal{O}(N^{\varepsilon})$ tuples from one to the other part of the same relation

Rebalancing Partitions

Updates can change the heavy-light threshold!

Major Rebalancing

Recompute partitions and views from scratch

Amortization of Rebalancing Times

Both forms of rebalancing require superlinear time

Amortization of Rebalancing Times

- Both forms of rebalancing require superlinear time
- The rebalancing times amortize over sequences of updates
 - Amortized minor rebalancing time: $\mathcal{O}(N^{\max{\{\varepsilon, 1-\varepsilon\}}})$

• Amortized major rebalancing time: $\mathcal{O}(N^{\max{\{\varepsilon,1-\varepsilon\}}})$

$$\begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

Amortization of Rebalancing Times

- Both forms of rebalancing require superlinear time
- The rebalancing times amortize over sequences of updates
 - Amortized minor rebalancing time: *O*(*N*^{max {ε,1-ε}})

• Amortized major rebalancing time: $\mathcal{O}(N^{\max{\{\varepsilon, 1-\varepsilon\}}})$

• Overall amortized rebalancing time: $\mathcal{O}(N^{\max{\{\varepsilon, 1-\varepsilon\}}})$

 $\Omega(N)$

Follow-up Work & Open Questions

Follow-up work

- TODS 2020
 - Triangle queries with different free variables
 - Strong and weak Pareto optimality
- APOCS 2021
 - Extend the triangle counting algorithm to k-clique counting
 - Parallel batch-dynamic triangle count algorithm based on the (sequential single-tuple dynamic) triangle count algorithm
- ICDT 2021
 - Update time-approximation quality trade-off for triangle counting
 - Complexity of triangle counting based on the arboricity of the data graph

Follow-up Work & Open Questions

Follow-up work

- TODS 2020
 - Triangle queries with different free variables
 - Strong and weak Pareto optimality
- APOCS 2021
 - Extend the triangle counting algorithm to k-clique counting
 - Parallel batch-dynamic triangle count algorithm based on the (sequential single-tuple dynamic) triangle count algorithm
- ICDT 2021
 - Update time-approximation quality trade-off for triangle counting
 - Complexity of triangle counting based on the arboricity of the data graph

Open questions

- Worst-case optimal (and beyond) maintenance and the update-space trade-off for functional aggregate queries
- Single-tuple updates versus batch updates

References i

[Algorithmica 1997] Noga Alon, Raphael Yuster, and Uri Zwick. *Finding and counting given length cycles.*

[SODA 2002] Ziv Bar-Yossef, Ravi Kumar, and D Sivakumar. Reductions in Streaming Algorithms, with an Application to Counting Triangles in Graphs.

[COCOON 2005] Hossein Jowhari and Mohammad Ghodsi. *New Streaming Algorithms for Counting Triangles in Graphs.*

[PODS 2006] Luciana S Buriol, Gereon Frahling, Stefano Leonardi, Alberto Marchetti-Spaccamela, and Christian Sohler. *Counting Triangles in Data Streams.*

[Found. & Trends DB 2012] Rada Chirkova and Jun Yang. Materialized Views.

[SIGMOD R. 2013] Hung Q Ngo, Christopher Ré, and Atri Rudra. Skew strikes back: new developments in the theory of join algorithms.

References ii

[ICDT 2014] Todd L. Veldhuizen. Leapfrog Triejoin: A Simple, Worst-Case Optimal Join Algorithm.

[VLDB J. 2014] Christoph Koch, Yanif Ahmad, Oliver Kennedy, Milos Nikolic, Andres Nötzli, Daniel Lupei, and Amir Shaikhha. *DBToaster: Higher-Order Delta Processing for Dynamic, Frequently Fresh Views.*

[FOCS 2015] Talya Eden, Amit Levi, Dana Ron, and C. Seshadhri. Approximately Counting Triangles in Sublinear Time.

[STOC 2015] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak. Unifying and Strengthening Hardness for Dynamic Problems via the Online Matrix-Vector Multiplication Conjecture.

[PODS 2016] Andrew McGregor, Sofya Vorotnikova, and Hoa T Vu. Better Algorithms for Counting Triangles in Data Streams.

[PODS 2017] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. *Answering Conjunctive Queries Under Updates.*

References iii

[SIGMOD 2017] Muhammad Idris, Martín Ugarte, and Stijn Vansummeren. The Dynamic Yannakakis Algorithm: Compact and Efficient Query Processing Under Updates.

[Theor. Comput. Sci. 2017] Graham Cormode and Hossein Jowhari. A Second Look at Counting Triangles in Graph Streams (Corrected).

[Found. & Trends DB 2018] Paraschos Koutris, Semih Salihoglu, and Dan Suciu. *Algorithmic Aspects of Parallel Data Processing*.

[ICDT 2018] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering UCQs Under Updates and in the Presence of Integrity Constraints.

[ICM 2018] Virginia Vassilevska Williams. On Some Fine-Grained Questions in Algorithms and Complexity.

[SIGMOD 2018] Nikolic, Milos, and Dan Olteanu. *Incremental view* maintenance with triple lock factorization benefits.

References iv

[ICDT 2019] Ahmet Kara, Milos Nikolic, Hung Q. Ngo, Dan Olteanu, and Haozhe Zhang. *Counting Triangles under Updates in Worst-Case Optimal Time.*

[APOCS 2021] Laxman Dhulipala, Quanquan C. Liu, Julian Shun, Shangdi Yu. *Parallel Batch-Dynamic k-Clique Counting.*

[ICDT 2021] Shangqi Lu, Yufei Tao. Towards Optimal Dynamic Indexes for Approximate (and Exact) Triangle Counting.

2. Constant Update Time & Enumeration Delay

Q: Which queries admit

constant update time and enumeration delay in the worst-case?

Q: Which queries admit

constant update time and enumeration delay in the worst-case?

A: Q-hierarchical queries

[PODS 2017]

Q: Which queries admit

constant update time and enumeration delay in the worst-case?

A: Q-hierarchical queries

[PODS 2017]

A: Queries that become *q*-hierarchical under functional dependencies [ICDE 2009, VLDBJ 2023, RelationalAI]

Q: Which queries admit

constant update time and enumeration delay in the worst-case?

A: Q-hierarchical queries

[PODS 2017]

A: Queries that become *q*-hierarchical under functional dependencies [ICDE 2009, VLDBJ 2023, RelationalAI]

A: Queries with free access patterns Q(out|in) whose fractures are q-hierarchical [ICDT 2023]

Q: Which queries admit

constant update time and enumeration delay in the worst-case?

A: Q-hierarchical queries

[PODS 2017]

A: Queries that become *q*-hierarchical under functional dependencies [ICDE 2009, VLDBJ 2023, RelationalAI]

A: Queries with free access patterns Q(out|in) whose fractures are q-hierarchical [ICDT 2023]

A: Queries that become *q*-hierarchical under rewritings using *q*-hierarchical views and specific enumeration order [UZH 2023]

Hierarchical Queries

A query is hierarchical if for any two variables, their sets of atoms in the query are either disjoint or one is contained in the other [VLDB 2004]

hierarchical

$$Q(b,d) = \sum_{a,c,e,f} R(a,b,d) \cdot S(a,b) \cdot T(a,c,e) \cdot U(a,c,f)$$

Hierarchical Queries

A query is hierarchical if for any two variables, their sets of atoms in the query are either disjoint or one is contained in the other [VLDB 2004]

hierarchical

$$Q(b,d) = \sum_{a,c,e,f} R(a,b,d) \cdot S(a,b) \cdot T(a,c,e) \cdot U(a,c,f)$$

not hierarchical

 $Q(a,b) = R(a) \cdot \frac{S}{S}(a,b) \cdot T(b)$

*Q***-Hierarchical Queries**

A query is *q*-hierarchical if it is hierarchical and the free variables dominate the bound variables [PODS 2017]

$$q\text{-hierarchical}$$

$$Q(a, b, c) = \sum_{d, e, f} R(a, b, d) \cdot \frac{S}{S}(a, b) \cdot \frac{S}{T}(a, c, e) \cdot U(a, c, f)$$

Q-Hierarchical Queries

A query is *q*-hierarchical if it is hierarchical and the free variables dominate the bound variables [PODS 2017]

$$q\text{-hierarchical}$$
$$Q(a, b, c) = \sum_{d, e, f} R(a, b, d) \cdot \frac{S(a, b)}{T(a, c, e)} \cdot U(a, c, f)$$

hierarchical but not q-hierarchical $Q(a) = \sum_{b} S(a, b) \cdot T(b)$

Dichotomy for *Q*-Hierarchical Queries

Let Q be any conjunctive query without self-joins and D a database.

- If Q is q-hierarchical, then the query answer admits O(1) single-tuple updates and enumeration delay.
- If Q is not q-hierarchical, then there is no algorithm with
 O(|D|^{1/2-γ}) update time and enumeration delay for any γ > 0,
 unless the OMv conjecture fails.

[PODS 2017]

Queries under Functional Dependencies

Rewriting queries under functional dependencies [ICDE 2009]

- Given: Query Q and set Σ of functional dependencies
- Replace the set of variables of each atom in Q by its closure under Σ called Σ-reduct

Under $\Sigma = \{x \rightarrow y, y \rightarrow z\}$, the closure of $\{x\}$ is $\{x, y, z\}$

 If the Σ-reduct is *q*-hierarchical, then *Q* admits constant update time and enumeration delay [VLDB J 2023]

Maintenance of Q-Hierarchical Queries

How to achieve constant update time and enumeration delay? Recipe: [PODS 2017]

- Construct a factorized representation of the query answer [ICDT 2012]
- Such factorizations admit constant-delay enumeration
- Apply updates directly on the factorization

- F-IVM system [https://github.com/fdbresearch/FIVM] [SIGMOD 2018]
 - Factorize the query answer as a tree of views
 - Materialize the views to speed up updates and enumeration

Example: Query Rewriting

$$Q(w, x, y, z) = R(w, x) \cdot S(x, y) \cdot T(y, z)$$

Assume the functional dependencies: $X \rightarrow Y$ and $Y \rightarrow Z$

Q is not q-hierarchical, but its rewriting under FDs is:

$$Q'(w, x, y, z) = R'(w, x, y, z) \cdot S'(x, y, z) \cdot T'(y, z)$$

Example: Variable Order

$$Q'(w, x, y, z) = R'(w, x, y, z) \cdot S'(x, y, z) \cdot T'(y, z)$$
Top-down construction of variable order for Q' :
$$Z \text{ and } Y \text{ are first as they dominate } X \text{ and } W$$

$$Then X, which dominates W$$

$$Finally W$$
We use this variable order also for Q

Example: View Tree

View tree construction:

- Place relations at leaves
- Create parent view to join children

$$V'_Z(z, y) = T(y, z) \cdot V_X(y)$$
$$V'_X(y, x) = S(x, y) \cdot V_W(x)$$

 Aggregate away variables not needed for further joins

$$V_Z() = \sum_{z} V_Y(z)$$
$$V_Y(z) = \sum_{y} V'_Z(y, z)$$
$$V_X(y) = \sum_{x} V'_X(x, y)$$
$$V_W(x) = \sum_{w} R'(x, w)$$

Example: Enumeration of Query Answers

- Top-down in the view tree
- Views calibrated for variables underneath
- Guaranteed to get matching tuples in views below

 $V_Z()$

Example: Enumeration of Query Answers

Enumeration for Q(z, y, x, w) with constant delay $V_Z()$ Top-down in the view tree Views calibrated for variables underneath Guaranteed to get matching tuples in views below $V_Y(z)$ Enumeration from the join: $V'_{Z}(y,z)$ $V'_{Z}(z,y)$ $\mathbf{1}_{V_{Z}} \cdot \mathbf{1}_{V_{Y}(z)} \cdot \mathbf{1}_{V_{Z}'(z,y)} \cdot \mathbf{1}_{V_{Y}'(y,x)} \cdot T(z,y) \cdot S(x,y) \cdot R(x,w)$ T(y,z) with variable order: Z - Y - X - W $V_X(y)$ $V'_{\mathbf{y}}(\mathbf{x},\mathbf{y}) \qquad V'_{\mathbf{x}}(\mathbf{y},\mathbf{x})$ $V_W(x)$ R(x, w)S(x, y)

Example: Enumeration of Query Answers

Enumeration for Q(z, y, x, w) with constant delay $V_Z()$ Top-down in the view tree Views calibrated for variables underneath Guaranteed to get matching tuples in views below $V_Y(z)$ Enumeration from the join: $V'_{Z}(y,z)$ $V'_{Z}(z,y)$ $\mathbf{1}_{V_{\mathcal{T}}} \cdot \mathbf{1}_{V_{\mathcal{T}}(z)} \cdot \mathbf{1}_{V_{\mathcal{T}}'(z,y)} \cdot \mathbf{1}_{V_{\mathcal{T}}'(y,x)} \cdot T(z,y) \cdot S(x,y) \cdot R(x,w)$ with variable order: Z - Y - X - W $V_X(y)$ T(y,z)Is V_Z() empty? If yes, stop. $V_X'(y,x)$ $V'_{x}(x,y)$ Iterate over z's in $V_Y(z)$ For each z, iterate over y's in index $V'_Z(z, y)$ $V_W(x)$ For each y, iterate over x's in index $V'_X(y,x)$ R(x, w)S(x, y)Iterate over T(z, y), S(x, y), R(x, w)

Open Questions

Can we achieve worst-case optimality per single-tuple update beyond the *q*-hierarchical queries?

Open Questions

Can we achieve worst-case optimality per single-tuple update beyond the *q*-hierarchical queries?

- In practice, *average* constant time might be enough.
 - Which queries admit average constant time for single-tuple updates?

Open Questions

Can we achieve worst-case optimality per single-tuple update beyond the *q*-hierarchical queries?

In practice, *average* constant time might be enough.

Which queries admit average constant time for single-tuple updates?

What is the complexity trade-off between update time and enumeration delay if we drop:

the "q" property?

the hierarchical property?

References i

[VLDB 2004] Nilesh N. Dalvi, Dan Suciu. *Efficient Query Evaluation on Probabilistic Databases.*

[ICDE 2009] Dan Olteanu, Jiewen Huang, Christoph Koch. SPROUT: Lazy vs. Eager Query Plans for Tuple-Independent Probabilistic Databases.

[ICDT 2012] Dan Olteanu, Jakub Zavodny. Factorised representations of query results: size bounds and readability.

[PODS 2017] Christoph Berkholz, Jens Keppeler, Nicole Schweikardt. Answering Conjunctive Queries under Updates.

[SIGMOD 2018] Milos Nikolic, Dan Olteanu. Incremental View Maintenance with Triple Lock Factorization Benefits.

References ii

[ICDT 2023] Ahmet Kara, Milos Nikolic, Dan Olteanu, Haozhe Zhang. Conjunctive Queries with Free Access Patterns Under Updates.

[VLDBJ 2023] Ahmet Kara, Milos Nikolic, Dan Olteanu, Haozhe Zhang. *F-IVM: Analytics over Relational Databases under Updates.* (To appear)

[UZH 2023] Johann Schwabe. *CaVieR: CAscading VIEw tRees.* MSc thesis, University of Zurich

3. Beyond "Q"

$$Q(a) = \sum_{b} R(a, b) \cdot S(b)$$

 \log_N preprocessing time

Known approach: Eager update, quick enumeration

- Preprocessing: Materialize the result.
- Upon update: Maintain the materialized result.
- Enumeration: Enumerate from materialized result.

log_N preprocessing time

Known approach: Lazy update, heavy enumeration

- Preprocessing: Eliminate dangling tuples
- Upon update: Update only base relations
- Enumeration: Eliminate dangling tuples and enumerate from R

Yet, there is an algorithm that admits sub-linear update time and sub-linear enumeration delay

Weak Pareto optimality

Relation Partitioning

 $Q(a) = \sum_{b} R(a, b) \cdot S(b)$

Partition R based on the values b into

- a light part $R^{L} = \{(a, b) \in R \mid |\sigma_{B=b}R| < N^{\varepsilon}\}$
- a heavy part $R^H = R R^L$

Relation Partitioning

 $Q(a) = \sum_{b} R(a, b) \cdot S(b)$

Partition R based on the values b into

- a light part $R^L = \{(a, b) \in R \mid |\sigma_{B=b}R| < N^{\varepsilon}\}$
- a heavy part $R^H = R R^L$

$$egin{aligned} Q(a) &= Q_L(a) + Q_H(a) \ Q_L(a) &= \sum_b R^L(a,b) \cdot S(b) \ Q_H(a) &= \sum_b R^H(a,b) \cdot S(b) \end{aligned}$$

Light Case

 $Q_L(a) = \sum_b R^L(a, b) \cdot S(b)$

Materialize the result

Light Case

 $Q_L(a) = \sum_b R^L(a, b) \cdot S(b)$ Materialize the result $Q_L(a) = \sum_b R^L(a, b) \cdot S(b)$ ai aj S(b) $R^{L}(a, b)$ b_1' $a_1 b_1$ b'_m a_n b_n

Preprocessing in the Light Case

 $Q_L(a) = \sum_b R^L(a, b) \cdot S(b)$

• Q_L can be computed in time $\mathcal{O}(N)$

Enumeration in the Light Case

Q_L allows constant-time lookups and constant-delay enumeration

- Updates to R^L: O(1)
- Updates to S: O(N^ε)

Heavy Case

$$Q_{H}(a) = \sum_{b} R^{H}(a,b) \cdot S(b)$$

Materialize the b values in the join result

Heavy Case

Preprocessing in the Heavy Case

■ V_{RS} can be computed in time $\mathcal{O}(N^{1-\varepsilon})$ and has at most $N^{1-\varepsilon}$ values

Enumeration in the Heavy Case

$$Q_H(a) = \sum_b R^H(a,b) \cdot S(b)$$

• V_{RS} contains at most $N^{1-\varepsilon}$ values b

For each value *b* in V_{RS} , the values *a* in R^H paired with *b* admit constant enumeration delay

Enumeration of Distinct Tuples from Union

• $V_{RS}(b)$ contains at most $N^{1-\varepsilon}$ values

- For each value *b* in *V_{RS}*, the values *a* in *R^H* paired with *b* admit constant enumeration delay
- Yet: For two distinct b_1 and b_2 , the sets of values a in $R^H(a, b_1)$ and $R^H(a, b_2)$ may not be disjoint

 \implies Enumerating all the values *a* in $R^H(a, b_1)$ and $R^H(a, b_2)$ can lead to duplicates

Enumeration of Distinct Tuples from Union

• $V_{RS}(b)$ contains at most $N^{1-\varepsilon}$ values

- For each value *b* in *V_{RS}*, the values *a* in *R^H* paired with *b* admit constant enumeration delay
- Yet: For two distinct b_1 and b_2 , the sets of values a in $R^H(a, b_1)$ and $R^H(a, b_2)$ may not be disjoint

 \implies Enumerating all the values *a* in $R^H(a, b_1)$ and $R^H(a, b_2)$ can lead to duplicates

Union Algorithm [CSL 2011] • The distinct values *a* can be enumerated with $\mathcal{O}(N^{1-\varepsilon})$ delay

Enumeration of the distinct tuples in the union of two sets

- Both sets allow lookup time ℓ and enumeration delay d
- > The union of the sets can be enumerated with $\mathcal{O}(\ell+d)$ delay

$$S_1$$
 S_2 $S_1 \cup S_2$
 $a_3 a_4 a_1 a_2$ EOF $a_5 a_6 a_2 a_4$ EOF

Enumeration of the distinct tuples in the union of two sets

- Both sets allow lookup time ℓ and enumeration delay d
- \Rightarrow The union of the sets can be enumerated with $\mathcal{O}(\ell+d)$ delay

Enumeration of the distinct tuples in the union of two sets

Both sets allow lookup time ℓ and enumeration delay d

Enumeration of the distinct tuples in the union of two sets

Both sets allow lookup time ℓ and enumeration delay d

Enumeration of the distinct tuples in the union of two sets

Both sets allow lookup time ℓ and enumeration delay d

Enumeration of the distinct tuples in the union of two sets

Both sets allow lookup time ℓ and enumeration delay d

Enumeration of the distinct tuples in the union of two sets

Both sets allow lookup time ℓ and enumeration delay d

Enumeration of the distinct tuples in the union of two sets

Both sets allow lookup time ℓ and enumeration delay d

Enumeration of the distinct tuples in the union of two sets

- **Both sets allow lookup time** ℓ and enumeration delay *d*
- > The union of the sets can be enumerated with $\mathcal{O}(\ell+d)$ delay

Generalization: Enumeration from the union of n sets

- Each set allows lookup time ℓ and enumeration delay d
- The union of the sets can be enumerated with $\mathcal{O}(n(\ell + d))$ delay

- Updates to R^H : $\mathcal{O}(1)$
- Updates to S: O(1)

Summing Up

 $Q(a) = R(a, b) \cdot S(b)$

Preprocessing Time

light case	heavy case	overall
$\mathcal{O}(N)$	$\mathcal{O}(N^{1-arepsilon})$	$\mathcal{O}(N)$

Enumeration Delay

Update Time

light case	heavy case	overall
$\mathcal{O}(N^{\varepsilon})$	$\mathcal{O}(1)$	$\mathcal{O}(N^{\varepsilon})$

Are there more queries with the same weak Pareto optimality as our previous example?

δ_1 -Hierarchical Queries

- For any bound variable X and any atom α of X, there is at most one other atom β so that all free variables dominated by X are covered by α and β together
- The query is hierarchical and not *q*-hierarchical

δ_1 -Hierarchical Queries

- For any bound variable X and any atom α of X, there is at most one other atom β so that all free variables dominated by X are covered by α and β together
- The query is hierarchical and not *q*-hierarchical

Optimality for δ_1 -Hierarchical Queries

• For any δ_1 -hierarchical query, there is no algorithm that admits preprocessing time update time enumeration delay arbitrary $\mathcal{O}(N^{1/2-\gamma}) = \mathcal{O}(N^{1/2-\gamma})$ for any $\gamma > 0$, unless the OMv Conjecture (*) fails

(*) Online Matrix-Vector Multiplication cannot be solved in sub-cubic time log_Mupdate time

Optimality for δ_1 -Hierarchical Queries

(*) Online Matrix-Vector Multiplication cannot be solved in sub-cubic time

Optimality for δ_1 -Hierarchical Queries

log_N preprocessing time

Trade-Offs Beyond δ_1 -Hierarchical

We can define syntactically classes of δ_i -hierarchical queries ($i \in \mathbb{N}$)

• with $\mathcal{O}(N^{i\varepsilon})$ update time and $\mathcal{O}(N^{1-\varepsilon})$ enumeration delay.

• δ_0 -hierarchical = Q-hierarchical

[LMCS 2023]

Trade-Offs Beyond δ_i -Hierarchical

Any hierarchical query can be maintained with

 $\begin{array}{c} \text{preprocessing time} & \text{update time} & \text{enumeration delay} \\ \mathcal{O}(N^{1+(\mathsf{w}-1)\varepsilon}) & \mathcal{O}(N^{\delta\varepsilon}) & \mathcal{O}(N^{1-\varepsilon}) \end{array}$

where

■ static width w = the fractional hypertree width for CQs

• dynamic width $\delta = \max_{\text{delta queries}} \text{ static width}$

[PODS 2020]

Trade-Offs Beyond δ_i -Hierarchical

Any hierarchical query can be maintained with

 $\begin{array}{c} \text{preprocessing time} & \text{update time} & \text{enumeration delay} \\ \mathcal{O}(N^{1+(\mathsf{w}-1)\varepsilon}) & \mathcal{O}(N^{\delta\varepsilon}) & \mathcal{O}(N^{1-\varepsilon}) \end{array}$

where

■ static width w = the fractional hypertree width for CQs

- dynamic width $\delta =$ * max_{delta queries} static width [PODS 2020]

Open question: Lower bounds for hierarchical queries

Sublinear Update Time and Delay

Hierarchical queries admit sublinear update time and enumeration delay

Trade-Offs Beyond Hierarchical

No nice closed-form expression for complexities seem possible

 \blacksquare For some $\alpha\text{-acyclic queries, trade-offs seem not possible}$

First steps already made for α-acyclic queries

[CSL 2023]

Preprocessing time/Update time/Enumeration delay

Preprocessing time/Update time/Enumeration delay

Recovery of Prior Results

Recovery of Prior Results

Recovery of Prior Results

References i

[CSL 2011] Arnaud Durand, Yann Strozecki. *Enumeration Complexity* of Logical Query Problems with Second-order Variables. CSL 2011

[CSL 2023] Ahmet Kara, Milos Nikolic, Dan Olteanu, Haozhe Zhang. Evaluation Trade-Offs for Acyclic Conjunctive Queries.

[LMCS 2023] Ahmet Kara, Milos Nikolic, Dan Olteanu, Haozhe Zhang. Trade-offs in Static and Dynamic Evaluation of Hierarchical Queries.

4. Maintaining ML Models over Evolving Relational Data

Maintain Models under Updates

1. Polynomial Regression: Find parameters $\boldsymbol{\Theta}$ best satisfying

Features X and labels Y are given by database joins

Maintain Models under Updates

1. Polynomial Regression: Find parameters $\boldsymbol{\Theta}$ best satisfying

- Features X and labels Y are given by database joins
- Solved using iterative gradient computation:

 $\Theta_{i+1} = \Theta_i - \alpha \mathbf{X}^{\mathsf{T}} (\mathbf{X} \Theta_i - \mathbf{Y}) \quad \text{(repeat until convergence)}$

2. Chow-Liu Trees: based on pairwise mutual information

Approach for both: Maintain the Covariance Matrix $[X Y]^T [X Y]$ [SIGMOD 2018 & 2020, VLDB J 2023]

Covariance Matrix Defined by Queries

Covariance matrix $[\mathbf{X} \mathbf{Y}]^{\mathsf{T}} [\mathbf{X} \mathbf{Y}]$ can be expressed in SQL

 $\begin{aligned} & Q = \text{SELECT } \text{SUM}(1 \ \star 1), \ \text{SUM}(1 \ \star X_1), \ \dots \ \text{SUM}(1 \ \star X_n), \ \text{SUM}(1 \ \star Y), \\ & \text{SUM}(X_1 \star 1), \ \text{SUM}(X_1 \star X_1), \ \dots \ \text{SUM}(X_1 \star X_n), \ \text{SUM}(X_1 \star Y), \\ & \dots \\ & \text{SUM}(X_n \star 1), \ \text{SUM}(X_n \star X_1), \ \dots \ \text{SUM}(X_n \star X_n), \ \text{SUM}(X_n \star Y) \\ & \text{SUM}(Y \ \star 1), \ \text{SUM}(Y \ \star X_1), \ \dots \ \text{SUM}(Y \ \star X_n), \ \text{SUM}(Y \ \star Y) \\ & \text{FROM R1 JOIN R2 JOIN } \dots \ \text{JOIN Rn} \end{aligned}$

Covariance Matrix Defined by Queries

Covariance matrix $[\mathbf{X} \ \mathbf{Y}]^{\mathsf{T}} [\mathbf{X} \ \mathbf{Y}]$ can be expressed in SQL

Q = SELECT	SUM(1 *1), SUM(1 * X_1),	$SUM(1 * X_n),$	SUM (1 *Y),
	SUM(X_1 *1), SUM(X_1 * X_1),	$SUM(X_1 * X_n),$	SUM (X ₁ *Y),
FROM	 SUM(X _n *1), SUM(X _n *X ₁ SUM(Y *1), SUM(Y *X ₁ R1 JOIN R2 JOIN JO),), IN Rn	$\begin{split} & \text{SUM}(X_n * X_n), \\ & \text{SUM}(Y * X_n), \end{split}$	SUM (X _n *Y), SUM (Y *Y)

We compute and maintain under data updates:

- COUNT = SUM(1) = database join size
- vector of SUM(X_i) for feature/label X_i
- matrix of SUM(X_i · X_j) for features/label X_i and X_j

Covariance Ring has the support:

Set of triples $(\mathbb{Z}, \mathbb{R}^m, \mathbb{R}^{m \times m})$

(COUNT, vector of SUM (\mathbf{X}_i) , matrix of SUM $(\mathbf{X}_i \cdot \mathbf{X}_j)$)

Neutral elements for sum and product operations:

 $\mathbf{0} = (\mathbf{0}, \mathbf{0}_{m \times 1}, \mathbf{0}_{m \times m})$ $\mathbf{1} = (\mathbf{1}, \mathbf{0}_{m \times 1}, \mathbf{0}_{m \times m})$

Covariance Ring has the sum and product operations:

Covariance Ring has the sum and product operations:

Covariance Ring has the sum and product operations:

References i

[SIGMOD 2018] Milos Nikolic, Dan Olteanu. Incremental View Maintenance with Triple Lock Factorization Benefits.

[SIGMOD 2020] Milos Nikolic, Haozhe Zhang, Ahmet Kara, Dan Olteanu. *F-IVM: Learning over Fast-Evolving Relational Data*.

[VLDBJ 2023] Ahmet Kara, Milos Nikolic, Dan Olteanu, Haozhe Zhang. *F-IVM: Analytics over Relational Databases under Updates.* (To appear)

Thank You!