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\Sampling

Continuous
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\Sampling /

Continuous Discrete

>

e R™ = R pwi{E1}" = Rxo

> Tractable: log u concave > Tractable: ? (patchwork)
(> Even better (well-conditioned):

—BI < V?logu < —al.
and B/« is small.
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\Sampling via counting /

Sub-cube C C {£1}™" = > | ¢ u(x).
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\Sampling via counting /

Sub-cube C C{£1}" = > | cc u(x).

Spanning trees Planar PMs Eulerian tours* Det. Point Process

o—0

o det(Lg)
O O
oo _)s
—
S

Matrix-tree thm. [FKT] thm. [BEST] thm. det(L + 1)

[Jerrum-Valiant-Vazirani’89]

Polynomial-time counting = polynomial-time sampling.
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> The standard reduction [Jerrum-Valiant-Vazirani’89] is sequential. @
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> The standard reduction [Jerrum-Valiant-Vazirani’89] is sequential. @

o0 e&—©O e——©O

e O o O o—0
o o o 0 o—0
Pleq]? Ples [ eq]? Ples | er,e2]?

> Counting doable in parallel: log(n)© ") time with n®(1) processors (NC).

[Csanky’75]

Linear algebra is parallelizable.

> Question: Can we sample in parallel (RNC)?
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Main result (informal)

We can sample spanning trees, DPPs, Eulerian tours,
and more in parallel by moving to continuous space.

Note: list excludes planar perfect matchings.
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\From discrete to continuous

Take convolution of p with normal N(0, cI).
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\From discrete to continuous /

Take convolution of p with normal N(0, cI).

Main lemma

v :=w*N(0, clI) log-concave for ¢ > cog = O(1).

> Thepdfofvatwisox ), e~ lw—xlI?/2¢ u(x)

o< e*”W”z/ZC . Z e<\/\//C,X> H(X) .

X

count of weighted p

2 2
o VZlogv|,,_, =—1/c+cov(u)/c N
AN

TTHHRONRR
m,’,',"n,'.m\\\“
n'

> For larger variance, e.g., u* N(0,2coI), we have
well-conditioned log-concavity (easy to sample).
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For w on {£1}™, an exponential tilt
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Exponential tilts

For w on {£1}™, an exponential tilt
is Ty for w € R™ defined as

Tywht(x) oc e ¥ (x).

> Spanning trees — weighted
spanning trees.

> DPP — DPP with rows and
columns scaled.

> Eulerian tours: switching
networks ...

Covariance bound

We just need all of these T,,u to
have bounded covariance (semi-
log-concavity [Eldan-Shamir207):

cov(Tuwu) <O(1)- 1.
Spectral  independence  [/-Liu-
OveisGharan’20] is even stronger:

cov(Twit) = O(1) - diag(cov(Twit)).

©
[Alimohammadi-/-Shiragur-Vuong'21]
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\VAVAV,

Represent Eulerian tours as members of {£1}7?
General case reducible to deg;, = degg,; = 2.
Replace each vertex by “switching network” gadget:

Binary choice per vertex:

Nor

[Bouchet]: 3 n x n skew-symmetric L, such that

det(Ls,s) = 1[S indicates Eulerian tour].

Exponential tilt becomes biased switching.

12/24
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> Wwant: random switching = uniformly random permutation.
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\Switching networks /

> Wwant: random switching = uniformly random permutation.

> Randomly constructed unbiased 6(deg)—sized network ~ uniform
permutation [Czumaj15].

> With biases, 6(deg2) enough to get exactly uniform.
> Open: What is the minimum size for exactly uniform permutations?

XX_,
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Sub-cube C C{£1}™" = 3 u(x). Wiy eV 1 (x).

Main result 1

Approx. sampling (e in dtv) via weighted counting in
polylog(n/e) time and quasipoly(n/e) processors, for n
spectrally independent under exponential tilts.

> Spectral independence [/ -Liu-OveisGharan20] under exponential tilts is also
known as “fractional log-concavity” [Alimohammadi-/-Shiragur-Vuong'21].

> Weaker condition “semi-log-concavity” [Eldan-Shamir20] is also enough.
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> Quasi-RNC sampling of Eulerian tours in digraphs.

> Quasi-RNC sampling of DPPs on skew-symmetric matrix.

Main result 2

The number of processors can be improved from
quasipoly(n/e) to poly(n/e) if wis “transport-stable”.

> RNC sampling of DPPs on symmetric PSD matrix.

> RNC sampling of spanning trees (already known via parallelization of
Aldous-Broder alg. [Teng'95, /-Hu-Saberi-Schild’21]).

> Conjecture: Eulerian tours and non-symmetric DPPs also
“transport-stable”.

> Corollary of ongoing work [*-Chewi-Vuong]: “Quasi” can be dropped.
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\Tronsport stability /

We call u transport-stable if

/

W1 (Tw ity T/ 1) <C-[w—w.
—_———

Wasserstein distance w.r.t. Hamming metric

C = O(1) for spanning trees, etc. C = O(n) for any distribution.
> In contrast, semi-log-concavity is:
[Imean (T, 1) — mean(Ty,r)[l2 < C - [lw — w2

> Aside: ||-||2 can be replaced by ||-||7 in our dists.
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\Tronsport stability /

[Feder-Mihqil’92]

For edge e, 3 random spanning trees T, T/, such that

& Tis uniformly random conditioned on e € T. [ S—

& T’is uniformly random conditioned on e ¢ T'.

> Almost surely [TAT'| = 2. ﬁ

& By gluing these couplings, we get o 0
transport-stability.

> Transport stability = semi-log-concavity. S

|leach row of cov(p)|[; < O(1).

> Conjecture: the same holds for Eulerian tours,

etc.
17/24
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How do we turn continuous samples into discrete ones?
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\Stochostic localization (i.e., DALL-E-for-theorists) /

Stochastic localization [Eldan13] in dis-
crete time steps. Different discretiza-
tion used by [ElAlaoui-Montanari-Sellke’22].
wo < 0
fori=0,...,T—1do

x < sample from T, p * N(0, cI)
L Wil +— Wi +x/c

return sign(wr)
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\Stochostic localization (i.e., DALL-E-for-theorists) /

Stochastic localization [Eldan13] in dis-
crete time steps. Different discretiza- {m(m Nm
tion used by [ElAlaoui-Montanari-Sellke’22]. A ll

Wo «~0

fori=0,...,T—1do

L)H—somple from Ty, 1 x N(0, cI) m
Wip1 & wi +x/c W‘“

N
AN
RO
AN
RN

return sign(wr)
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\Stochostic localization (i.e., DALL-E-for-theorists) /

Stochastic localization [Eldan3] in dis-
crete time steps. Different discretiza- M m\\ Wi N
tion used by [ElAlaoui-Montanari-Sellke’22]. I /m i\
Wo < 0 ‘
fori=0,...,T—1do
x < sample from Ty, 1+ N(0, cI) [m A
Wil — wi +x/c /{N ‘ /

return sign(w)

Lemma [cf. ElAlaoui-Montanari’21] m\\

cwt/T ~ uxN(0,cI/T).

> Enough to stop at T ~ clog(n).
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How do we sample from u x N(0, cI) in ?
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\Porollel continuous sampling

J

3 For a well-conditioned log-concave v on R™, what is the minimum
number of V log v we need to query to sample? We do not know if
polylog(n) is possible. @

> Fortunately parallel time polylog(n) is possible. @ We use randomized
midpoint of [Shen-Lee19], but others such as Lagenvin can be parallelized
too [~-Chewi-Vuong]. Picard iterations change the sequential version:

Xtpat & Xt +dtViegv(x¢) + N(0,2dt - I)
to iterations fori=1,...,O(polylogn) of

xLLdt —xt 4 dtVilog v(x=T) + N(0, 2dt - I).

22/24
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\Error propagation /

Recall that u transport-stable if

W1 (Tt T i) <C-w—w||r.
~—_——

Wasserstein distance w.r.t. Hamming metric

> The sampling error in one step gets multiplied by C in every future step.

C = O(1) for spanning trees, etc. C = O(n) for any distribution.

> Wasserstein accuracy quasipoly(n)~! enough in continuous sampler.
> For C = 0(1), it is enough to have Wasserstein accuracy poly(n)~'.

> [~-Chewi-Vuong]: we can get TV-accurate samples in parallel.
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Open: With no assumption on u, what is the parallel round complexity of
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