Parallel Discrete Sampling via Continuous Walks

Nima Anari

1. Stanford
joint work with

DALL•E for Spanning Trees

Nima Anari
Stanford
University
joint work with

sampling in diffusion models [image by Andy Shih]

sampling in diffusion models [image by Andy Shih]

Sampling

Continuous

$$
\mu: \mathbb{R}^{n} \rightarrow \mathbb{R} \geqslant 0
$$

Sampling

Continuous

- Tractable: $\log \mu$ concave

Sampling

Continuous

- Tractable: $\log \mu$ concave
\bigcirc Even better (well-conditioned):

$$
-\beta \mathrm{I} \preceq \nabla^{2} \log \mu \preceq-\alpha \mathrm{I} .
$$

and β / α is small.

Sampling

Continuous

$$
\mu: \mathbb{R}^{n} \rightarrow \mathbb{R}_{\geqslant 0}
$$

Discrete

$$
\mu:\{ \pm 1\}^{n} \rightarrow \mathbb{R}_{\geqslant 0}
$$

- Tractable: $\log \mu$ concave

D Even better (well-conditioned):

$$
-\beta \mathrm{I} \preceq \nabla^{2} \log \mu \preceq-\alpha \mathrm{I} .
$$

and β / α is small.

Sampling

Continuous

$$
\mu: \mathbb{R}^{n} \rightarrow \mathbb{R}_{\geqslant 0}
$$

- Tractable: $\log \mu$ concave
- Even better (well-conditioned):

$$
-\beta \mathrm{I} \preceq \nabla^{2} \log \mu \preceq-\alpha \mathrm{I} .
$$

and β / α is small.

Sampling via counting

Counting
 Sub-cube $C \subseteq\{ \pm 1\}^{n} \mapsto \sum_{x \in C} \mu(x)$.

Sampling via counting

Counting
 $$
\text { Sub-cube } C \subseteq\{ \pm 1\}^{n} \mapsto \sum_{x \in C} \mu(x) .
$$

Spanning trees

Matrix-tree thm.

Planar PMs

[FKT] thm.

Eulerian tours*

[BEST] thm.

Det. Point Process

$\operatorname{det}(\mathrm{L}+\mathrm{I})$

Sampling via counting

Counting

$$
\text { Sub-cube } C \subseteq\{ \pm 1\}^{n} \mapsto \sum_{x \in C} \mu(x) .
$$

Spanning trees

Matrix-tree thm.

Planar PMs

[FKT] thm.

Eulerian tours*

[BEST] thm.

Det. Point Process

$\operatorname{det}(\mathrm{L}+\mathrm{I})$

[Jerrum-Valiant-Vazirani'89]

Polynomial-time counting \Longrightarrow polynomial-time sampling.

D The standard reduction [Jerrum-Valiant-Vazirani'89] is sequential. :

$\mathbb{P}\left[e_{1}\right]$?

$\mathbb{P}\left[e_{2} \mid e_{1}\right]$?

$\mathbb{P}\left[e_{3} \mid e_{1}, e_{2}\right]$?

D The standard reduction [Jerrum-Valiant-Vazirani'89] is sequential. :

$\mathbb{P}\left[e_{1}\right]$?

$\mathbb{P}\left[e_{2} \mid e_{1}\right]$?

$\mathbb{P}\left[e_{3} \mid e_{1}, e_{2}\right]$?
D Counting doable in parallel: $\log (n)^{\mathrm{O}(1)}$ time with $n^{\mathrm{O}(1)}$ processors (NC).

[Csanky'75]

Linear algebra is parallelizable.
© The standard reduction [Jerrum-Valiant-Vazirani'89] is sequential. :

$\mathbb{P}\left[e_{1}\right]$?

$\mathbb{P}\left[e_{2} \mid e_{1}\right]$?

$\mathbb{P}\left[e_{3} \mid e_{1}, e_{2}\right]$?
D Counting doable in parallel: $\log (n)^{\mathrm{O}(1)}$ time with $n^{\mathrm{O}(1)}$ processors (NC).

[Csanky'75]

Linear algebra is parallelizable.
© Question: Can we sample in parallel (RNC)?

Main result (informal)

We can sample spanning trees, DPPs, Eulerian tours, and more in parallel by moving to continuous space.

Note: list excludes planar perfect matchings.

Discrete to Continuous

D Exponential Tilts
D Interlude: Eulerian Tours

- Transport Stability

Sampling Algorithm

\bigcirc Stochastic Localization

- Parallel Continuous Sampling

Discrete to Continuous

- Exponential Tilts
- Interlude: Eulerian Tours
- Transport Stability

Sampling Algorithm

- Stochastic Localization

D Parallel Continuous Sampling

From discrete to continuous

Take convolution of μ with normal $\mathcal{N}(0, \mathrm{cI})$.

From discrete to continuous

Take convolution of μ with normal $\mathcal{N}(0, c I)$.

Main lemma

$v:=\mu * \mathcal{N}(0, c I)$ log-concave for $c \geqslant c_{0}=O(1)$.

From discrete to continuous

Take convolution of μ with normal $\mathcal{N}(0, c I)$.

Main lemma

$v:=\mu * \mathcal{N}(0, c I)$ log-concave for $c \geqslant c_{0}=O(1)$.

From discrete to continuous

Take convolution of μ with normal $\mathcal{N}(0, \mathrm{cI})$.

Main lemma

$v:=\mu * \mathcal{N}(0, c I)$ log-concave for $c \geqslant c_{0}=O(1)$.
\bigcirc The p.d.f. of v at w is $\propto \sum_{x} e^{-\|w-x\|^{2} / 2 c} \mu(x)$

$$
\propto e^{-\|w\|^{2} / 2 c} \cdot \underbrace{\sum_{\chi} e^{\langle w / c, x\rangle} \mu(x)}_{\text {count of weighted } \mu}
$$

From discrete to continuous

Take convolution of μ with normal $\mathcal{N}(0, \mathrm{cI})$.

Main lemma

$v:=\mu * \mathcal{N}(0, c I)$ log-concave for $c \geqslant c_{0}=O(1)$.
\bigcirc The p.d.f. of v at w is $\propto \sum_{x} e^{-\|w-x\|^{2} / 2 c} \mu(x)$

$$
\propto e^{-\|w\|^{2} / 2 c} \cdot \underbrace{\sum_{\chi} e^{\langle w / c, x\rangle} \mu(x)}_{\text {count of weighted } \mu}
$$

D

$$
\left.\nabla^{2} \log v\right|_{w=0}=-I / c+\operatorname{cov}(\mu) / c^{2}
$$

From discrete to continuous

Take convolution of μ with normal $\mathcal{N}(0, \mathrm{cI})$.

Main lemma

$v:=\mu * \mathcal{N}(0, c I)$ log-concave for $c \geqslant c_{0}=O(1)$.
\bigcirc The p.d.f. of v at w is $\propto \sum_{x} e^{-\|w-x\|^{2} / 2 c} \mu(x)$

$$
\propto e^{-\|w\|^{2} / 2 c} \cdot \underbrace{\sum_{\chi} e^{\langle w / c, x\rangle} \mu(\chi)}_{\text {count of weighted } \mu} .
$$

D

$$
\left.\nabla^{2} \log v\right|_{w=0}=-I / c+\operatorname{cov}(\mu) / c^{2}
$$

D For larger variance, e.g., $\mu * \mathcal{N}\left(0,2 c_{0} \mathrm{I}\right)$, we have well-conditioned log-concavity (easy to sample).

Exponential tilts

For μ on $\{ \pm \mathbf{1}\}^{n}$, an exponential tilt is $\tau_{w} \mu$ for $w \in \mathbb{R}^{n}$ defined as
$\tau_{w} \mu(x) \propto e^{\langle w, x\rangle} \mu(x)$.

Exponential tilts

For μ on $\{ \pm \mathbf{1}\}^{n}$, an exponential tilt is $\tau_{w} \mu$ for $w \in \mathbb{R}^{n}$ defined as

$$
\tau_{w} \mu(x) \propto e^{\langle w, x\rangle} \mu(x) .
$$

\bigcirc Spanning trees \rightarrow weighted spanning trees.

Exponential tilts

For μ on $\{ \pm \mathbf{1}\}^{n}$, an exponential tilt is $\tau_{w} \mu$ for $w \in \mathbb{R}^{n}$ defined as

$$
\tau_{w} \mu(x) \propto e^{\langle w, x\rangle} \mu(x)
$$

\bigcirc Spanning trees \rightarrow weighted spanning trees.
D DPP \rightarrow DPP with rows and columns scaled.

Exponential tilts

For μ on $\{ \pm \mathbf{1}\}^{n}$, an exponential tilt is $\tau_{w} \mu$ for $w \in \mathbb{R}^{n}$ defined as

$$
\tau_{w} \mu(x) \propto e^{\langle w, x\rangle} \mu(x) .
$$

\checkmark Spanning trees \rightarrow weighted spanning trees.

- DPP \rightarrow DPP with rows and columns scaled.

D Eulerian tours: switching networks...

Exponential tilts

For μ on $\{ \pm \mathbf{1}\}^{n}$, an exponential tilt is $\tau_{w} \mu$ for $w \in \mathbb{R}^{n}$ defined as

$$
\tau_{w} \mu(x) \propto e^{\langle w, x\rangle} \mu(x) .
$$

\checkmark Spanning trees \rightarrow weighted spanning trees.

- DPP \rightarrow DPP with rows and columns scaled.

D Eulerian tours: switching networks...

Determinant-based counting is closed under external fields.

Exponential tilts

For μ on $\{ \pm \mathbf{1}\}^{n}$, an exponential tilt is $\tau_{w} \mu$ for $w \in \mathbb{R}^{n}$ defined as

$$
\tau_{w} \mu(x) \propto e^{\langle w, x\rangle} \mu(x)
$$

Covariance bound

We just need all of these $\tau_{w} \mu$ to have bounded covariance (semi-log-concavity [Eldan-Shamir'20]):

$$
\operatorname{cov}\left(\tau_{w} \mu\right) \preceq \mathrm{O}(1) \cdot \mathrm{I} .
$$

\checkmark Spanning trees \rightarrow weighted spanning trees.
\checkmark DPP \rightarrow DPP with rows and columns scaled.

D Eulerian tours: switching networks...

Determinant-based counting is closed under external fields.

Exponential tilts

For μ on $\{ \pm \mathbf{1}\}^{n}$, an exponential tilt is $\tau_{w} \mu$ for $w \in \mathbb{R}^{n}$ defined as

$$
\tau_{w} \mu(x) \propto e^{\langle w, x\rangle} \mu(x)
$$

\checkmark Spanning trees \rightarrow weighted spanning trees.
\checkmark DPP \rightarrow DPP with rows and columns scaled.

D Eulerian tours: switching networks...

Determinant-based counting is closed under external fields.

Covariance bound
We just need all of these $\tau_{w} \mu$ to have bounded covariance (semi-log-concavity [Eldan-Shamir'20]):

$$
\operatorname{cov}\left(\tau_{w} \mu\right) \preceq \mathrm{O}(1) \cdot \mathrm{I} .
$$

Spectral independence [A-LiuOveisGharan'20] is even stronger:

$$
\operatorname{cov}\left(\tau_{w} \mu\right) \preceq \mathrm{O}(1) \cdot \operatorname{diag}\left(\operatorname{cov}\left(\tau_{w} \mu\right)\right)
$$

All except Planar PMs. :)
[Alimohammadi-A-Shiragur-Vuong'21]

What are switching networks?

What are switching networks?

What are switching networks?

D Represent Eulerian tours as members of $\{ \pm 1\}^{n}$?

D Represent Eulerian tours as members of $\{ \pm 1\}^{n}$?
\bigcirc General case reducible to $\operatorname{deg}_{\text {in }}=\operatorname{deg}_{\text {out }}=2$.

D Represent Eulerian tours as members of $\{ \pm 1\}^{n}$?
D General case reducible to $\operatorname{deg}_{\text {in }}=\operatorname{deg}_{\text {out }}=2$.
D Replace each vertex by "switching network" gadget:

D Represent Eulerian tours as members of $\{ \pm 1\}^{n}$?
D General case reducible to $\operatorname{deg}_{\text {in }}=\operatorname{deg}_{\text {out }}=2$.
D Replace each vertex by "switching network" gadget:

\bigcirc Binary choice per vertex:

[Bouchet]: $\exists \mathrm{n} \times \mathrm{n}$ skew-symmetric L, such that

$$
\operatorname{det}\left(L_{S, S}\right)=\mathbb{1}[S \text { indicates Eulerian tour }] .
$$

D Represent Eulerian tours as members of $\{ \pm 1\}^{n}$?
D General case reducible to $\operatorname{deg}_{\text {in }}=\operatorname{deg}_{\text {out }}=2$.
D Replace each vertex by "switching network" gadget:

\checkmark Binary choice per vertex:

[Bouchet]: $\exists \mathrm{n} \times \mathrm{n}$ skew-symmetric L, such that

$$
\operatorname{det}\left(L_{S, S}\right)=\mathbb{1}[S \text { indicates Eulerian tour }] .
$$

D Exponential tilt becomes biased switching.

Switching networks

D Want: random switching \equiv uniformly random permutation.

Switching networks

D Want: random switching \equiv uniformly random permutation.
\checkmark Randomly constructed unbiased $\widetilde{O}(\mathrm{deg})$-sized network \simeq uniform permutation [Czumaj15].

Switching networks

D Want: random switching \equiv uniformly random permutation.
\checkmark Randomly constructed unbiased $\widetilde{\mathrm{O}}(\mathrm{deg})$-sized network \simeq uniform permutation [Czumaj'15].
\bigcirc With biases, $\widetilde{O}\left(\mathrm{deg}^{2}\right)$ enough to get exactly uniform.

Switching networks

D Want: random switching \equiv uniformly random permutation.
D Randomly constructed unbiased $\widetilde{\mathrm{O}}(\mathrm{deg})$-sized network \simeq uniform permutation [Czumaj15].
\checkmark With biases, $\widetilde{O}\left(\mathrm{deg}^{2}\right)$ enough to get exactly uniform.
\checkmark Open: What is the minimum size for exactly uniform permutations?

Standard Counting

Sub-cube C $\subseteq\{ \pm 1\}^{n} \mapsto \sum_{x \in C} \mu(x)$.

Weighted Counting
$w \mapsto \sum_{x} e^{\langle w, x\rangle} \mu(x)$.

Standard Counting

Sub-cube $C \subseteq\{ \pm 1\}^{n} \mapsto \sum_{x \in C} \mu(x)$.

Weighted Counting

$w \mapsto \sum_{x} \mathrm{e}^{\langle w, x\rangle} \mu(x)$.

Main result 1

Approx. sampling (ϵ in $d_{\text {TV }}$) via weighted counting in polylog (n / ϵ) time and quasipoly (n / ϵ) processors, for μ spectrally independent under exponential tilts.

Standard Counting

Sub-cube C $\subseteq\{ \pm 1\}^{n} \mapsto \sum_{x \in C} \mu(x)$.

Weighted Counting

$w \mapsto \sum_{x} \mathrm{e}^{\langle w, x\rangle} \mu(x)$.

Main result 1

Approx. sampling (ϵ in $d_{\text {TV }}$) via weighted counting in polylog (n / ϵ) time and quasipoly (n / ϵ) processors, for μ spectrally independent under exponential tilts.

D Spectral independence [A-Liu-OveisGharan'20] under exponential tilts is also known as "fractional log-concavity" [Alimohammadi-A-Shiragur-Vuong"21].

Standard Counting

Sub-cube C $\subseteq\{ \pm 1\}^{n} \mapsto \sum_{x \in C} \mu(x)$.

Weighted Counting

$w \mapsto \sum_{x} \mathrm{e}^{\langle w, x\rangle} \mu(x)$.

Main result 1

Approx. sampling (ϵ in $d_{\text {TV }}$) via weighted counting in polylog (n / ϵ) time and quasipoly (n / ϵ) processors, for μ spectrally independent under exponential tilts.

- Spectral independence [A-Liu-OveisGharan'20] under exponential tilts is also known as "fractional log-concavity" [Alimohammadi-A-Shiragur-Vuong"21].
D Weaker condition "semi-log-concavity" [Eldan-Shamir'20] is also enough.

Applications

D Quasi-RNC sampling of Eulerian tours in digraphs.

Applications

D Quasi-RNC sampling of Eulerian tours in digraphs.
D Quasi-RNC sampling of DPPs on skew-symmetric matrix.

Applications

D Quasi-RNC sampling of Eulerian tours in digraphs.
D Quasi-RNC sampling of DPPs on skew-symmetric matrix.

Main result 2

The number of processors can be improved from quasipoly (n / ϵ) to $\operatorname{poly}(n / \epsilon)$ if μ is "transport-stable".

Applications

D Quasi-RNC sampling of Eulerian tours in digraphs.
D Quasi-RNC sampling of DPPs on skew-symmetric matrix.

Main result 2

The number of processors can be improved from quasipoly (n / ϵ) to $\operatorname{poly}(n / \epsilon)$ if μ is "transport-stable".

D RNC sampling of DPPs on symmetric PSD matrix.

Applications

D Quasi-RNC sampling of Eulerian tours in digraphs.
D Quasi-RNC sampling of DPPs on skew-symmetric matrix.

Main result 2

The number of processors can be improved from quasipoly (n / ϵ) to $\operatorname{poly}(n / \epsilon)$ if μ is "transport-stable".

D RNC sampling of DPPs on symmetric PSD matrix.
D RNC sampling of spanning trees (already known via parallelization of Aldous-Broder alg. [Teng'95, A-Hu-Saberi-Schild'21]).

Applications

D Quasi-RNC sampling of Eulerian tours in digraphs.
D Quasi-RNC sampling of DPPs on skew-symmetric matrix.

Main result 2

The number of processors can be improved from quasipoly (n / ϵ) to $\operatorname{poly}(n / \epsilon)$ if μ is "transport-stable".

D RNC sampling of DPPs on symmetric PSD matrix.
\checkmark RNC sampling of spanning trees (already known via parallelization of Aldous-Broder alg. [Teng'95, A-Hu-Saberi-Schild'21]).
© Conjecture: Eulerian tours and non-symmetric DPPs also "transport-stable".

Applications

D Quasi-RNC sampling of Eulerian tours in digraphs.
D Quasi-RNC sampling of DPPs on skew-symmetric matrix.

Main result 2

The number of processors can be improved from quasipoly (n / ϵ) to $\operatorname{poly}(n / \epsilon)$ if μ is "transport-stable".

D RNC sampling of DPPs on symmetric PSD matrix.
D RNC sampling of spanning trees (already known via parallelization of Aldous-Broder alg. [Teng'95, A-Hu-Saberi-Schild'21]).

- Conjecture: Eulerian tours and non-symmetric DPPs also "transport-stable".
D Corollary of ongoing work [A-Chewi-Vuong]: "Quasi" can be dropped.

Transport stability

We call μ transport-stable if

$$
\underbrace{\mathcal{W}_{1}\left(\tau_{w} \mu, \tau_{w^{\prime}} \mu\right)} \leqslant C \cdot\left\|w-w^{\prime}\right\|_{1} .
$$

Wasserstein distance w.r.t. Hamming metric

Transport stability

We call μ transport-stable if

$$
\underbrace{\mathcal{W}_{1}\left(\tau_{w} \mu, \tau_{w^{\prime}} \mu\right)} \leqslant C \cdot\left\|w-w^{\prime}\right\|_{1} .
$$

Wasserstein distance w.r.t. Hamming metric

Lemma

$\mathrm{C}=\mathrm{O}(1)$ for spanning trees, etc.

Fact

$\mathrm{C}=\mathrm{O}(\mathrm{n})$ for any distribution.

Transport stability

We call μ transport-stable if

$$
\underbrace{\mathcal{W}_{1}\left(\tau_{w} \mu, \tau_{w^{\prime}} \mu\right)} \leqslant C \cdot\left\|w-w^{\prime}\right\|_{1} .
$$

Wasserstein distance w.r.t. Hamming metric

Lemma

$\mathrm{C}=\mathrm{O}(1)$ for spanning trees, etc.

Fact

$\mathrm{C}=\mathrm{O}(\mathrm{n})$ for any distribution.
D In contrast, semi-log-concavity is:

$$
\left\|\operatorname{mean}\left(\tau_{w} \mu\right)-\operatorname{mean}\left(\tau_{w^{\prime}} \mu\right)\right\|_{2} \leqslant C \cdot\left\|w-w^{\prime}\right\|_{2} .
$$

Transport stability

We call μ transport-stable if

$$
\underbrace{\mathcal{W}_{1}\left(\tau_{w} \mu, \tau_{w^{\prime}} \mu\right)} \leqslant C \cdot\left\|w-w^{\prime}\right\|_{1} .
$$

Wasserstein distance w.r.t. Hamming metric

Lemma

$\mathrm{C}=\mathrm{O}(1)$ for spanning trees, etc.

Fact

$\mathrm{C}=\mathrm{O}(\mathrm{n})$ for any distribution.
D In contrast, semi-log-concavity is:

$$
\left\|\operatorname{mean}\left(\tau_{w} \mu\right)-\operatorname{mean}\left(\tau_{w^{\prime}} \mu\right)\right\|_{2} \leqslant C \cdot\left\|w-w^{\prime}\right\|_{2}
$$

\bigcirc Aside: $\|\cdot\|_{2}$ can be replaced by $\|\cdot\|_{1}$ in our dists.

Transport stability

[Feder-Mihail'92]
For edge e, \exists random spanning trees $T, \mathrm{~T}^{\prime}$, such that
$\bigcirc T$ is uniformly random conditioned on $e \in T$.
$D \mathrm{~T}^{\prime}$ is uniformly random conditioned on $\mathrm{e} \notin \mathrm{T}^{\prime}$.
D Almost surely $\left|\mathrm{T} \Delta \mathrm{T}^{\prime}\right|=2$.

Transport stability

[Feder-Mihail'92]

For edge e, \exists random spanning trees $T, \mathrm{~T}^{\prime}$, such that
$D T$ is uniformly random conditioned on $e \in T$.
$\checkmark T^{\prime}$ is uniformly random conditioned on $e \notin T^{\prime}$.
D Almost surely $\left|\mathrm{T} \Delta \mathrm{T}^{\prime}\right|=2$.
D By gluing these couplings, we get transport-stability.

Transport stability

[Feder-Mihail'92]

For edge e, \exists random spanning trees $T, \mathrm{~T}^{\prime}$, such that
D T is uniformly random conditioned on $e \in T$.
$D \mathrm{~T}^{\prime}$ is uniformly random conditioned on $\mathrm{e} \notin \mathrm{T}^{\prime}$.
D Almost surely $\left|\mathrm{T} \Delta \mathrm{T}^{\prime}\right|=2$.
\bigcirc By gluing these couplings, we get transport-stability.

- Transport stability \Longrightarrow semi-log-concavity.

$$
\| \text { each row of } \operatorname{cov}(\mu) \|_{1} \leqslant \mathrm{O}(1)
$$

Transport stability

[Feder-Mihail'92]

For edge e, \exists random spanning trees $T, \mathrm{~T}^{\prime}$, such that
$D T$ is uniformly random conditioned on $e \in T$.
$D \mathrm{~T}^{\prime}$ is uniformly random conditioned on $\mathrm{e} \notin \mathrm{T}^{\prime}$.
D Almost surely $\left|\mathrm{T} \Delta \mathrm{T}^{\prime}\right|=2$.
D By gluing these couplings, we get transport-stability.
\bigcirc Transport stability \Longrightarrow semi-log-concavity.

$$
\| \text { each row of } \operatorname{cov}(\mu) \|_{1} \leqslant \mathrm{O}(1)
$$

D Conjecture: the same holds for Eulerian tours, etc.

Discrete to Continuous

- Exponential Tilts
- Interlude: Eulerian Tours
- Transport Stability

Sampling Algorithm

- Stochastic Localization

D Parallel Continuous Sampling

Discrete to Continuous

D Exponential Tilts
D Interlude: Eulerian Tours

- Transport Stability

Sampling Algorithm

- Stochastic Localization
- Parallel Continuous Sampling

How do we turn continuous samples into discrete ones?

Stochastic localization (i.e., DALL•E-for-theorists)

Stochastic localization [Eldan'13] in discrete time steps. Different discretization used by [ElAlaoui-Montanari-Sellke'22].

```
wo}\leftarrow
for i=0,\ldots,T-1 do
        x\leftarrow sample from \tau}\mp@subsup{\tau}{\mp@subsup{w}{i}{}}{}\mu*\mathcal{N}(0,cI
        wi+1
return sign ( wT )
```


Stochastic localization (i.e., DALL•E-for-theorists)

Stochastic localization [Eldan'13] in discrete time steps. Different discretization used by [EIAlaoui-Montanari-Sellke'22].

```
wo}\leftarrow
for i = 0,\ldots,T-1 do
        x}\leftarrow\mathrm{ sample from }\mp@subsup{\tau}{\mp@subsup{w}{i}{}}{}\mu*\mathcal{N}(0,cI
        wi+1
return sign ( wT )
```


Stochastic localization (i.e., DALL•E-for-theorists)

Stochastic localization [Eldan'13] in discrete time steps. Different discretization used by [EIAlaoui-Montanari-Sellke'22].

```
wo}\leftarrow
for i=0,\ldots,T-1 do
        x}\leftarrow\mathrm{ sample from }\mp@subsup{\tau}{\mp@subsup{w}{i}{}}{}\mu*\mathcal{N}(0,cI
        wi+1
return sign ( wT )
```


Stochastic localization (i.e., DALL-E-for-theorists)

Stochastic localization [Eldan'13] in discrete time steps. Different discretization used by [EIAlaoui-Montanari-Sellke'22].

```
wo}\leftarrow
for i = 0,\ldots,T-1 do
```

 \(x \leftarrow\) sample from \(\tau_{w_{i}} \mu * \mathcal{N}(0, c I)\)
    ```
        \(x \leftarrow\) sample from \(\tau_{w_{i}} \mu * \mathcal{N}(0, c I)\)
        \(w_{i+1} \leftarrow w_{i}+x / c\)
        \(w_{i+1} \leftarrow w_{i}+x / c\)
return \(\operatorname{sign}\left(w_{T}\right)\)
```

```
return \(\operatorname{sign}\left(w_{T}\right)\)
```

```


\section*{Stochastic localization (i.e., DALL-E-for-theorists)}

Stochastic localization [Eldan'13] in discrete time steps. Different discretization used by [EIAlaoui-Montanari-Sellke'22].
```

wo}\leftarrow
for i = 0,···,T-1 do
x}\leftarrow\mathrm{ sample from }\mp@subsup{\tau}{\mp@subsup{w}{i}{}}{}\mu*\mathcal{N}(0,cI
wi+1
return sign (wT

```


\section*{Stochastic localization (i.e., DALL-E-for-theorists)}

Stochastic localization [Eldan'13] in discrete time steps. Different discretization used by [EIAlaoui-Montanari-Sellke'22].
```

wo}\leftarrow
for i = 0,···,T-1 do
x}\leftarrow\mathrm{ sample from }\mp@subsup{\tau}{\mp@subsup{w}{i}{}}{}\mu*\mathcal{N}(0,cI
wi+1
return sign (wT

```


\section*{Stochastic localization (i.e., DALL-E-for-theorists)}

Stochastic localization [Eldan'13] in discrete time steps. Different discretization used by [EIAlaoui-Montanari-Sellke'22].
```

wo}\leftarrow
for i = 0,···,T-1 do
x}\leftarrow\mathrm{ sample from }\mp@subsup{\tau}{\mp@subsup{w}{i}{}}{}\mu*\mathcal{N}(0,cI
wi+1
return sign (wT)

```


\section*{Stochastic localization (i.e., DALL-E-for-theorists)}

Stochastic localization [Eldan'13] in discrete time steps. Different discretization used by [EIAlaoui-Montanari-Sellke'22].
```

wo
for i = 0,···,T-1 do
x}\leftarrow\mathrm{ sample from }\mp@subsup{\tau}{\mp@subsup{w}{i}{}}{}\mu*\mathcal{N}(0,\textrm{cI}
wi+1
return sign (wT

```
Lemma [cf. ElAlaoui-Montanari'21]
\[
\mathrm{cw}_{\mathrm{T}} / \mathrm{T} \sim \mu * \mathcal{N}(0, \mathrm{cI} / \mathrm{T})
\]
\(D\) Enough to stop at \(\mathrm{T} \simeq \mathrm{c} \log (\mathrm{n})\).


Lemma [cf. ElAlaoui-Montanari'21]


How do we sample from \(\mu * \mathcal{N}(0, c I)\) in parallel?

\section*{Parallel continuous sampling}
\(\checkmark\) Open: For a well-conditioned log-concave \(v\) on \(\mathbb{R}^{n}\), what is the minimum number of \(\nabla \log v\) we need to query to sample? We do not know if polylog(n) is possible. :
\(\bigcirc\) Fortunately parallel time polylog(n) is possible. © We use randomized midpoint of [Shen-Lee'19], but others such as Lagenvin can be parallelized too [A-Chewi-Vuong]. Picard iterations change the sequential version:
\[
x_{t+d t} \leftarrow x_{t}+d t \nabla \log v\left(x_{t}\right)+\mathcal{N}(0,2 d t \cdot I)
\]
to iterations for \(\mathfrak{i}=1, \ldots, \mathrm{O}(\) poly \(\log \mathfrak{n})\) of
\[
x_{\mathrm{t}+\mathrm{dt}}^{\mathfrak{i}} \leftarrow x_{\mathrm{t}}^{\mathrm{i}}+\mathrm{dt} \nabla \log v\left(x_{\mathrm{t}}^{\mathrm{i}-1}\right)+\mathcal{N}(0,2 \mathrm{dt} \cdot \mathrm{I})
\]

\section*{Error propagation}

Recall that \(\mu\) transport-stable if
\[
\underbrace{\mathcal{W}_{1}\left(\tau_{w} \mu, \tau_{w^{\prime}} \mu\right)} \leqslant C \cdot\left\|w-w^{\prime}\right\|_{1} .
\]

Wasserstein distance w.r.t. Hamming metric

\section*{Error propagation}

Recall that \(\mu\) transport-stable if
\[
\underbrace{\mathcal{W}_{1}\left(\tau_{w} \mu, \tau_{w^{\prime}} \mu\right)} \leqslant C \cdot\left\|w-w^{\prime}\right\|_{1}
\]

Wasserstein distance w.r.t. Hamming metric
\(D\) The sampling error in one step gets multiplied by C in every future step.

\section*{Error propagation}

Recall that \(\mu\) transport-stable if
\[
\underbrace{\mathcal{W}_{1}\left(\tau_{w} \mu, \tau_{w^{\prime}} \mu\right)} \leqslant C \cdot\left\|w-w^{\prime}\right\|_{1}
\]

Wasserstein distance w.r.t. Hamming metric
\(\bigcirc\) The sampling error in one step gets multiplied by C in every future step.

\section*{Lemma Fact}
\(\mathrm{C}=\mathrm{O}(1)\) for spanning trees, etc. \(\quad \mathrm{C}=\mathrm{O}(n)\) for any distribution.

\section*{Error propagation}

Recall that \(\mu\) transport-stable if
\[
\underbrace{\mathcal{W}_{1}\left(\tau_{w} \mu, \tau_{w^{\prime}} \mu\right)} \leqslant C \cdot\left\|w-w^{\prime}\right\|_{1}
\]

Wasserstein distance w.r.t. Hamming metric

D The sampling error in one step gets multiplied by C in every future step.

\section*{Lemma Fact}
\(\mathrm{C}=\mathrm{O}(1)\) for spanning trees, etc. \(\quad \mathrm{C}=\mathrm{O}(n)\) for any distribution.
D Wasserstein accuracy quasipoly \((\mathfrak{n})^{-1}\) enough in continuous sampler.

\section*{Error propagation}

Recall that \(\mu\) transport-stable if
\[
\underbrace{\mathcal{W}_{1}\left(\tau_{w} \mu, \tau_{w^{\prime}} \mu\right)} \leqslant C \cdot\left\|w-w^{\prime}\right\|_{1}
\]

Wasserstein distance w.r.t. Hamming metric

D The sampling error in one step gets multiplied by C in every future step.

\section*{Lemma Fact}
\(\mathrm{C}=\mathrm{O}(1)\) for spanning trees, etc. \(\quad \mathrm{C}=\mathrm{O}(n)\) for any distribution.
D Wasserstein accuracy quasipoly \((\mathrm{n})^{-1}\) enough in continuous sampler.
\(D\) For \(C=O(1)\), it is enough to have Wasserstein accuracy poly \((n)^{-1}\).

\section*{Error propagation}

Recall that \(\mu\) transport-stable if
\[
\underbrace{\mathcal{W}_{1}\left(\tau_{w} \mu, \tau_{w^{\prime}} \mu\right)} \leqslant C \cdot\left\|w-w^{\prime}\right\|_{1}
\]

Wasserstein distance w.r.t. Hamming metric

D The sampling error in one step gets multiplied by C in every future step.

\section*{Lemma Fact}
\(C=O(1)\) for spanning trees, etc. \(\quad C=O(n)\) for any distribution.
D Wasserstein accuracy quasipoly \((\mathrm{n})^{-1}\) enough in continuous sampler.
\(D\) For \(C=O(1)\), it is enough to have Wasserstein accuracy poly \((n)^{-1}\).
D [A-Chewi-Vuong]: we can get TV-accurate samples in parallel.

\section*{Conclusion}

D Parallel reduction of sampling to counting for a class of distributions.

\section*{Conclusion}
- Parallel reduction of sampling to counting for a class of distributions.
\(\bigcirc\) Open: Planar perfect matchings.

\section*{Conclusion}

D Parallel reduction of sampling to counting for a class of distributions.
D Open: Planar perfect matchings.
\(\bigcirc\) Open: With no assumption on \(\mu\), what is the parallel round complexity of sampling given poly \((n)\) queries of \(\sum_{x} e^{\langle w, x\rangle} \mu(x)\) ?

\section*{Conclusion}

D Parallel reduction of sampling to counting for a class of distributions.
\(D\) Open: Planar perfect matchings.
\(D\) Open: With no assumption on \(\mu\), what is the parallel round complexity of sampling given poly \((n)\) queries of \(\sum_{x} e^{\langle w, x\rangle} \mu(x)\) ?
\(\checkmark\) Open: With no assumption on \(\mu\), what is the parallel round complexity of sampling given poly \((n)\) queries of \(\sum_{x \in \text { sub-cube }} \mu(x)\) ?

\section*{Conclusion}
- Parallel reduction of sampling to counting for a class of distributions.

D Open: Planar perfect matchings.
\(\triangle\) Open: With no assumption on \(\mu\), what is the parallel round complexity of sampling given poly \((n)\) queries of \(\sum_{x} e^{\langle w, x\rangle} \mu(x)\) ?
\(\bigcirc\) Open: With no assumption on \(\mu\), what is the parallel round complexity of sampling given poly \((n)\) queries of \(\sum_{x \in \text { sub-cube }} \mu(x)\) ?```

