Parallel Discrete Sampling via Continuous Walks

Nima Anari

Stanford University

joint work with

Yizhi Huang

Tianyu

Liu

June

Vuong

Xu

Brian Katherine Yυ

DALL·E for Spanning Trees

Nima Anari

joint work with

Tianyu

Liu

June Vuong

Brian Katherine Xu Yu

sampling in diffusion models [image by Andy Shih]

sampling in diffusion models [image by Andy Shih]

stochastic localization [Eldan'13]

Continuous

$$\mu:\mathbb{R}^n\to\mathbb{R}_{\geqslant 0}$$

Continuous

 $\mu:\mathbb{R}^n\to\mathbb{R}_{\geqslant0}$

 \triangleright Tractable: log μ concave

 $\mu:\mathbb{R}^n\to\mathbb{R}_{\geqslant 0}$

 \triangleright Tractable: $\log \mu$ concave

▷ Even better (well-conditioned):

 $-\beta I \preceq \nabla^2 \log \mu \preceq -\alpha I.$

and β/α is small.

 $\mu: \mathbb{R}^n \to \mathbb{R}_{\geq 0}$

$$\mu: \{\pm 1\}^n \to \mathbb{R}_{\geqslant 0}$$

 \triangleright Tractable: log μ concave

▷ Even better (well-conditioned):

$$-\beta I \preceq \nabla^2 \log \mu \preceq -\alpha I.$$

and β/α is small.

 $\mu:\mathbb{R}^n\to\mathbb{R}_{\geqslant0}$

 $\mu: \{\pm 1\}^n \to \mathbb{R}_{\geqslant 0}$

Tractable: log μ concave

Even better (well-conditioned):

 $-\beta I \preceq \nabla^2 \log \mu \preceq -\alpha I.$

and β/α is small.

▷ Tractable: ? (patchwork)

Sampling via counting

Counting

Sub-cube
$$C \subseteq \{\pm 1\}^n \mapsto \sum_{x \in C} \mu(x).$$

Sampling via counting

Sampling via counting

The standard reduction [Jerrum-Valiant-Vazirani'89] is sequential.

. . .

▷ The standard reduction [Jerrum-Valiant-Vazirani'89] is sequential. 😕

 $\mathbb{P}[e_1]? \qquad \mathbb{P}[e_2 \mid e_1]? \qquad \mathbb{P}[e_3 \mid e_1, e_2]?$

 \triangleright Counting doable in parallel: $\log(n)^{O(1)}$ time with $n^{O(1)}$ processors (NC).

[Csanky'75] Linear algebra is parallelizable. . . .

▷ The standard reduction [Jerrum-Valiant-Vazirani'89] is sequential. 😕

 $\mathbb{P}[e_1]? \qquad \mathbb{P}[e_2 \mid e_1]? \qquad \mathbb{P}[e_3 \mid e_1, e_2]?$

 \triangleright Counting doable in parallel: $\log(n)^{O(1)}$ time with $n^{O(1)}$ processors (NC).

[Csanky'75]

Linear algebra is parallelizable.

▷ Question: Can we sample in parallel (RNC)?

. . .

Main result (informal)

We can sample spanning trees, DPPs, Eulerian tours, and more in parallel by moving to continuous space.

Note: list excludes planar perfect matchings.

Discrete to Continuous

- \triangleright Exponential Tilts
- Interlude: Eulerian Tours
- ▷ Transport Stability

Sampling Algorithm

- \triangleright Stochastic Localization
- ▷ Parallel Continuous Sampling

Discrete to Continuous

- \triangleright Exponential Tilts
- Interlude: Eulerian Tours
- ▷ Transport Stability

Sampling Algorithm

- ▷ Stochastic Localization
- ▷ Parallel Continuous Sampling

Take convolution of μ with normal $\mathfrak{N}(0,cI).$

Take convolution of μ with normal $\mathcal{N}(0, cI)$.

Main lemma

 $\nu:=\mu*\mathfrak{N}(0,cI) \text{ log-concave for } c \geqslant c_0=O(1).$

Take convolution of μ with normal $\mathcal{N}(0, cI)$.

Main lemma

 $\nu:=\mu*\mathfrak{N}(0,cI) \text{ log-concave for } c \geqslant c_0=O(1).$

Take convolution of μ with normal $\mathcal{N}(0, cI)$.

Main lemma

- $\nu:=\mu*\mathfrak{N}(0,cI) \text{ log-concave for } c \geqslant c_0=O(1).$
- $\,\triangleright\,$ The p.d.f. of ν at w is $\propto \sum_x e^{-\|w-x\|^2/2c} \mu(x)$

$$\propto e^{-\|w\|^2/2c} \cdot \sum_{\substack{\mathbf{x} \\ \text{count of weighted } \mu}} e^{\langle w/c, \mathbf{x} \rangle} \mu(\mathbf{x}) \,.$$

Take convolution of μ with normal $\mathcal{N}(0, cI)$.

Main lemma

- $\nu:=\mu*\mathfrak{N}(0,cI) \text{ log-concave for } c \geqslant c_0=O(1).$
- $\,\triangleright\,$ The p.d.f. of ν at w is $\propto \sum_x e^{-\|w-x\|^2/2c} \mu(x)$

$$\propto e^{-\|w\|^2/2c} \cdot \underbrace{\sum_{x} e^{\langle w/c, x \rangle} \mu(x)}_{\text{count of weighted } \mu}.$$

$$\left. \nabla^2 \log \nu \right|_{w=0} = -I/c + \operatorname{cov}(\mu)/c^2$$

Take convolution of μ with normal $\mathfrak{N}(0,cI).$

Main lemma

- $\nu:=\mu*\mathfrak{N}(0,cI) \text{ log-concave for } c \geqslant c_0=O(1).$
- $\,\triangleright\,$ The p.d.f. of v at w is $\propto \sum_x e^{-\|w-x\|^2/2c} \mu(x)$

$$\propto e^{-\|w\|^2/2c} \cdot \underbrace{\sum_{x} e^{\langle w/c, x \rangle} \mu(x)}_{\text{count of weighted } \mu}.$$

$$\label{eq:phi} \begin{gathered} \bigtriangledown \quad \nabla^2 \log \nu \big|_{w=0} = -I/c + \text{cov}(\mu)/c^2$$

 \triangleright For larger variance, e.g., $\mu * \mathcal{N}(0, 2c_0 I)$, we have well-conditioned log-concavity (easy to sample).

For μ on $\{\pm 1\}^n$, an exponential tilt is $\tau_w \mu$ for $w \in \mathbb{R}^n$ defined as

 $\tau_{w}\mu(x)\propto e^{\langle w,x\rangle}\mu(x).$

For μ on $\{\pm 1\}^n$, an exponential tilt is $\tau_w \mu$ for $w \in \mathbb{R}^n$ defined as

 $au_w \mu(x) \propto e^{\langle w, x \rangle} \mu(x).$

Spanning trees \rightarrow weighted spanning trees.

For μ on $\{\pm 1\}^n$, an exponential tilt is $\tau_w \mu$ for $w \in \mathbb{R}^n$ defined as

 $\tau_{w}\mu(x) \propto e^{\langle w,x \rangle}\mu(x).$

- \triangleright Spanning trees \rightarrow weighted spanning trees.
- \triangleright DPP \rightarrow DPP with rows and columns scaled.

For μ on $\{\pm 1\}^n,$ an exponential tilt is $\tau_w\mu$ for $w\in \mathbb{R}^n$ defined as

 $\tau_{w}\mu(x) \propto e^{\langle w,x \rangle}\mu(x).$

- \triangleright Spanning trees \rightarrow weighted spanning trees.
- \triangleright DPP \rightarrow DPP with rows and columns scaled.
- Eulerian tours: switching networks ...

For μ on $\{\pm 1\}^n,$ an exponential tilt is $\tau_w\mu$ for $w\in \mathbb{R}^n$ defined as

 $\tau_{w}\mu(x) \propto e^{\langle w,x \rangle}\mu(x).$

- \triangleright Spanning trees \rightarrow weighted spanning trees.
- \triangleright DPP \rightarrow DPP with rows and columns scaled.
- Eulerian tours: switching networks ...

Determinant-based counting is closed under external fields.

For μ on $\{\pm 1\}^n,$ an exponential tilt is $\tau_w\mu$ for $w\in \mathbb{R}^n$ defined as

 $au_w \mu(x) \propto e^{\langle w, x \rangle} \mu(x).$

- $\bigcirc \text{ Spanning trees} \rightarrow \text{weighted} \\ \text{spanning trees.}$
- \triangleright DPP \rightarrow DPP with rows and columns scaled.
- Eulerian tours: switching networks ...

Determinant-based counting is closed under external fields.

Covariance bound

We just need all of these $\tau_w \mu$ to have bounded covariance (semilog-concavity [Eldan-Shamir'20]):

 $\mathsf{cov}(\tau_w\mu) \preceq O(1) \cdot I.$

For μ on $\{\pm 1\}^n,$ an exponential tilt is $\tau_w\mu$ for $w\in \mathbb{R}^n$ defined as

 $au_w \mu(\mathbf{x}) \propto e^{\langle w, \mathbf{x} \rangle} \mu(\mathbf{x}).$

- \triangleright Spanning trees \rightarrow weighted spanning trees.
- \triangleright DPP \rightarrow DPP with rows and columns scaled.
- Eulerian tours: switching networks ...

Determinant-based counting is closed under external fields.

Covariance bound

We just need all of these $\tau_w \mu$ to have bounded covariance (semilog-concavity [Eldan-Shamir'20]):

 $\mathsf{cov}(\tau_w\mu) \preceq O(1) \cdot \mathrm{I.}$

Spectral independence [A-Liu-OveisGharan'20] is even stronger:

 $\mathsf{cov}(\tau_{w}\mu) \preceq O(1) \cdot \mathsf{diag}(\mathsf{cov}(\tau_{w}\mu)).$

All except Planar PMs. (a) [Alimohammadi-A-Shiragur-Vuong'21]

What are switching networks?

What are switching networks?

What are switching networks?

 \triangleright Represent Eulerian tours as members of $\{\pm 1\}^n$?

- \triangleright Represent Eulerian tours as members of $\{\pm 1\}^n$?
- \bigcirc General case reducible to deg_{in} = deg_{out} = 2.

- \triangleright Represent Eulerian tours as members of $\{\pm 1\}^n$?
- \triangleright General case reducible to deg_{in} = deg_{out} = 2.
- ▷ Replace each vertex by "switching network" gadget:

- \triangleright Represent Eulerian tours as members of $\{\pm 1\}^n$?
- \triangleright General case reducible to deg_{in} = deg_{out} = 2.
- ▷ Replace each vertex by "switching network" gadget:

▷ Binary choice per vertex:

$$ightarrow$$
 or $ightarrow$

[Bouchet]: $\exists \; n \times n \; skew-symmetric \; L,$ such that

 $\mathsf{det}(L_{S,S}) = \mathbb{1}[S \text{ indicates Eulerian tour}].$

- \triangleright Represent Eulerian tours as members of $\{\pm 1\}^n$?
- \triangleright General case reducible to deg_{in} = deg_{out} = 2.
- ▷ Replace each vertex by "switching network" gadget:

 \triangleright Binary choice per vertex:

$$ightarrow$$
 or $ightarrow$

[Bouchet]: $\exists n \times n$ skew-symmetric L, such that

 $\mathsf{det}(L_{S,S}) = \mathbb{1}[S \text{ indicates Eulerian tour}].$

Exponential tilt becomes biased switching.

 \triangleright Want: random switching \equiv uniformly random permutation.

- \triangleright Want: random switching \equiv uniformly random permutation.
- \triangleright Randomly constructed unbiased $\widetilde{O}(deg)\text{-sized}$ network \simeq uniform permutation [Czumaj'15].

- \triangleright Want: random switching \equiv uniformly random permutation.
- \triangleright Randomly constructed unbiased $\widetilde{O}(\text{deg})\text{-sized}$ network \simeq uniform permutation [Czumaj'15].
- \triangleright With biases, $\widetilde{O}(deg^2)$ enough to get exactly uniform.

- \triangleright Want: random switching \equiv uniformly random permutation.
- \triangleright Randomly constructed unbiased $\widetilde{O}(\text{deg})\text{-sized}$ network \simeq uniform permutation [Czumaj'15].
- \triangleright With biases, $\widetilde{O}(\mathsf{deg}^2)$ enough to get exactly uniform.
- ▷ Open: What is the minimum size for exactly uniform permutations?

Sub-cube $C \subseteq \{\pm 1\}^n \mapsto \sum_{x \in C} \mu(x)$.

Weighted Counting

$$w \mapsto \sum_{x} e^{\langle w, x \rangle} \mu(x).$$

Sub-cube $C \subseteq \{\pm 1\}^n \mapsto \sum_{x \in C} \mu(x)$.

Weighted Counting

 $w \mapsto \sum_{x} e^{\langle w, x \rangle} \mu(x).$

Main result 1

Approx. sampling (ϵ in d_{TV}) via weighted counting in polylog(n/ϵ) time and quasipoly(n/ϵ) processors, for μ spectrally independent under exponential tilts.

Sub-cube $C \subseteq \{\pm 1\}^n \mapsto \sum_{x \in C} \mu(x)$.

Weighted Counting

 $w \mapsto \sum_{x} e^{\langle w, x \rangle} \mu(x).$

Main result 1

Approx. sampling (ϵ in d_{TV}) via weighted counting in polylog(n/ϵ) time and quasipoly(n/ϵ) processors, for μ spectrally independent under exponential tilts.

Spectral independence [A-Liu-OveisGharan'20] under exponential tilts is also known as "fractional log-concavity" [Alimohammadi-A-Shiragur-Vuong'21].

Sub-cube $C \subseteq \{\pm 1\}^n \mapsto \sum_{x \in C} \mu(x)$.

Weighted Counting

 $w \mapsto \sum_{x} e^{\langle w, x \rangle} \mu(x).$

Main result 1

Approx. sampling (ϵ in d_{TV}) via weighted counting in polylog(n/ϵ) time and quasipoly(n/ϵ) processors, for μ spectrally independent under exponential tilts.

- Spectral independence [A-Liu-OveisGharan'20] under exponential tilts is also known as "fractional log-concavity" [Alimohammadi-A-Shiragur-Vuong'21].
- ▷ Weaker condition "semi-log-concavity" [Eldan-Shamir'20] is also enough.

▷ Quasi-RNC sampling of Eulerian tours in digraphs.

- Quasi-RNC sampling of Eulerian tours in digraphs.
- ▷ Quasi-RNC sampling of DPPs on skew-symmetric matrix.

- Quasi-RNC sampling of Eulerian tours in digraphs.
- ▷ Quasi-RNC sampling of DPPs on skew-symmetric matrix.

Main result 2

The number of processors can be improved from $quasipoly(n/\epsilon)$ to $poly(n/\epsilon)$ if μ is "transport-stable".

- Quasi-RNC sampling of Eulerian tours in digraphs.
- ▷ Quasi-RNC sampling of DPPs on skew-symmetric matrix.

Main result 2

The number of processors can be improved from $quasipoly(n/\varepsilon)$ to $poly(n/\varepsilon)$ if μ is "transport-stable".

RNC sampling of DPPs on symmetric PSD matrix.

- Quasi-RNC sampling of Eulerian tours in digraphs.
- Quasi-RNC sampling of DPPs on skew-symmetric matrix.

Main result 2

The number of processors can be improved from $quasipoly(n/\varepsilon)$ to $poly(n/\varepsilon)$ if μ is "transport-stable".

- ▷ RNC sampling of DPPs on symmetric PSD matrix.
- RNC sampling of spanning trees (already known via parallelization of Aldous-Broder alg. [Teng'95, A-Hu-Saberi-Schild'21]).

- Quasi-RNC sampling of Eulerian tours in digraphs.
- Quasi-RNC sampling of DPPs on skew-symmetric matrix.

Main result 2

The number of processors can be improved from $quasipoly(n/\varepsilon)$ to $poly(n/\varepsilon)$ if μ is "transport-stable".

- ▷ RNC sampling of DPPs on symmetric PSD matrix.
- RNC sampling of spanning trees (already known via parallelization of Aldous-Broder alg. [Teng'95, A-Hu-Saberi-Schild'21]).
- Conjecture: Eulerian tours and non-symmetric DPPs also "transport-stable".

- Quasi-RNC sampling of Eulerian tours in digraphs.
- Quasi-RNC sampling of DPPs on skew-symmetric matrix.

Main result 2

The number of processors can be improved from $quasipoly(n/\varepsilon)$ to $poly(n/\varepsilon)$ if μ is "transport-stable".

- ▷ RNC sampling of DPPs on symmetric PSD matrix.
- RNC sampling of spanning trees (already known via parallelization of Aldous-Broder alg. [Teng'95, A-Hu-Saberi-Schild'21]).
- Conjecture: Eulerian tours and non-symmetric DPPs also "transport-stable".
- Corollary of ongoing work [A-Chewi-Vuong]: "Quasi" can be dropped.

We call μ transport-stable if

$$\underbrace{\mathcal{W}_1(\tau_w\mu,\tau_{w'}\mu)}_{\leqslant} \leqslant C \cdot \|w-w'\|$$

1.

Wasserstein distance w.r.t. Hamming metric

We call $\boldsymbol{\mu}$ transport-stable if

$$\underbrace{\mathcal{W}_1(\tau_w\mu,\tau_{w'}\mu)}_{\leqslant} \leqslant C \cdot \|w-w'\|_1.$$

Wasserstein distance w.r.t. Hamming metric

Lemma	Fact
C = O(1) for spanning trees, etc.	C = O(n) for any distribution.

We call $\boldsymbol{\mu}$ transport-stable if

$$\underbrace{\mathcal{W}_1(\tau_w\mu,\tau_{w'}\mu)}{\leqslant C \cdot \|w-$$

 $w'\parallel_1$.

Wasserstein distance w.r.t. Hamming metric

Lemma	Fact
C = O(1) for spanning trees, etc.	C = O(n) for any distribution.

 \triangleright In contrast, semi-log-concavity is:

$$\|\mathsf{mean}(\tau_w\mu) - \mathsf{mean}(\tau_{w'}\mu)\|_2 \leqslant C \cdot \|w - w'\|_2.$$

We call $\boldsymbol{\mu}$ transport-stable if

$$\underbrace{\mathcal{W}_1(\tau_w\mu,\tau_{w'}\mu)}_{\leqslant} \qquad \leqslant C \cdot \|w-w'\|_1.$$

Wasserstein distance w.r.t. Hamming metric

Lemma	Fact
C = O(1) for spanning trees, etc.	C = O(n) for any distribution.

 \triangleright In contrast, semi-log-concavity is:

$$\|\mathsf{mean}(\tau_w\mu) - \mathsf{mean}(\tau_{w'}\mu)\|_2 \leqslant C \cdot \|w - w'\|_2.$$

 \triangleright Aside: $\|\cdot\|_2$ can be replaced by $\|\cdot\|_1$ in our dists.

[Feder-Mihail'92]

For edge e, \exists random spanning trees T, T', such that

▷ T is uniformly random conditioned on e ∈ T.
▷ T' is uniformly random conditioned on e ∉ T'.
▷ Almost surely |TΔT'| = 2.

[Feder-Mihail'92]

For edge e, \exists random spanning trees T, T', such that

- ▷ T is uniformly random conditioned on e ∈ T.
 ▷ T' is uniformly random conditioned on e ∉ T'.
 ▷ Almost surely |TΔT'| = 2.
- By gluing these couplings, we get transport-stability.

[Feder-Mihail'92]

For edge e, \exists random spanning trees T, T', such that

- ▷ T is uniformly random conditioned on e ∈ T.
 ▷ T' is uniformly random conditioned on e ∉ T'.
 ▷ Almost surely |T∆T'| = 2.
- By gluing these couplings, we get transport-stability.
- \triangleright Transport stability \Longrightarrow semi-log-concavity.

 $\|\text{each row of } \text{cov}(\mu)\|_1 \leqslant O(1).$

[Feder-Mihail'92]

For edge e, \exists random spanning trees T, T', such that

- ▷ T is uniformly random conditioned on e ∈ T.
 ▷ T' is uniformly random conditioned on e ∉ T'.
 ▷ Almost surely |T∆T'| = 2.
- By gluing these couplings, we get transport-stability.
- \triangleright Transport stability \implies semi-log-concavity.

 $\|\text{each row of } \text{cov}(\mu)\|_1 \leqslant O(1).$

Conjecture: the same holds for Eulerian tours, etc.

Discrete to Continuous

- \triangleright Exponential Tilts
- ▷ Interlude: Eulerian Tours
- ▷ Transport Stability

Sampling Algorithm

- ▷ Stochastic Localization
- ▷ Parallel Continuous Sampling

Discrete to Continuous

- \triangleright Exponential Tilts
- ▷ Interlude: Eulerian Tours
- ▷ Transport Stability

Sampling Algorithm

- ▷ Stochastic Localization
- ▷ Parallel Continuous Sampling

How do we turn continuous samples into discrete ones?

Stochastic localization [Eldan'13] in discrete time steps. Different discretization used by [ElAlaoui-Montanari-Sellke'22].

$$\begin{split} & w_0 \leftarrow 0 \\ & \text{for } i = 0, \dots, T-1 \text{ do} \\ & \\ & \\ & x \leftarrow \text{sample from } \tau_{w_i} \mu * \mathcal{N}(0, cI) \\ & \\ & w_{i+1} \leftarrow w_i + x/c \end{split}$$

Stochastic localization [Eldan'13] in discrete time steps. Different discretization used by [ElAlaoui-Montanari-Sellke'22].

$$\begin{split} & w_0 \leftarrow 0 \\ & \text{for } i = 0, \dots, T-1 \text{ do} \\ & \bigsqcup_{\substack{x \leftarrow \text{ sample from } \tau_{w_i} \mu * \mathcal{N}(0, cI) \\ & w_{i+1} \leftarrow w_i + x/c } \end{split}$$

Stochastic localization [Eldan'13] in discrete time steps. Different discretization used by [ElAlaoui-Montanari-Sellke'22].

$$\begin{split} & w_0 \leftarrow 0 \\ & \text{for } i = 0, \dots, T-1 \text{ do} \\ & \\ & \\ & x \leftarrow \text{sample from } \tau_{w_i} \mu * \mathcal{N}(0, cI) \\ & \\ & w_{i+1} \leftarrow w_i + x/c \end{split}$$

Stochastic localization [Eldan'13] in discrete time steps. Different discretization used by [ElAlaoui-Montanari-Sellke'22].

$$\begin{split} & w_0 \leftarrow 0 \\ & \text{for } i = 0, \dots, T-1 \text{ do} \\ & \left\lfloor \begin{array}{c} x \leftarrow \text{sample from } \tau_{w_i} \mu * \mathcal{N}(0, cI) \\ & w_{i+1} \leftarrow w_i + x/c \end{array} \right. \\ & \text{sature} \quad i \quad (-) \end{split}$$

Stochastic localization [Eldan'13] in discrete time steps. Different discretization used by [ElAlaoui-Montanari-Sellke'22].

$$\begin{split} & w_0 \leftarrow 0 \\ & \text{for } i = 0, \dots, T - 1 \text{ do} \\ & \left\lfloor \begin{array}{c} x \leftarrow \text{sample from } \tau_{w_i} \mu * \mathcal{N}(0, cI) \\ & w_{i+1} \leftarrow w_i + x/c \end{array} \right. \end{split}$$

Stochastic localization [Eldan'13] in discrete time steps. Different discretization used by [ElAlaoui-Montanari-Sellke'22].

$$\begin{split} & w_0 \leftarrow 0 \\ & \text{for } i = 0, \dots, T-1 \text{ do} \\ & \bigsqcup_{\substack{x \leftarrow \text{ sample from } \tau_{w_i} \mu * \mathcal{N}(0, cI) \\ & w_{i+1} \leftarrow w_i + x/c } \end{split}$$

Stochastic localization [Eldan'13] in discrete time steps. Different discretization used by [ElAlaoui-Montanari-Sellke'22].

$$\begin{split} & w_0 \leftarrow 0 \\ & \text{for } i = 0, \dots, T-1 \text{ do} \\ & \\ & x \leftarrow \text{sample from } \tau_{w_i} \mu * \mathcal{N}(0, cI) \\ & \\ & w_{i+1} \leftarrow w_i + x/c \end{split}$$

Stochastic localization (i.e., DALL·E-for-theorists)

Stochastic localization [Eldan'13] in discrete time steps. Different discretization used by [ElAlaoui-Montanari-Sellke'22].

$$\begin{split} & w_0 \leftarrow 0 \\ & \text{for } i = 0, \dots, T-1 \text{ do} \\ & \\ & \\ & x \leftarrow \text{sample from } \tau_{w_i} \mu * \mathcal{N}(0, cI) \\ & \\ & w_{i+1} \leftarrow w_i + x/c \end{split}$$

return sign(w_T)

Lemma [cf. ElAlaoui-Montanari'21]

 $cw_T/T \sim \mu * \mathcal{N}(0, cI/T).$

 $\label{eq:relation} \ensuremath{\triangleright} \ensuremath{\mathsf{Enough}}\xspace \ensuremath{\mathsf{to}}\xspace \ensuremath{\mathsf{stop}}\xspace \ensuremath{\mathsf{at}}\xspace \ensuremath{\mathsf{c}}\xspace \ensuremath{\mathsf{at}}\xspace \e$

How do we sample from $\mu * \mathcal{N}(0, cI)$ in parallel?

Parallel continuous sampling

- ▷ Open: For a well-conditioned log-concave ν on \mathbb{R}^n , what is the minimum number of $\nabla \log \nu$ we need to query to sample? We do not know if polylog(n) is possible. $\textcircled{\begin{subarray}{c} \hline \end{subarray}}$
- Fortunately parallel time polylog(n) is possible. We use randomized midpoint of [Shen-Lee'19], but others such as Lagenvin can be parallelized too [A-Chewi-Vuong]. Picard iterations change the sequential version:

 $x_{t+dt} \gets x_t + dt\nabla \log \nu(x_t) + \mathcal{N}(0, 2dt \cdot I)$

to iterations for $i=1,\ldots,O(\operatorname{\mathsf{poly}}\log n)$ of

$$x_{t+dt}^{i} \leftarrow x_{t}^{i} + dt\nabla \log \nu(x_{t}^{i-1}) + \mathcal{N}(0, 2dt \cdot I).$$

Recall that $\boldsymbol{\mu}$ transport-stable if

 $\leq \mathbf{C} \cdot \|\mathbf{w} - \mathbf{w}'\|_1.$ $\mathcal{W}_1(\tau_w\mu,\tau_{w'}\mu)$

Wasserstein distance w.r.t. Hamming metric

Recall that $\boldsymbol{\mu}$ transport-stable if

$$\underbrace{\mathcal{W}_1(\tau_w\mu,\tau_{w'}\mu)}_{\leqslant C} \leq C \cdot \|w-w'\|_1.$$

Wasserstein distance w.r.t. Hamming metric

 \triangleright The sampling error in one step gets multiplied by C in every future step.

Recall that $\boldsymbol{\mu}$ transport-stable if

$$\underbrace{\mathcal{W}_1(\tau_w\mu,\tau_{w'}\mu)}_{\leqslant C} \leq C \cdot \|w-w'\|$$

1.

Wasserstein distance w.r.t. Hamming metric

 \triangleright The sampling error in one step gets multiplied by C in every future step.

Lemma	Fact
C = O(1) for spanning trees, etc.	C = O(n) for any distribution.

Recall that $\boldsymbol{\mu}$ transport-stable if

$$\underbrace{\mathcal{W}_1(\tau_w\mu,\tau_{w'}\mu)}_{\leqslant} \leqslant C \cdot \|w-w'\|_1.$$

Wasserstein distance w.r.t. Hamming metric

 \triangleright The sampling error in one step gets multiplied by C in every future step.

Lemma	Fact
C = O(1) for spanning trees, etc.	C = O(n) for any distribution.

 \triangleright Wasserstein accuracy quasipoly $(n)^{-1}$ enough in continuous sampler.

Recall that $\boldsymbol{\mu}$ transport-stable if

$$\underbrace{\mathcal{W}_1(\tau_w\mu,\tau_{w'}\mu)}_{\leqslant} \leqslant C \cdot \|w-w'\|_1.$$

Wasserstein distance w.r.t. Hamming metric

 \triangleright The sampling error in one step gets multiplied by C in every future step.

Lemma	Fact
C = O(1) for spanning trees, etc.	C = O(n) for any distribution.

 \triangleright Wasserstein accuracy quasipoly $(n)^{-1}$ enough in continuous sampler.

 \triangleright For C = O(1), it is enough to have Wasserstein accuracy $poly(n)^{-1}$.

Recall that $\boldsymbol{\mu}$ transport-stable if

$$\underbrace{\mathcal{W}_1(\tau_w\mu,\tau_{w'}\mu)}_{\leqslant} \leqslant C \cdot \|w-w'\|_1.$$

Wasserstein distance w.r.t. Hamming metric

 \triangleright The sampling error in one step gets multiplied by C in every future step.

Lemma	Fact
C = O(1) for spanning trees, etc.	C = O(n) for any distribution.

- \triangleright Wasserstein accuracy quasipoly $(n)^{-1}$ enough in continuous sampler.
- \triangleright For C = O(1), it is enough to have Wasserstein accuracy $poly(n)^{-1}$.
- ▷ [A-Chewi-Vuong]: we can get TV-accurate samples in parallel.

▷ Parallel reduction of sampling to counting for a class of distributions.

- \triangleright Parallel reduction of sampling to counting for a class of distributions.
- Open: Planar perfect matchings.

- ▷ Parallel reduction of sampling to counting for a class of distributions.
- Open: Planar perfect matchings.
- \triangleright Open: With no assumption on μ , what is the parallel round complexity of sampling given poly(n) queries of $\sum_{x} e^{\langle w, x \rangle} \mu(x)$?

- > Parallel reduction of sampling to counting for a class of distributions.
- Open: Planar perfect matchings.
- \triangleright Open: With no assumption on μ , what is the parallel round complexity of sampling given poly(n) queries of $\sum_{x} e^{\langle w, x \rangle} \mu(x)$?
- \triangleright Open: With no assumption on μ , what is the parallel round complexity of sampling given poly(n) queries of $\sum_{x \in \text{sub-cube}} \mu(x)$?

- > Parallel reduction of sampling to counting for a class of distributions.
- Open: Planar perfect matchings.
- \triangleright Open: With no assumption on μ , what is the parallel round complexity of sampling given poly(n) queries of $\sum_{x} e^{\langle w, x \rangle} \mu(x)$?
- \triangleright Open: With no assumption on μ , what is the parallel round complexity of sampling given poly(n) queries of $\sum_{x \in \text{sub-cube}} \mu(x)$?