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Sampling

Continuous

Discrete

µ : Rn → R>0

Tractable: logµ concave

Even better (well-conditioned):

−βI � ∇2 logµ � −αI.

and β/α is small.

µ : {±1}n → R>0

Tractable: ? (patchwork)
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Sampling via counting

Counting

Sub-cube C ⊆ {±1}n 7→
∑

x∈C µ(x).

Spanning trees Planar PMs Eulerian tours* Det. Point Process

S

S

∝ det(LS)

Matrix-tree thm. [FKT] thm. [BEST] thm. det(L+ I)

[Jerrum-Valiant-Vazirani’89]

Polynomial-time counting =⇒ polynomial-time sampling.
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The standard reduction [Jerrum-Valiant-Vazirani’89] is sequential.

P[e1]? P[e2 | e1]? P[e3 | e1, e2]?

. . .

Counting doable in parallel: log(n)O(1) time with nO(1) processors (NC).

[Csanky’75]

Linear algebra is parallelizable.

Question: Can we sample in parallel (RNC)?



5/24

The standard reduction [Jerrum-Valiant-Vazirani’89] is sequential.

P[e1]? P[e2 | e1]? P[e3 | e1, e2]?

. . .

Counting doable in parallel: log(n)O(1) time with nO(1) processors (NC).

[Csanky’75]

Linear algebra is parallelizable.

Question: Can we sample in parallel (RNC)?



5/24

The standard reduction [Jerrum-Valiant-Vazirani’89] is sequential.

P[e1]? P[e2 | e1]? P[e3 | e1, e2]?

. . .

Counting doable in parallel: log(n)O(1) time with nO(1) processors (NC).

[Csanky’75]

Linear algebra is parallelizable.

Question: Can we sample in parallel (RNC)?



6/24

Main result (informal)

We can sample spanning trees, DPPs, Eulerian tours,

and more in parallel by moving to continuous space.

Note: list excludes planar perfect matchings.
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Discrete to Continuous
Exponential Tilts

Interlude: Eulerian Tours

Transport Stability

Sampling Algorithm
Stochastic Localization

Parallel Continuous Sampling
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From discrete to continuous

Take convolution of µ with normal N(0, cI).

Main lemma

ν := µ ∗N(0, cI) log-concave for c > c0 = O(1).

The p.d.f. of ν at w is ∝
∑

x e
−‖w−x‖2/2cµ(x)

∝ e−‖w‖2/2c ·
∑
x

e〈w/c,x〉µ(x)︸ ︷︷ ︸
count of weighted µ

.

∇2 logν
∣∣
w=0

= −I/c+ cov(µ)/c2

For larger variance, e.g., µ ∗N(0, 2c0I), we have

well-conditioned log-concavity (easy to sample).
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Exponential tilts

For µ on {±1}n, an exponential tilt

is τwµ for w ∈ Rn defined as

τwµ(x) ∝ e〈w,x〉µ(x).

Spanning trees→ weighted

spanning trees.

DPP→ DPP with rows and

columns scaled.

Eulerian tours: switching

networks . . .

Determinant-based counting is

closed under external fields.

Covariance bound

We just need all of these τwµ to

have bounded covariance (semi-

log-concavity [Eldan-Shamir’20]):

cov(τwµ) � O(1) · I.

Spectral independence [A-Liu-

OveisGharan’20] is even stronger:

cov(τwµ) � O(1) · diag(cov(τwµ)).

All except Planar PMs.

[Alimohammadi-A-Shiragur-Vuong’21]
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Represent Eulerian tours as members of {±1}n?

General case reducible to degin = degout = 2.

Replace each vertex by “switching network” gadget:

Binary choice per vertex:

or

[Bouchet]: ∃ n× n skew-symmetric L, such that

det(LS,S) = 1[S indicates Eulerian tour].

Exponential tilt becomes biased switching.
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Switching networks

Want: random switching ≡ uniformly random permutation.

Randomly constructed unbiased Õ(deg)-sized network ' uniform

permutation [Czumaj’15].

With biases, Õ(deg2) enough to get exactly uniform.

Open: What is the minimum size for exactly uniform permutations?
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With biases, Õ(deg2) enough to get exactly uniform.

Open: What is the minimum size for exactly uniform permutations?



13/24

Switching networks

Want: random switching ≡ uniformly random permutation.

Randomly constructed unbiased Õ(deg)-sized network ' uniform
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Standard Counting

Sub-cube C ⊆ {±1}n 7→
∑

x∈C µ(x).

Weighted Counting

w 7→
∑

x e
〈w,x〉µ(x).

Main result 1

Approx. sampling (ε in dTV) via weighted counting in

polylog(n/ε) time and quasipoly(n/ε) processors, for µ
spectrally independent under exponential tilts.

Spectral independence [A-Liu-OveisGharan’20] under exponential tilts is also

known as “fractional log-concavity” [Alimohammadi-A-Shiragur-Vuong’21].

Weaker condition “semi-log-concavity” [Eldan-Shamir’20] is also enough.



14/24

Standard Counting

Sub-cube C ⊆ {±1}n 7→
∑

x∈C µ(x).

Weighted Counting

w 7→
∑

x e
〈w,x〉µ(x).

Main result 1

Approx. sampling (ε in dTV) via weighted counting in

polylog(n/ε) time and quasipoly(n/ε) processors, for µ
spectrally independent under exponential tilts.

Spectral independence [A-Liu-OveisGharan’20] under exponential tilts is also

known as “fractional log-concavity” [Alimohammadi-A-Shiragur-Vuong’21].

Weaker condition “semi-log-concavity” [Eldan-Shamir’20] is also enough.



14/24

Standard Counting

Sub-cube C ⊆ {±1}n 7→
∑

x∈C µ(x).

Weighted Counting

w 7→
∑

x e
〈w,x〉µ(x).

Main result 1

Approx. sampling (ε in dTV) via weighted counting in

polylog(n/ε) time and quasipoly(n/ε) processors, for µ
spectrally independent under exponential tilts.

Spectral independence [A-Liu-OveisGharan’20] under exponential tilts is also

known as “fractional log-concavity” [Alimohammadi-A-Shiragur-Vuong’21].

Weaker condition “semi-log-concavity” [Eldan-Shamir’20] is also enough.



14/24

Standard Counting

Sub-cube C ⊆ {±1}n 7→
∑

x∈C µ(x).

Weighted Counting

w 7→
∑

x e
〈w,x〉µ(x).

Main result 1

Approx. sampling (ε in dTV) via weighted counting in

polylog(n/ε) time and quasipoly(n/ε) processors, for µ
spectrally independent under exponential tilts.

Spectral independence [A-Liu-OveisGharan’20] under exponential tilts is also

known as “fractional log-concavity” [Alimohammadi-A-Shiragur-Vuong’21].

Weaker condition “semi-log-concavity” [Eldan-Shamir’20] is also enough.



15/24

Applications

Quasi-RNC sampling of Eulerian tours in digraphs.

Quasi-RNC sampling of DPPs on skew-symmetric matrix.

Main result 2

The number of processors can be improved from

quasipoly(n/ε) to poly(n/ε) if µ is “transport-stable”.

RNC sampling of DPPs on symmetric PSD matrix.

RNC sampling of spanning trees (already known via parallelization of

Aldous-Broder alg. [Teng’95, A-Hu-Saberi-Schild’21]).

Conjecture: Eulerian tours and non-symmetric DPPs also

“transport-stable”.

Corollary of ongoing work [A-Chewi-Vuong]: “Quasi” can be dropped.
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Transport stability

We call µ transport-stable if

W1(τwµ, τw ′µ)︸ ︷︷ ︸
Wasserstein distance w.r.t. Hamming metric

6 C · ‖w−w ′‖1.

Lemma

C = O(1) for spanning trees, etc.

Fact

C = O(n) for any distribution.

In contrast, semi-log-concavity is:

‖mean(τwµ) − mean(τw ′µ)‖2 6 C · ‖w−w ′‖2.

Aside: ‖·‖2 can be replaced by ‖·‖1 in our dists.
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Transport stability

[Feder-Mihail’92]

For edge e, ∃ random spanning trees T, T ′, such that

T is uniformly random conditioned on e ∈ T .

T ′ is uniformly random conditioned on e /∈ T ′.

Almost surely |T∆T ′| = 2.

By gluing these couplings, we get

transport-stability.

Transport stability =⇒ semi-log-concavity.

‖each row of cov(µ)‖1 6 O(1).

Conjecture: the same holds for Eulerian tours,

etc.
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How do we turn continuous samples into discrete ones?
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Stochastic localization (i.e., DALL·E-for-theorists)

Stochastic localization [Eldan’13] in dis-

crete time steps. Different discretiza-

tion used by [ElAlaoui-Montanari-Sellke’22].

w0 ← 0

for i = 0, . . . , T − 1 do

x← sample from τwi
µ ∗N(0, cI)

wi+1 ← wi + x/c

return sign(wT )

Lemma [cf. ElAlaoui-Montanari’21]

cwT/T ∼ µ ∗N(0, cI/T).

Enough to stop at T ' c log(n).
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How do we sample from µ ∗N(0, cI) in parallel?
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Parallel continuous sampling

Open: For a well-conditioned log-concave ν on Rn, what is the minimum

number of ∇ logν we need to query to sample? We do not know if

polylog(n) is possible.
Fortunately parallel time polylog(n) is possible. We use randomized

midpoint of [Shen-Lee’19], but others such as Lagenvin can be parallelized

too [A-Chewi-Vuong]. Picard iterations change the sequential version:

xt+dt ← xt + dt∇ logν(xt) +N(0, 2dt · I)

to iterations for i = 1, . . . , O(poly logn) of

xit+dt ← xit + dt∇ logν(xi−1
t ) +N(0, 2dt · I).
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Error propagation

Recall that µ transport-stable if

W1(τwµ, τw ′µ)︸ ︷︷ ︸
Wasserstein distance w.r.t. Hamming metric

6 C · ‖w−w ′‖1.

The sampling error in one step gets multiplied by C in every future step.

Lemma

C = O(1) for spanning trees, etc.

Fact

C = O(n) for any distribution.

Wasserstein accuracy quasipoly(n)−1 enough in continuous sampler.

For C = O(1), it is enough to have Wasserstein accuracy poly(n)−1.

[A-Chewi-Vuong]: we can get TV-accurate samples in parallel.
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Conclusion

Parallel reduction of sampling to counting for a class of distributions.

Open: Planar perfect matchings.

Open: With no assumption on µ, what is the parallel round complexity of

sampling given poly(n) queries of
∑

x e
〈w,x〉µ(x)?

Open: With no assumption on µ, what is the parallel round complexity of

sampling given poly(n) queries of
∑

x∈sub-cube µ(x)?

Thank you!
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