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The beginning

Theorem (Erdős 1947)

There exists graphs on N vertices with no clique or independent set of size
2 log2 N.

One of the first applications of the probabilistic method. Give a lower bound
on Ramsey numbers.

Erdős shows that G (N, 1/2) does not have a clique or independent set of size
n = 2 log2 N by considering the first moment: The expected number of such

cliques or independent sets is
(
N
n

)
2−(n

2) which is small.

Much more precise asymptotic understanding of the clique and independence
numbers of G (N, p) by Matula and Bollobás and Erdős.
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Timeline




Random graphs

Ramsey First moment 
prediction

- Suprema of stochastic processes

- Structure of small sets

- Random optimization

- Convex geometry

Sunflowers

Complexity / Random restriction / 
DNF sparsification
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Today Roadmap
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random 
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(complex) 
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Ramsey graphs

Definition (Ramsey graphs)

A graph on N vertices is C -Ramsey if it has no clique or independent set of size
C log2 N.

Theorem (Erdős 1947)

Almost all graphs on N vertices are 2-Ramsey.

Theorem (Campos-Griffiths-Morris-Saharasbudhe 2023)

There is no 1
2 + ε-Ramsey graph.

Problem (Erdős)

Explicitly construct C -Ramsey graphs for some constant C .
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Ramsey Cayley graphs

Definition (Cayley graph)

For a group G and symmetric subset S ⊂ G , the Cayley graph GS has vertex set
G and distinct x , y are adjacent if xy−1 ∈ S .

Given p ∈ (0, 1), we define random Cayley graphs G (p) as the Cayley graph GS

where each {g , g−1} is included independently with probability p.

Motivations: (Random) Cayley graphs and their applications have been
extensively studied in theoretical computer science, combinatorics, group
theory. Strong connections to coding theory, spectral graph theory, etc.

Question

What is the size of the largest clique or independent set in uniform random Cayley
graphs (G (1/2))? Are uniform random Cayley graphs Ramsey ?

Conjecture (Alon 1989)

There is a constant C such that every finite group has a Cayley graph which is
C -Ramsey.
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Clique number of random Cayley graphs

Theorem (Alon 1995)

The clique number of a uniform random Cayley graph on any group G of order N
is O(log2 N) whp.

Theorem (Green 2005, Green-Morris 2016)

For N prime, the clique number of a uniform random Cayley graph on ZN is
(2 + o(1)) log2 N whp.

Theorem (Green 2005, Mrazović 2017)

The clique number of a uniform random Cayley graph on Fd
2 with N = 2d is

Θ(logN log logN) whp.
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Random graphs meet additive combinatorics

Theorem (Conlon-Fox-P.-Yepremyan)

The clique number of a uniform random Cayley graph on any group G of order N
is almost surely O(logN log logN).

The first moment of the number of cliques in a uniformly random Cayley graph is
intimately related to the number of subsets with small product sets: The first
moment must reflect the structure of the group and random graph ensemble.

Theorem (Conlon-Fox-P.-Yepremyan)

In any group G of order N, the number of subsets A ⊂ G with |A| = n and
|AA−1| ≤ Kn is at most NC(K+log n)(CK )n.

AA−1 := {ab−1 : a, b ∈ A}.
Note that A is a clique in GS if and only if AA−1 \ {1G} ⊂ S .

Previously analyzed in nice abelian groups via strong structural
results/regularity method.
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Alon’s conjecture and expansion

Observation: Subgroups (sets with small expansion) at roughly logarithmic size
are problematic and account for the log logN factor.

Let N = 5d . A uniform random S ⊂ Fd
5 a.a.s. contains the nonzero elements

of a subspace of order Θ(logN log logN) and hence GS a.a.s. contains a
clique of that order.

Theorem (Conlon-Fox-P.-Yepremyan)

For almost all N, all abelian groups G of order N have a Cayley graph which is
C -Ramsey.

In particular, all N for which the largest factor which is a power of 2 or 3 is at most

(logN).001 has the above property.
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Towards additive combinatorics, and back?




Additive combinatorics /

Group theory

Combinatorial / Random 
graph analysis

nothing
Our analysis combines closely purely
combinatorial view and additive
insights:

Purely combinatorial view on the
role of the group structure,
analyzed via exploration
reminiscent of classical random
graph analysis.

Relation between solutions to
linear equations, expansion (large
product sets) and dimension.
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A purely combinatorial view on Cayley graphs

What is the role of the group structure?

Consider a group G of order N. Color the edges of the complete graph on G
by assigning each edge (x , y) the color {xy−1, yx−1}. This edge-coloring of
KN is such that each color class is 1 or 2-regular.
A Cayley graph on G is the edge-union of some color classes.

Surprise: The combinatorial constraint on the degree of color classes is sufficient!
This naturally leads to studying a more general random graph model:

Consider an edge-coloring c of a complete graph.
An entangled graph is the edge-union of some of the color classes.

The random entangled graph Gc(p) is formed by including each color class
with probability p independently.

Constraint: Each color class has bounded degree.
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Cliques in entangled graphs & Sets with small product set

Theorem 1

In a ∆-bounded edge-coloring of the complete graph on N vertices, the number of
n-vertex subsets with at most Kn colors is at most

NC∆(K+log n)(C∆K )n.

Theorem 2

If an edge-coloring c of KN is ∆-bounded, then a.a.s.

ω(Gc(p)) = Op,∆(logN log logN).

From Theorem 1, a careful union bound yields Theorem 2.

Theorem 2 solves a conjecture of Christofides and Markström on the clique
number of random Latin square graphs.
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Theorem 2 solves a conjecture of Christofides and Markström on the clique
number of random Latin square graphs.
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Sets with small product set: Greedy exploration

Theorem 1 (weaker version)

In a ∆-bounded edge-coloring of the complete graph on N vertices, the number of
n-vertex subsets with at most Kn colors is at most

NC∆K log n(C∆K )n.

Lemma

For any n vertex subset with Kn colors, we can find a spanning tree using
O(K log n) colors.

Greedy process to grow a large component:

In each step, pick a color that maximally extends the size of the component.

Guarantee that the component grows roughly by a factor 1/K per step.
Hence, the entire set is connected in O(K log n) steps.

The bound on the number of colors required in a spanning tree is tight.

Huy Tuan Pham (Stanford University) Structures in random graphs: New connections Simons Institute - July 2023 17 / 39



Sets with small product set: Greedy exploration

Theorem 1 (weaker version)

In a ∆-bounded edge-coloring of the complete graph on N vertices, the number of
n-vertex subsets with at most Kn colors is at most

NC∆K log n(C∆K )n.

Lemma

For any n vertex subset with Kn colors, we can find a spanning tree using
O(K log n) colors.

Greedy process to grow a large component:

In each step, pick a color that maximally extends the size of the component.

Guarantee that the component grows roughly by a factor 1/K per step.
Hence, the entire set is connected in O(K log n) steps.

The bound on the number of colors required in a spanning tree is tight.

Huy Tuan Pham (Stanford University) Structures in random graphs: New connections Simons Institute - July 2023 17 / 39



Sets with small product set: Greedy exploration

Theorem 1 (weaker version)

In a ∆-bounded edge-coloring of the complete graph on N vertices, the number of
n-vertex subsets with at most Kn colors is at most

NC∆K log n(C∆K )n.

Lemma

For any n vertex subset with Kn colors, we can find a spanning tree using
O(K log n) colors.

Greedy process to grow a large component:

In each step, pick a color that maximally extends the size of the component.

Guarantee that the component grows roughly by a factor 1/K per step.
Hence, the entire set is connected in O(K log n) steps.

The bound on the number of colors required in a spanning tree is tight.

Huy Tuan Pham (Stanford University) Structures in random graphs: New connections Simons Institute - July 2023 17 / 39



Sets with small product set: Greedy exploration

Theorem 1 (weaker version)

In a ∆-bounded edge-coloring of the complete graph on N vertices, the number of
n-vertex subsets with at most Kn colors is at most

NC∆K log n(C∆K )n.

Lemma

For any n vertex subset with Kn colors, we can find a spanning tree using
O(K log n) colors.

Greedy process to grow a large component:

In each step, pick a color that maximally extends the size of the component.

Guarantee that the component grows roughly by a factor 1/K per step.
Hence, the entire set is connected in O(K log n) steps.

The bound on the number of colors required in a spanning tree is tight.

Huy Tuan Pham (Stanford University) Structures in random graphs: New connections Simons Institute - July 2023 17 / 39



Sets with small product set: Random exploration

Theorem 1

In a ∆-bounded edge-coloring of the complete graph on N vertices, the number of
n-vertex subsets with at most Kn colors is at most

NC∆(K+log n)(C∆K )n.

Lemma

For any n vertex subset with Kn colors, we can find a spanning tree with
O(K + log n) colors on (1− ε)n vertices.

Random exploration: Expose colors randomly and analyze the connected
components formed.

When the set of colors coming out of components is large (Ω(Kn)), large
components will merge in O(log n) steps to a giant component.
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Sets with small product set: Random exploration

Lemma

For any n vertex subset with Kn colors, we can find a spanning tree with
O(K + log n) colors on (1− ε)n vertices.

Building large components:

Pick random colors and grow components using all edges of these colors.

Keep track of colors going out of each component; as the components grow,
the set of colors out of the components also grows.

Prove that the probability that a component grows increases with the size of
the component. Hence, most vertices are in components of size Ω(K ) after
O(K ) samples of colors.
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Alon’s conjecture - Going beyond uniform random

Theorem

There is a self-complementary Ramsey Cayley graph on Fd
5 .

Answer a question of Alon and Orlitsky motivated by zero-error capacity and dual-source

coding.
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Alon’s conjecture - Going beyond uniform random

Theorem

There is a C -Ramsey self-complementary Cayley graph on Fd
5 .

Model. For each nonzero x ∈ Fd
5 , randomly pick exactly one of {x , 4x} or

{2x , 3x} to be a subset of the generating set S :

S is symmetric.

GS is self-complementary with isomorphism φ(x) = 2x .

If x ∈ S , then 2x 6∈ S .

The last condition leads to expansion of any potential clique: |A + 2 · A| = |A|2,
so the Plünnecke-Ruzsa inequality implies

|A|2 = |A + 2 · A| ≤ |A + A + A| ≤ |A− A|3|A|−2,

yielding |A− A| ≥ |A|4/3.
Expansion, together with the previous counting result, allows the union bound to
work in the large K range without losing the log logN factor.
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From random graphs to additive combinatorics and back

Model. For each nonzero x ∈ Fd
5 , randomly pick exactly one of {x , 4x} or

{2x , 3x} to be a subset of the generating set S .

Theorem

The random Cayley graph GS has clique and independence number
(2 + o(1)) log2 N.

The precise asymptotic is closely related to the constant in front of K in the
NO(K) factor in the counting result.

Over vector spaces, sharp dependence on K can be determined through sharp
bound on the dimension of A.

This can be obtained from results on Freiman’s conjecture over Fn
p by Chaim

Even-Zohar and Lovett: If |A− A| ≤ K |A| and |A| = po(K), then the
dimension of A is at most (1 + o(1))K .

Even sharper asymptotics requires more precise understanding of the additive
structure and correspondence with the combinatorial analysis: Make full leverage
of the expansion condition and combinatorial insights.
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Roadmap

Careful understanding of the role of structure on the first moment is crucial.

Mutual connection between additive combinatorics and random
exploration/random graph view.




Structured 
random 
graph 
ensemble

Finding 
(complex) 
structures

Additive combinatorics /

Group theory

Combinatorial / Random 
graph analysis

LLL & algorithmic 
aspects / sampling

Regularity / Absorption

Sunflowers

Structures of random 
LPs, random processes

Transference of 
structural results
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Interlude: More general structures

Finite set X , random subset Xp. Collection of desired structures H ⊆ 2X .

The threshold pc(H) is the value p at which the probability that a structure
in H appears in Xp is 1/2.

Theorem (the Kahn-Kalai conjecture ’06, resolved by Park-P. ’22+)

The threshold pc(H) is closely predicted by the expectation threshold pE (H):

pc(H) = O(pE (H) log |X |).

The expectation threshold is defined as the largest p for which there is H′ with

H′ covers H: All H ∈ H contains some H ′ ∈ H′.
H′ has a small cost:

∑
H′∈H′ p|H

′| ≤ 1/2 (naive union bound/first moment).

We say H is p-small if there exists H′ satisfying the above properties.
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Thresholds and the Kahn-Kalai conjecture

Theorem (the Kahn-Kalai conjecture ’06, resolved by Park-P. ’22+)

If H is not p-small, then XLp log |X | contains a set from H with probability at least
1/2.

Inexistence of first moment (union bound) obstruction is sufficient to guarantee
emergence of structure!
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Roadmap




Structured 
random 
graph 
ensemble

Finding 
(complex) 
structures

Additive combinatorics /
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Combinatorial / Random 
graph analysis

LLL & algorithmic 
aspects / sampling

Regularity / Absorption

Sunflowers

Structures of random 
LPs, random processes

Transference of 
structural results
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Thresholds and random LPs

Interesting connections to the structure of random processes and high-dimensional
convex geometry (Talagrand ’94, ’06, ’10).

Theorem (Talagrand’s selector process conjecture, resolved by Park-P. ’22)

Given linear functions fi (S) = vi · S on S ⊆ X , for which vi ≥ 0 and fi (X ) ≥ 1.
If the support of vi ’s is not p-small, then

E sup
i
fi (Xp) = Ω(1) independent of p!

supi fi (Xp) - Suprema of stochastic processes: structure of tail events.

supi fi (Xp) - Fractionally subadditive/XOS functions under random domain
subsampling.

Main idea in a simpler setup gives the proof of the Kahn-Kalai conjecture.
Kahn-Kalai conjecture as “structure” of containment.
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Estimating expectation threshold

Bounding the expectation threshold by the dual certificate (Talagrand):
pE (H) ≤ pf (H), the largest p for which there exists a probability measure λ
supported on H which is p-spread:

λ({H ∈ H : H ⊇ S}) ≤ 2p|S| for all S .

The fractional Kahn-Kalai conjecture and connections to robust sunflowers
(Alweiss-Lovett-Wu-Zhang ’19, Frankston-Kahn-Narayanan-Park ’19):

pc(H) = O(pf (H) log |X |).

If one is interested in a specific family of structures H, an imminent question
is how to estimate (fractional) expectation thresholds/construct dual
certificates.

Previously restricted to very simple structures in highly symmetric setting,
amenable to trivial enumerations.
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Where are we?

Threshold Expectation 
threshold

Kahn-Kalai conjecture
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Estimating expectation threshold: Latin squares

The complete bipartite graph Kn,n is n-colorable. For each edge of Kn,n, pick
a random list of pn colors from [n].

When can we guarantee that with high probability there exists a proper
edge-coloring of Kn,n using the selected lists?

An n × n Latin square is a matrix (xi,j)i,j∈[n] with entries in [n] where each
entry appears exactly once in each row and column.

2

23

3

23

1

1

1

For each coordinate (i , j), consider a random subset Xi,j of [n] where each
element is sampled independently with probability p.

What is the probability that there exists a Latin square with xi,j ∈ Xi,j?
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Estimating expectation threshold: Latin squares

Conjecture (Johansson ’06, Keevash ’14, Luria-Simkin ’17)

For p ≥ C (log n)/n, with high probability, there exists a Latin square with
xi,j ∈ Xi,j .

Related conjectures by Simkin, Casselgren-Häggkvist.

Theorem (Jain-P., Keevash ’22+)

There exists a C/n-spread probability distribution on Latin squares. As a corollary,
for p ≥ C (log n)/n, with high probability, there exists a Latin square with
xi,j ∈ Xi,j .

Previous partial progress by Sah-Sawhney-Simkin (’22),
Kang-Kelly-Kühn-Methuku-Osthus (’22).
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Lovász Local Lemma and spread measures

Main goal: construct a measure over Latin squares which is optimally spread.
Difficulty: Latin squares are highly rigid objects.

Insight: Algorithmic construction of spread measures.

Employ ideas and tools from (iterative) absorption, Lovász Local Lemma and
their algorithmic aspects.

Summary: Existence of (rigid) object leveraging on LLL. Spread is guaranteed
by local uniformity property of the distribution of solutions to the constraint
satisfaction problem.

Local uniformity property: Under LLL setting, given bad events with
probability at most p, and assume that the maximum degree of the
dependency graph is ∆ with 4p∆ ≤ 1. For any event F depending on at
most N bad events, the probability of F under a random satisfying solution is
at most the probability of F under the product measure up to an error
exp(pN).

Key property in previous works on algorithmic LLL and recent works on
sampling algorithms for the distribution of solutions.

Huy Tuan Pham (Stanford University) Structures in random graphs: New connections Simons Institute - July 2023 33 / 39



Lovász Local Lemma and spread measures

Main goal: construct a measure over Latin squares which is optimally spread.
Difficulty: Latin squares are highly rigid objects.

Insight: Algorithmic construction of spread measures.

Employ ideas and tools from (iterative) absorption, Lovász Local Lemma and
their algorithmic aspects.

Summary: Existence of (rigid) object leveraging on LLL. Spread is guaranteed
by local uniformity property of the distribution of solutions to the constraint
satisfaction problem.

Local uniformity property: Under LLL setting, given bad events with
probability at most p, and assume that the maximum degree of the
dependency graph is ∆ with 4p∆ ≤ 1. For any event F depending on at
most N bad events, the probability of F under a random satisfying solution is
at most the probability of F under the product measure up to an error
exp(pN).

Key property in previous works on algorithmic LLL and recent works on
sampling algorithms for the distribution of solutions.

Huy Tuan Pham (Stanford University) Structures in random graphs: New connections Simons Institute - July 2023 33 / 39



Lovász Local Lemma and spread measures

Main goal: construct a measure over Latin squares which is optimally spread.
Difficulty: Latin squares are highly rigid objects.

Insight: Algorithmic construction of spread measures.

Employ ideas and tools from (iterative) absorption, Lovász Local Lemma and
their algorithmic aspects.

Summary: Existence of (rigid) object leveraging on LLL. Spread is guaranteed
by local uniformity property of the distribution of solutions to the constraint
satisfaction problem.

Local uniformity property: Under LLL setting, given bad events with
probability at most p, and assume that the maximum degree of the
dependency graph is ∆ with 4p∆ ≤ 1. For any event F depending on at
most N bad events, the probability of F under a random satisfying solution is
at most the probability of F under the product measure up to an error
exp(pN).

Key property in previous works on algorithmic LLL and recent works on
sampling algorithms for the distribution of solutions.

Huy Tuan Pham (Stanford University) Structures in random graphs: New connections Simons Institute - July 2023 33 / 39



Lovász Local Lemma and spread measures

Main goal: construct a measure over Latin squares which is optimally spread.
Difficulty: Latin squares are highly rigid objects.

Insight: Algorithmic construction of spread measures.

Employ ideas and tools from (iterative) absorption, Lovász Local Lemma and
their algorithmic aspects.

Summary: Existence of (rigid) object leveraging on LLL. Spread is guaranteed
by local uniformity property of the distribution of solutions to the constraint
satisfaction problem.

Local uniformity property: Under LLL setting, given bad events with
probability at most p, and assume that the maximum degree of the
dependency graph is ∆ with 4p∆ ≤ 1. For any event F depending on at
most N bad events, the probability of F under a random satisfying solution is
at most the probability of F under the product measure up to an error
exp(pN).

Key property in previous works on algorithmic LLL and recent works on
sampling algorithms for the distribution of solutions.

Huy Tuan Pham (Stanford University) Structures in random graphs: New connections Simons Institute - July 2023 33 / 39



Constructing spread measures

We view Latin squares as edge decompositions of Kn,n into perfect
matchings, and construct the desired distribution in progressive steps,
decomposing Kn,n into regular subgraphs of decreasing degrees.

Each step employs a random partition that naturally has optimal spread.
However, this is not compatible with the rigid (regular) nature of the objects.

We condition the random partition on satisfying a constraint satisfaction
problem, which allows to correct the random object to a regular object.

Show spread by using local uniformity property, and bootstrap on spread to
show success of the iterations.

Interesting future direction: Obtaining robust (threshold) versions of other
properties given by constraint satisfaction problems.
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Roadmap




Structured 
random 
graph 
ensemble

Finding 
(complex) 
structures

Additive combinatorics /

Group theory

Combinatorial / Random 
graph analysis

LLL & algorithmic 
aspects / sampling

Regularity / Absorption

Sunflowers

Structures of random 
LPs, random processes

Transference of 
structural results
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Further connections: An open invitation

Random Linear Programs:

Max-Cut/Max-Bisection in G (N, p): The max-cut value is
N(pN/4 + (1 + opN(1))P∗

√
pN/2) (Dembo-Montanari-Sen ’17).

Talagrand’s selector process conjecture: Maxima is p-independent if support
of linear functions involved is not p-small.

Contention resolution/Correlation Gap in Rounding schemes: Constant
matters!

Question: How does p-dependence to p-independence transition happen?
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Further connections: An open invitation

Conjecture (Alon 1989)

There is a constant C such that every finite group has a Cayley graph which is
C -Ramsey.

An important step in this direction is the following:

Toy Conjecture

There is a two-coloring of Fd
2 \ {0} such that there is no subspace of size Cd

whose nonzero elements are monochromatic.

The trouble in small characteristic indicates interesting relationship with Ramsey
theory, additive combinatorics.
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Further connections: An open invitation

Conjecture (Alon 1989)

Consider a random Cayley graph with density p. The independence number is
almost surely Õ(p−1).

Random Cayley graphs should have similar behaviors to random regular
graphs.

Relations to spectral graph theory, random matrix theory/suprema of
processes.
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Thank you!
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