Signrank vs Margin

Kaave Hosseini University of Rochester

Based on Joint works with Hamed Hatami, Shachar Lovett, Ben Cheung, Morgan Shirley, Xiang Meng

Notions of "rank"

Given $\{+1, -1\}$ -matrix $A_{N \times M}$,

Rank(A) = smallest d such that ∃ $x_1,, x_N, y_1,, y_M \in \mathbb{R}^d$ so that for all i, j	$\begin{split} &\gamma_2(A) = \text{smallest } \ell \text{ such that:} \\ &\exists x_1, \dots, x_N, y_1, \dots, y_M \in \mathbb{R}^{\infty} \text{ so that for all } i, j: \\ &\ x_i\ _2 \cdot \ y_j\ _2 \leq \ell \end{split}$
$A_{ij} = \langle x_i, y_j \rangle$	$A_{ij} = \langle x_i, y_j \rangle$
$\widetilde{\text{Rank}}_{\alpha} (A)$ $1 \le A_{ij} \cdot \langle x_i, y_j \rangle \le \alpha$	$\widetilde{\gamma_2^{lpha}}(A)$ $1 \leq A_{ij} \cdot \langle x_i, y_j \rangle \leq \alpha$
$\operatorname{Rank}^{\pm}(A)$ $1 \leq A_{ij} \cdot \langle x_i, y_j \rangle$	$\gamma_2^{\infty}(A)$ $1 \leq A_{ij} \cdot \langle x_i, y_j \rangle$

Meta question of this talk:

template: If X(A) is small, how large can Y(A) be?

Example

Identity

$\operatorname{Rank}(A) = N$	$\gamma_2(A) = 1$
$\widetilde{\text{Rank}}(A) = \Theta(\log(N))$ (Alon'09)	$\widetilde{\gamma_2}(A) = 1$
$\operatorname{Rank}^{\pm}(A) = 3$	$\gamma_2^\infty(A) = 1$

Applications of $Rank^{\pm}$

- Learning Theory: sign-rank is known as *dimension complexity*
 - Both Upper bounds and Lower bounds
 - Example: fastest known learning algorithm for DNFs (Klivans-Servedio'04)
- Communication complexity:

(Paturi-Simon '84) $Log(Rank^{\pm}(A)) = unbounded$ -error communication complexity of A

- circuit complexity lower bounds
 - Lower bounds for Threshold-of-Majority circuits (Razborov-Sherstov'08)
- semi-algebraic graphs

Open question: Are Semialgebraic graphs of O(1) complexity are exactly those of Rank[±] = O(1)?

Applications of γ_2^∞

• Machine learning: (γ_2^{∞} is known as Margin Complexity)

The sample complexity of Support Vector Machine on a matrix A is $O((\gamma_2^{\infty})^2)$.

• Communication complexity:

Theorem(Linial-Shraibman '07): $\gamma_2^{\infty}(A) = \Theta(\text{Discrepancy}(A)^{-1})$ (based on Grothendieck inequality and duality)

```
(Chor-Goldreich'88, Klauck '01)

log(Discrepancy(A)^{-1}) \leq Randomized Communication complexity of A
```


Question. If Rank[±](A) is small, how large can $\gamma_2^{\infty}(A)$ be?

previous work:

[Buhrman-Vereshchagin-de Wolf07, Sherstov08, Sherstov11, Sherstov13, Thaler16, Sherstov19]

Previously known: there is $A_{N \times N}$ such that

 $\operatorname{Rank}^{\pm}(A) = \Theta(\log N) \text{ and } \gamma_2^{\infty}(A) \ge \operatorname{poly}(N)$

On the other hand, it's well known that for any B with bounded entries

$$\gamma_2(B) \leq \sqrt{\operatorname{rank}(B)} \text{ and } \widetilde{\gamma_2}(B) \leq O\left(\sqrt{\operatorname{rank}(B)}\right)$$

(Using John's theorem from Convex Geometry.)

Theorem (Hatami-H-Lovett '20): There is $A_{N \times N}$ such that Rank[±](A) = 3 but $\gamma_2^{\infty}(A) \ge \text{poly}(N)$

Construction: 3-dimensional Inner product over integers

$$\begin{aligned} x &= (x_1, x_2, x_3). & x_1, x_2, x_3 \in [-N, N] \\ y &= (y_1, y_2, y_3). & y_1, y_2, y_3 \in [-N, N] \\ A(x, y) &= \begin{cases} +1 & if \langle x, y \rangle \ge 0 \\ -1 & if \langle x, y \rangle < 0 \end{cases} \end{aligned}$$

$$\operatorname{Rank}^{\pm}(A) = 3$$

Theorem (Hatami-H-Lovett '20): $\gamma_2^{\infty}(A) \geq \sqrt{N}$

Rank^{\pm} vs γ_2^{∞}

Question. If $\gamma_2^{\infty}(A)$ is small, how large can Rank[±](A) be?

Theorem (Linial, Mendelson, Schechtman, and Shraibman '07, Arriaga-Vempala '06):

$$\operatorname{Rank}^{\pm}(A_{N\times N}) = O\left(\left(\gamma_{2}^{\infty}(A)\right)^{2}\log\left(N\right)\right)$$

(Proof based on Johnson-Lindenstrauss lemma.)

Question (Linial, Mendelson, Shechtman, Shraibman '07): Is the log(N) term necessary?

Theorem (Hatami-H-Meng'23): log(N) term is necessary for partial matrices.

Rank^{\pm} vs γ_2^{∞}

Theorem (Newman's lemma): $A_2n_{\times 2}n$

 $R^{\text{private}}(A) \le R^{\text{public}}(A) + O(\log n)$

 $R_{unbounded}^{\text{private}}(A) \le R^{\text{public}}(A) + O(\log n)$

Question. Is the $O(\log n)$ term necessary above?

Corollary (Hatami-H-Meng'23): $O(\log(n))$ is necessary (for partial matrices)

Construction

We give a construction of a partial matrix:

$$1234... N$$

$$1334... N$$

$$1334$$

Pick arbitrary $\epsilon > 0$. We give partial matrix $A_{2^n \times 2^n}$ so that

$$\gamma_2^{\infty}(A) = 1 + \epsilon$$

Rank[±](A) > $\Omega\left(\frac{\epsilon \cdot n}{\log(\epsilon^{-1})}\right)$

Construction

Gap Inner Product(GIP):

$$x, y \in \left\{\frac{-1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right\}^n$$

$$GIP_{\epsilon}^{n}(\mathbf{x}, \mathbf{y}) = \begin{cases} + & \langle \mathbf{x}, \mathbf{y} \rangle > 1 - \epsilon \\ * & -(1 - \epsilon) \le \langle \mathbf{x}, \mathbf{y} \rangle \le 1 - \epsilon \\ - & \langle \mathbf{x}, \mathbf{y} \rangle < -(1 - \epsilon) \end{cases}$$

Theorem. Let $\epsilon \in (0,1)$.

$$\Omega\left(\frac{\epsilon n}{\log(\epsilon^{-1})}\right) = \operatorname{Rank}^{\pm}(GIP_{\epsilon}^{n}) = O(\epsilon n)$$

Main Lemma

Proof idea: first study the continuous version of the problem

 $x, y \in \mathbb{S}^{n-1} \subset \mathbb{R}^n$

$$\mathbb{H}_{\epsilon}^{n}(\mathbf{x}, \mathbf{y}) = \begin{cases} + & \langle \mathbf{x}, \mathbf{y} \rangle > 1 - \epsilon \\ * & -(1 - \epsilon) \le \langle \mathbf{x}, \mathbf{y} \rangle \le 1 - \epsilon \\ - & \langle \mathbf{x}, \mathbf{y} \rangle < -(1 - \epsilon) \end{cases}$$

(class of halfspaces with margin $1-\epsilon$)

Main Lemma. For all $n \in \mathbb{N}$ and $\epsilon \in (0,1)$, $\operatorname{Rank}^{\pm}(\mathbb{H}_{\epsilon}^{n}) = n$.

Main Lemma

Main Lemma. For all $n \in \mathbb{N}$ and $\epsilon \in (0,1)$, $\operatorname{Rank}^{\pm}(\mathbb{H}_{\epsilon}^{n}) = n$.

Proof Idea: Topology Borsuk-Ulam theorem: Let $f: \mathbb{S}^{d-1} \to \mathbb{R}^{d-1}$ be an arbitrary continuous map. There is a point $x \in \mathbb{S}^{d-1}$ so that f(x) = f(-x)

Main Lemma

Main Lemma. For all $n \in \mathbb{N}$ and $\epsilon \in (0,1)$, $\operatorname{Rank}^{\pm}(\mathbb{H}_{\epsilon}^{n}) = n$. Proof Idea: If the maps f, g are continuous.

 $\langle x, y \rangle > \gamma$ hence $\mathbb{H}_{\epsilon}^{n}(x, y) = +1$ and $\langle f(x), g(y) \rangle > 0$ Also $\langle -x, y \rangle < -\gamma$ hence $\mathbb{H}_{\epsilon}^{n}(x, y) = -1$, however, by Borsuk-Ulam: $\langle f(-x), g(y) \rangle = \langle f(x), g(y) \rangle > 0$

If not continuous, find a careful continuation \tilde{f} , \tilde{g} that preserves most of the inner-product signs.

 γ_2 vs $\widetilde{\gamma_2}$

Question. If $\widetilde{\gamma_2}$ is small, how large can γ_2 be?

Linial-Shraibman'09:

 $\log(\widetilde{\gamma_2}(A)) \le \mathbb{R}^{public}(A) \le \widetilde{\gamma_2}(A)$

Question: Linial-Shraibman'09, also Pitassi, Shirley, Shraibman'23 Can one substitute $log(\tilde{\gamma}_2(A))$ by $log(\gamma_2(A))$ above?

Theorem (Cheung-Hatami-H-Shirley'23). No.

There is a matrix $A_{N \times N}$ such that $\mathbb{R}^{public}(A) \leq O(\log \log N)$ but $\gamma_2(A) \geq poly(N)$.

Hence $\widetilde{\gamma_2}(A) = \operatorname{polylog}(n)$ but $\gamma_2(A) \ge \operatorname{poly}(N)$

 γ_2 vs $\widetilde{\gamma_2}$

Theorem (Cheung-Hatami-H-Shirley'23).

There is a matrix $A_{N \times N}$ such that $\widetilde{\gamma_2}(A) \leq O(\operatorname{poly} \log N)$ but $\gamma_2(A) \geq \operatorname{poly} N$.

$$\begin{aligned} x &= (x_1, x_2, x_3). & x_1, x_2, x_3 \in [-N, N] \\ y &= (y_1, y_2, y_3). & y_1, y_2, y_3 \in [-N, N] \\ A(x, y) &= \begin{cases} +1 & if \langle x, y \rangle = 0 \\ -1 & if \langle x, y \rangle \neq 0 \end{cases} \end{aligned}$$

Open problems

Rank(A)	$\gamma_2(A)$
$\widetilde{\operatorname{Rank}}(A)$	$\widetilde{\gamma_2}(A)$
$\operatorname{Rank}^{\pm}(A)$	$\gamma_2^\infty(A)$

Problem 1. If $\gamma_2^{\infty}(A) = O(1)$, how large can $\gamma_2(A)$ be?

Linial-Shraibman ($\gamma_2(A)$ can not be larger than \sqrt{N})

Problem 2. Construct a *total* matrix that $\gamma_2^{\infty}(A) = O(1)$ but Rank[±](A) = $\omega(1)$.

Problem 3. If $\gamma_2(A) = O(1)$, does it imply that $\operatorname{Rank}^{\pm}(A) = O(1)$? (Hatami-Hatami-Pires-Tao-Zhao'22) It is true for Cayley graphs of abelian groups: $\operatorname{Rank}^{\pm}(A) \leq 2^{2^{\gamma_2(A)}}$

Problem 4. If $\gamma_2^{\infty}(A) = O(1)$ is there a monochromatic rectangle of density $\Omega(1)$? True for Rank[±](A): Alon-Pach-Pinchasi-Radoičić-Sharir'09, Fox-Pach-Suk'16:

A has a monochromatic rectangle of density at least $2^{-\operatorname{Rank}^{\pm}(A)}$

Thank you!