Localization schemes

Simons Institute - Beyond the Boolean Cube Workshop

Yuansi Chen joint work with Ronen Eldan

Duke University

- 1. Spectral independence via coordinate-by-coordinate localization
- 2. Glauber dynamics mixing in Ising model via Eldan's stochastic localization
- 3. Glauber dynamics mixing in hardcore model via negative fields localization

Given a target measure μ (possibly unnormalized), on a state space $\mathcal{X} = \{-1, +1\}^n$ or \mathbb{R}^n , we want to **draw samples** $X \sim \mu$.

At current state $x \in \{-1, +1\}^n$, draw index i uniformly from [n]

- move to $y = x \oplus e_i$ with probability $\frac{\mu(y)}{\mu(y) + \mu(x)}$
- otherwise, stay at x

Denote this transition kernel $P_{X \rightarrow y}$.

At current state $x \in \{-1, +1\}^n$, draw index i uniformly from [n]

- move to $y = x \oplus e_i$ with probability $\frac{\mu(y)}{\mu(y) + \mu(x)}$
- otherwise, stay at x

Denote this transition kernel $P_{x \rightarrow y}$.

Mixing time: starting from initial measure μ_{ini} , let $\mu_{ini}P^k$ denote the measure at time, how many iterations does it take so that

 $\mathsf{TV}(\mu, \mu_{\mathsf{ini}} P^k) \leq \epsilon?$

Mixing time analysis via functional inequalities (1)

Define the Dirichlet form

$$\mathcal{E}_{\mathsf{P}}(f,g) = \langle (I-\mathsf{P})f,g \rangle_{\mu}$$

Poincaré inequality (or spectral gap)

$$\lambda \operatorname{Var}_{\mu}(f) \leq \mathcal{E}_{P}(f, f), \quad \forall f$$

For reversible lazy Markov chain, it implies variance decay:

$$\operatorname{Var}_{\mu} Pf \leq (1 - \lambda) \operatorname{Var}_{\mu} f, \quad \forall f$$

Take $f = \frac{\mu_{\text{ini}}p^k}{\mu}$, we can bound chi-squared divergence decay, leading to mixing time

$$\frac{1}{\lambda} \left(\log \frac{1}{\mu_{\text{ini,min}}} + \log \frac{1}{\epsilon} \right)$$

Modified Log-Sobolev inequality (MLSI)

$$\rho_{\text{MLSI}} \text{Ent}_{\mu}(f) \leq \mathcal{E}_{P}(f, \log f), \quad \forall f \geq 0$$

We can bound KL-divergence decay, leading to mixing time

$$\frac{1}{\rho_{\text{MLSI}}} \left(\log \log \frac{1}{\mu_{\text{ini,min}}} + \log \frac{1}{\epsilon} \right)$$

From now on, we focus on functional inequalities

- $\cdot\,$ Target measure μ
- $2^n \times 2^n$ Markov transition kernel P
- To prove mixing time, it suffice to prove

 $\lambda \operatorname{Var}_{\mu}(f) \leq \mathcal{E}_{P}(f, f)$

For product measure, it is easy. Other than that, for what kind of target measure, can we prove spectral gap?

Coordinate-by-coordinate localization

Spectral independence [Anari, Liu, Oveis Gharan '20]

Define the $n \times n$ pairwise influence matrix Ψ_{μ}

$$\Psi_{\mu}[i,j] = \mathbb{P}_{x \sim \mu}(x_j = +1 \mid x_i = +1) - \mathbb{P}_{x \sim \mu}(x_j = +1 \mid x_i = -1)$$

 μ is $\eta\text{-spectrally independent if}$

 $\left\|\Psi_{\mu}\right\|_{2} \leq \eta$

Spectral independence [Anari, Liu, Oveis Gharan '20]

Define the $n \times n$ pairwise influence matrix Ψ_{μ}

$$\Psi_{\mu}[i,j] = \mathbb{P}_{x \sim \mu}(x_j = +1 \mid x_i = +1) - \mathbb{P}_{x \sim \mu}(x_j = +1 \mid x_i = -1)$$

 μ is $\eta\text{-spectrally independent if}$

$$\left\|\Psi_{\mu}\right\|_{2} \leq \eta$$

A sufficient condition for proving spectral gap: if all conditionals of μ (the law of $X \mid X_i = \pm 1$ and $X \mid X_i = \pm 1, X_j = \pm 1$, etc.) are η -spectrally independent, then spectral gap

$$\lambda \ge \prod_{i=0}^{n-2} \left(1 - \frac{\eta}{n-i} \right)$$

Since

$$\mathsf{Cov}_\mu = \mathsf{diag}(\mathsf{Cov}_\mu)(\Psi_\mu + \mathbb{I}_n)$$

we have

$$\operatorname{Cov}_{\mu} \preceq (1+\eta)\operatorname{diag}(\operatorname{Cov}_{\mu}) \Leftrightarrow \left\|\Psi_{\mu} + \mathbb{I}_{n}\right\|_{2} \leq 1+\eta.$$

Since

$$\mathsf{Cov}_\mu = \mathsf{diag}(\mathsf{Cov}_\mu)(\Psi_\mu + \mathbb{I}_n)$$

we have

$$\operatorname{Cov}_{\mu} \preceq (1 + \eta) \operatorname{diag}(\operatorname{Cov}_{\mu}) \Leftrightarrow \left\|\Psi_{\mu} + \mathbb{I}_{n}\right\|_{2} \leq 1 + \eta.$$

Constraining the covariance makes sense, but Q1: why do we have to put assumptions on all conditionals? ...trickling down, HDX, local-to-global Q2: what are other ways to put assumptions to prove spectral gap, when direct proof is difficult? A localization scheme is a mapping from measure ν to a stochastic process $(\nu_t)_{t\geq 0}$ such that

- $\nu_0 = \nu$
- For any measurable A, $\nu_t(A)$ is a martingale (in other words, $\mathbb{E}[\nu_t(A) | \{\nu_\tau(A), \tau \leq s\}] = \nu_s(A), \forall 0 \leq s \leq t)$

A localization scheme is a mapping from measure ν to a stochastic process $(\nu_t)_{t\geq 0}$ such that

- $\nu_0 = \nu$
- For any measurable A, $\nu_t(A)$ is a martingale (in other words, $\mathbb{E}[\nu_t(A) \mid {\nu_\tau(A), \tau \leq s}] = \nu_s(A), \forall 0 \leq s \leq t$)

Our main standpoint:

- You pick a localization scheme
- Study the evolution of the variance $Var_{\nu_t}(f)$ along the process $(\nu_t)_t$
- Put assumptions to approximately conserve variance, then you can prove spectral gap!

Spectral independence assumption comes from coordinate-by-coordinate localization

Coordinate-by-coordinate localization

Start from ν on $\{-1, +1\}^n$. Let (k_1, \ldots, k_n) be a random permutation of [n], and X is a random draw from ν , independent of the rest. Define

$$\nu_i = \text{law of } \{X \mid X_{k_1}, \dots, X_{k_i}\}$$

Spectral independence assumption comes from coordinate-by-coordinate localization

Coordinate-by-coordinate localization

Start from ν on $\{-1, +1\}^n$. Let (k_1, \ldots, k_n) be a random permutation of [n], and X is a random draw from ν , independent of the rest. Define

$$\nu_i = \text{law of } \{X \mid X_{k_1}, \dots, X_{k_i}\}$$

We claim that

In [Anari, Liu, Oveis Gharan '20], η -spectrally independence for every conditional of ν is a condition to conserve variance along the coordinate-by-coordinate localization

$$\left(1-\frac{\eta}{n-i}
ight)\mathbb{E}[\operatorname{Var}_{
u_{i}}(f)]\leq\mathbb{E}[\operatorname{Var}_{
u_{i+1}}(f)]$$

Derivation: approximate conservation of variance

- Semi-log-concavity [Eldan, Shamir '20]
- Fractional log-concavity [Alimohammadi, Anari, Shiragur, Vuong '21]
- Entropic independence [Anari, Jain, Koehler, Pham, Vuong '21]

which bounds covariance of all tilted measures,

are sufficient conditions to approximately conserve entropy along the coordinate-by-coordinate localization so that one could prove MLSI Beyond coordinate-by-coordinate localization? Let's first take a tour **beyond the Boolean cube** to \mathbb{R}^n , where Eldan first introduced stochastic localization [Eldan '13] Eldan's stochastic localization

Given an density ν on \mathbb{R}^n , the density at time t is the solution of the SDE

$$d\nu_t(x) = (x - \mathbf{b}(\nu_t))^{\top} C_t^{\frac{1}{2}} dW_t \cdot \nu_t(x), \quad \forall x \in \mathbb{R}^n$$

where $\mathbf{b}(\nu_t)$ is the mean of ν_t and W_t is the Brownian motion. Take $C_t = \mathbb{I}_n$ to simplify explanation. ν_t has an explicit form

$$\nu_t(x) = \frac{1}{Z(c_t, t)} \exp\left(-\frac{t}{2} |x|^2 + c_t^\top x\right) \nu(x)$$
$$dc_t = dW_t + \mathbf{b}(\nu_t) dt$$

At time t, the initial density is multiplied by a Gaussian with 1/t variance, while the center of the Gaussian is random.

Demonstration of Eldan's stochastic localization in 2 dimension

Initialized with uniform distribution over a convex set (n = 2)

Say we want to show a "property A" of the density ν

- Transform via stochastic localization
- **Prove** "property A" for ν_t (usually easier)
- **Relate** "property A" of ν_t to that of ν (via SDE analysis)

Say we want to show a "property A" of the density ν

- Transform via stochastic localization
- **Prove** "property A" for ν_t (usually easier)
- **Relate** "property A" of ν_t to that of ν (via SDE analysis)

See survey paper in 2022 ICM proceedings [Eldan], "property A" can be

- isoperimetric inequality (e.g. KLS conjecture [KLS '95])
- \cdot concentration of Lipschitz functions in Gaussian space
- \cdot noise stability inequality
- Poincaré inequality ...

- 1. The desired functional inequality is then our "property A"
- 2. Hopefully, this "property A" is easier to prove for the process at some time *t*
- 3. We put assumptions to make the approximate conservation of variance analysis go through

Use of localization schemes for sampling proofs

The probability measure on $\{-1, +1\}^n$ defined as

 $\mu(x) \propto \exp(\langle x, Jx \rangle + \langle h, x \rangle)$

is called Ising model with interaction matrix $J \in \mathbb{R}^{n \times n}$ and external field $h \in \mathbb{R}^{n}$.

Glauber dynamics on Ising model

Theorem

Let
$$u_{\tau,v}(x) \propto \mu(x) \exp(-\tau \langle x, Jx \rangle + \langle v, x \rangle)$$
 If

$$\mathsf{Cov}_{\nu_{\tau,v}} \preceq \alpha(\tau) \mathbb{I}_n, \quad \forall \tau \in [0, 1], \forall v$$

Then the MLSI constant of Glauber dynamics

$$\rho_{\text{MLSI}} \ge \frac{1}{n} \exp\left(-2 \left\|J\right\|_2 \int_0^1 \alpha(\tau) d\tau\right)$$

Glauber dynamics on Ising model

Theorem

Let
$$u_{\tau,v}(x) \propto \mu(x) \exp(-\tau \langle x, Jx \rangle + \langle v, x \rangle)$$
 If

$$\mathsf{Cov}_{
u_{ au, \vee}} \preceq lpha(au) \mathbb{I}_n, \quad \forall au \in [0, 1], \forall u$$

Then the MLSI constant of Glauber dynamics

$$\rho_{\mathsf{MLSI}} \geq \frac{1}{n} \exp\left(-2 \left\|J\right\|_2 \int_0^1 \alpha(\tau) d\tau\right)$$

For J be a positive-definite matrix with $||J||_2 < \frac{1}{2}$ and $v \in \mathbb{R}^n$, adapting Bauerschmidt, Dagallier '22, we have

$$\|\operatorname{Cov}(\nu_{\tau,\nu})\|_{2} \leq \frac{1}{1 - 2(1 - \tau) \|J\|_{2}},$$

$$c_{1} \geq \frac{1}{2} (1 - 2 \|J\|_{2})$$

leading to $\rho_{MLSI} \ge \frac{1}{n} (1 - 2 ||J||_2).$

- The condition $\|J\|_2 \leq \frac{1}{2}$ is tight in general, as it is tight for Curie-Weiss model
- However, for the Sherrington-Kirkpatrick model, which assumes $J = \frac{\beta}{2}A$ where A is drawn from GOE(n). The above approach only gets fast mixing of Glauber dynamics for $\beta < \frac{1}{4}$, while the conjectured phase transition is at $\beta < 1$.

Take control matrix $C_t = (2J)$, for $t \in [0, 1]$,

$$\nu_t(x) \propto \mu(x) \exp(-t \langle x, Jx \rangle + \langle c_t, x \rangle)$$
$$\propto \exp((1-t) \langle x, Jx \rangle + \langle h + c_t, x \rangle)$$

where $c_t = C_t^{\frac{1}{2}} dW_t + \mathbf{b}(\nu_t) dt$.

Take control matrix $C_t = (2J)$, for $t \in [0, 1]$,

$$\nu_t(x) \propto \mu(x) \exp(-t \langle x, Jx \rangle + \langle c_t, x \rangle)$$
$$\propto \exp((1-t) \langle x, Jx \rangle + \langle h + c_t, x \rangle)$$

where $c_t = C_t^{\frac{1}{2}} dW_t + \mathbf{b}(\nu_t) dt$.

At time t = 1, ν_t becomes a product measure (so easy to show MLSI).

Let's take a look at the evolution of entropy

Evolution of entropy along Eldan's SL

For $f: \mathcal{X} \to \mathbb{R}_+$

$$d\operatorname{Ent}_{\nu_t}[f] = -\frac{1}{2}\mathbb{E}_{\nu_t}[f] \left| C_t^{\frac{1}{2}}(\mathbf{b}(\omega_t) - \mathbf{b}(\nu_t)) \right|^2 dt + \operatorname{martingale}$$

where ω_t is the probability measure $\propto f \nu_t$.

Additionally, if $Cov(\mathcal{T}_v \nu_t) \preceq A_t, \forall v$, then

$$\frac{1}{2}\mathbb{E}_{\nu_t}[f] \left| C_t^{\frac{1}{2}}(\mathbf{b}(\omega_t) - \mathbf{b}(\nu_t)) \right|^2 \le \left\| C_t^{\frac{1}{2}} A_t C_t^{\frac{1}{2}} \right\|_2 \operatorname{Ent}_{\nu_t}[f]$$

Solving the equation, we obtain approximate conservation of entropy

$$\mathbb{E}[\mathsf{Ent}_{
u_t}[f]] \geq e^{-2\|J\|_2 \int_0^t lpha(au) d au} \mathsf{Ent}_{
u_0}[f]$$

Use of localization schemes for entropy decay

Negative-fields localization

The hardcore model

Given a graph G = (V, E) with |V| = n, a hardcore model with fugacity λ on $\{-1, +1\}^n$ is

 $\mu(\sigma) \propto \lambda^{|l_{\sigma}|},$

where $\mu(\sigma) > 0$ if the set $I_{\sigma} = \{v \in V \mid \sigma_v = +1\}$ coorresponds to an independent set of *G*.

Given a measure ν on $\{-1,1\}^n$, the process $\{\nu_t\}_{t>0}$ evolves as

• For $x \in \{-1, 1\}^n$, ν_t solves the SDE

$$d\nu_{\rm S}(x) = \nu_{\rm S}(x) \left\langle x - \mathbf{b}(\nu_{\rm S}), dJ_{\rm S} \right\rangle,$$

where

$$dJ_{s,i} = -ds + \frac{1}{1 + \mathbf{b}(\nu_s)_i} N_{s,i}$$

where $N_{s,i}$ is a Poisson point process with intensity $1 + \mathbf{b}(\nu_s)_i$

Inspired by field dynamics in Chen, Feng, Yin, and Zhang '21

How does the measure ν_t look like?

- At time t, define $A_t = \{i \in \{1, ..., n\} \mid N_{t,i} \ge 1\}$. Since $N_{t,i}$ is non-decreasing, A_t is an almost surely non-descreasing process of subsets of $\{1, ..., n\}$.
- We can write ν_t as

$$u_t = \mathcal{T}_{-t\vec{1}}\mathcal{R}_{\mathsf{A}_t}
u$$

" ν_t is the density obtained by pinning all coordinates in A_t to +1 and then tilt by $-t\vec{1}$ "

How does the measure ν_t look like?

- At time t, define $A_t = \{i \in \{1, ..., n\} \mid N_{t,i} \ge 1\}$. Since $N_{t,i}$ is non-decreasing, A_t is an almost surely non-descreasing process of subsets of $\{1, ..., n\}$.
- We can write ν_t as

$$u_t = \mathcal{T}_{-t\vec{1}}\mathcal{R}_{\mathsf{A}_t}
u$$

" ν_t is the density obtained by pinning all coordinates in A_t to +1 and then tilt by $-t\vec{1}$ "

What is remaining?

- The mixing analysis on measures with large tilts are well-known in [Erbar, Henderson, Menz and Tetali '17]
- We need to study the evolution of the process: this is where we use properties of the hardcore model to ensure approximate conservation of entropy.

Summary

- Introduced localization schemes to analyze mixing
- For each localization scheme,
 - \cdot we can study the evolution of variance (or entropy)
 - assumptions to ensure the approximate conservation of variance (or entropy) are usually the key assumptions
- Designing Localization schemes allows us to take advantage of our insights about target distributions
 - Recover results of spectral independence/fractional log-concavity
 - Optimal O(n log n) Glauber dynamics mixing bound for Ising models in the uniqueness regime under any external fields
 - O(n log n) Glauber dynamics mixing bound for the hardcore model in the tree-uniqueness regime

Thank you!