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Outline

1. Spectral independence via coordinate-by-coordinate
localization

2. Glauber dynamics mixing in Ising model via Eldan’s
stochastic localization

3. Glauber dynamics mixing in hardcore model via negative
fields localization
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Setup: sampling from a target measure

Given a target measure µ (possibly unnormalized), on a state
space X = {−1,+1}n or Rn, we want to draw samples X ∼ µ.
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Glauber dynamics for sampling µ on {−1,+1}n

At current state x ∈ {−1,+1}n, draw index i uniformly from [n]

• move to y = x⊕ ei with probability µ(y)
µ(y)+µ(x)

• otherwise, stay at x

Denote this transition kernel Px→y.

Mixing time: starting from initial measure µini, let µiniPk denote
the measure at time, how many iterations does it take so that

TV(µ, µiniPk) ≤ ε?
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Mixing time analysis via functional inequalities (1)

Define the Dirichlet form
EP(f,g) = 〈(I− P)f,g〉µ

Poincaré inequality (or spectral gap)

λVarµ(f) ≤ EP(f, f), ∀f

For reversible lazy Markov chain, it implies variance decay:

Varµ Pf ≤ (1− λ) Varµ f, ∀f

Take f = µiniPk
µ , we can bound chi-squared divergence decay,

leading to mixing time
1
λ

(
log

1
µini,min

+ log
1
ε

)
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Mixing time analysis via functional inequalities (2)

Modified Log-Sobolev inequality (MLSI)

ρMLSIEntµ(f) ≤ EP(f, log f), ∀f ≥ 0

We can bound KL-divergence decay, leading to mixing time

1
ρMLSI

(
log log

1
µini,min

+ log
1
ε

)
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From now on, we focus on functional inequalities

• Target measure µ

• 2n × 2n Markov transition kernel P
• To prove mixing time, it suffice to prove

λVarµ(f) ≤ EP(f, f)

For product measure, it is easy.
Other than that, for what kind of target measure, can we prove
spectral gap?
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Coordinate-by-coordinate
localization



Spectral independence [Anari, Liu, Oveis Gharan ’20]

Define the n× n pairwise influence matrix Ψµ

Ψµ[i, j] = Px∼µ(xj = +1 | xi = +1)− Px∼µ(xj = +1 | xi = −1)

µ is η-spectrally independent if

‖Ψµ‖2 ≤ η

A sufficient condition for proving spectral gap: if all
conditionals of µ (the law of X | Xi = ±1 and X | Xi = ±1, Xj = ±1,
etc.) are η-spectrally independent, then spectral gap

λ ≥
n−2∏

i=0

(
1− η

n− i

)
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Spectral independence is a condition on covariance

Since

Covµ = diag(Covµ)(Ψµ + In)

we have

Covµ , (1+ η) diag(Covµ) ⇔ ‖Ψµ + In‖2 ≤ 1+ η.

Constraining the covariance makes sense, but
Q1: why do we have to put assumptions on all conditionals?
...trickling down, HDX, local-to-global
Q2: what are other ways to put assumptions to prove spectral
gap, when direct proof is difficult?
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What are localization schemes?

A localization scheme is a mapping from measure ν to a
stochastic process (νt)t≥0 such that

• ν0 = ν

• For any measurable A, νt(A) is a martingale (in other
words, E[νt(A) | {ντ (A), τ ≤ s}] = νs(A), ∀0 ≤ s ≤ t)

Our main standpoint:
• You pick a localization scheme
• Study the evolution of the variance Varνt(f) along the
process (νt)t

• Put assumptions to approximately conserve variance, then
you can prove spectral gap!
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Spectral independence assumption comes from
coordinate-by-coordinate localization

Coordinate-by-coordinate localization
Start from ν on {−1,+1}n. Let (k1, . . . , kn) be a random
permutation of [n], and X is a random draw from ν ,
independent of the rest. Define

νi = law of
{
X | Xk1 , . . . , Xki

}

We claim that
In [Anari, Liu, Oveis Gharan ’20], η-spectrally independence for every
conditional of ν is a condition to conserve variance along the
coordinate-by-coordinate localization

(
1− η

n− i

)
E[Varνi(f)] ≤ E[Varνi+1(f)]
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Derivation: approximate conservation of variance
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Similarly,

• Semi-log-concavity [Eldan, Shamir ’20]
• Fractional log-concavity [Alimohammadi, Anari, Shiragur, Vuong ’21]
• Entropic independence [Anari, Jain, Koehler, Pham, Vuong ’21]

which bounds covariance of all tilted measures,

are sufficient conditions to approximately conserve entropy
along the coordinate-by-coordinate localization
so that one could prove MLSI
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Beyond coordinate-by-coordinate localization?
Let’s first take a tour beyond the Boolean cube to Rn, where
Eldan first introduced stochastic localization [Eldan ’13]
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Eldan’s stochastic localization



Eldan’s stochastic localization [Eldan ’13]

Given an density ν on Rn, the density at time t is the solution
of the SDE

dνt(x) = (x− b(νt))%C
1
2
t dWt · νt(x), ∀x ∈ Rn

where b(νt) is the mean of νt and Wt is the Brownian motion.
Take Ct = In to simplify explanation.
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Explicit form of the random measure at time t

νt has an explicit form

νt(x) =
1

Z(ct, t)
exp

(
− t
2 |x|

2 + c%t x
)
ν(x)

dct = dWt + b(νt)dt

At time t, the initial density is multiplied by a Gaussian with 1/t
variance, while the center of the Gaussian is random.
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Demonstration of Eldan’s stochastic localization in 2 dimension

Initialized with uniform distribution over a convex set (n = 2)
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Stochastic localization are used in high dimensional probability

Say we want to show a “property A” of the density ν

• Transform via stochastic localization
• Prove “property A” for νt (usually easier)
• Relate “property A” of νt to that of ν (via SDE analysis)

See survey paper in 2022 ICM proceedings [Eldan], “property A”
can be

• isoperimetric inequality (e.g. KLS conjecture [KLS ’95])
• concentration of Lipschitz functions in Gaussian space
• noise stability inequality
• Poincaré inequality ...
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Focus on sampling

1. The desired functional inequality is then our “property A”
2. Hopefully, this “property A” is easier to prove for the
process at some time t

3. We put assumptions to make the approximate
conservation of variance analysis go through
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Use of localization schemes for sampling proofs

µini

µiniP

P

P

µiniPk

µiniPk+1

Pk−1 µ

.

µt

localization

Varµ(f) ≈ E[Varµt(f)]

EP(f, f) ≥ E[EP(f, f)]

variance decay of µt

(a) (b)

approximate conservation of variance

supermarginale

?
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Ising model

The probability measure on {−1,+1}n defined as

µ(x) ∝ exp(〈x, Jx〉+ 〈h, x〉)

is called Ising model with interaction matrix J ∈ Rn×n and
external field h ∈ Rn.
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Glauber dynamics on Ising model

Theorem
Let ντ,v(x) ∝ µ(x) exp(−τ 〈x, Jx〉+ 〈v, x〉) If

Covντ,v , α(τ)In, ∀τ ∈ [0, 1], ∀v

Then the MLSI constant of Glauber dynamics

ρMLSI ≥
1
n exp

(
−2 ‖J‖2

∫ 1

0
α(τ)dτ

)

For J be a positive-definite matrix with ‖J‖2 < 1
2 and v ∈ Rn,

adapting Bauerschmidt, Dagallier ’22, we have

‖Cov (ντ,v)‖2 ≤
1

1− 2(1− τ) ‖J‖2
,

leading to ρMLSI ≥ 1
n (1− 2 ‖J‖2).
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Tightness

• The condition ‖J‖2 ≤ 1
2 is tight in general, as it is tight for

Curie-Weiss model
• However, for the Sherrington-Kirkpatrick model, which
assumes J = β

2 A where A is drawn from GOE(n). The above
approach only gets fast mixing of Glauber dynamics for
β < 1

4 , while the conjectured phase transition is at β < 1.
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What happens when we apply Eldan’s stochastic localization?

Take control matrix Ct = (2J), for t ∈ [0, 1],

νt(x) ∝ µ(x) exp(−t 〈x, Jx〉+ 〈ct, x〉)
∝ exp((1− t) 〈x, Jx〉+ 〈h+ ct, x〉)

where ct = C
1
2
t dWt + b(νt)dt.

At time t = 1, νt becomes a product measure (so easy to show
MLSI).

Let’s take a look at the evolution of entropy
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Evolution of entropy along Eldan’s SL

For f : X → R+

dEntνt [f] = − 12Eνt [f]
∣∣∣∣C

1
2
t (b(ωt)− b(νt))

∣∣∣∣
2
dt+martingale

where ωt is the probability measure ∝ fνt.

Additionally, if Cov(Tvνt) , At, ∀v, then

1
2Eνt [f]

∣∣∣∣C
1
2
t (b(ωt)− b(νt))

∣∣∣∣
2
≤

∥∥∥∥C
1
2
t AtC

1
2
t

∥∥∥∥
2
Entνt [f]

Solving the equation, we obtain approximate conservation of
entropy

E[Entνt [f]] ≥ e−2‖J‖2
∫ t
0 α(τ)dτEntν0 [f]
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Use of localization schemes for entropy decay

µini

µiniP

P

P

µiniPk

µiniPk+1

Pk−1 µ

.

µt

localization

Entµ(f) ≈ E[Entµt(f)]

EP(f, log f) ≥ E[EP(f, log f)]

entropy decay of µt

(a) (b)

approximate conservation of entropy

supermarginale

?
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Negative-fields localization



The hardcore model

Given a graph G = (V, E) with |V| = n, a hardcore model with
fugacity λ on {−1,+1}n is

µ(σ) ∝ λ|Iσ |,

where µ(σ) > 0 if the set Iσ = {v ∈ V | σv = +1} coorresponds
to an independent set of G.
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Negative-fields localization

Given a measure ν on {−1, 1}n, the process {νt}t≥0 evolves as

• For x ∈ {−1, 1}n, νt solves the SDE

dνs(x) = νs(x) 〈x− b(νs),dJs〉 ,

where

dJs,i = −ds+ 1
1+ b(νs)i

Ns,i

where Ns,i is a Poisson point process with intensity
1+ b(νs)i

Inspired by field dynamics in Chen, Feng, Yin, and Zhang ’21
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How does the measure νt look like?

• At time t, define At =
{
i ∈ {1, . . . ,n} | Nt,i ≥ 1

}
.

Since Nt,i is non-decreasing, At is an almost surely
non-descreasing process of subsets of {1, . . . ,n}.

• We can write νt as

νt = T−t&1RAtν

“νt is the density obtained by pinning all coordinates in At
to +1 and then tilt by −t+1”

What is remaining?
• The mixing analysis on measures with large tilts are well-known
in [Erbar, Henderson, Menz and Tetali ’17]

• We need to study the evolution of the process: this is where we
use properties of the hardcore model to ensure approximate
conservation of entropy.
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Summary

• Introduced localization schemes to analyze mixing
• For each localization scheme,

• we can study the evolution of variance (or entropy)
• assumptions to ensure the approximate conservation of
variance (or entropy) are usually the key assumptions

• Designing Localization schemes allows us to take
advantage of our insights about target distributions

• Recover results of spectral independence/fractional
log-concavity

• Optimal O(n log n) Glauber dynamics mixing bound for
Ising models in the uniqueness regime under any external
fields

• O(n log n) Glauber dynamics mixing bound for the
hardcore model in the tree-uniqueness regime
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Thank you!
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