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Inducting on the number of variables 

Coupling with a product space 

* product space
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All close to product spaces 
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Bafna-Hopkins-Kaufman-LoveX obtain the same result via different techniques

Decomposition of f ∈ L2 (μ)

Use walk operators defined on HDXs to
obtain almost orthogonal decomposition

[BHKL]
Use decomposition analogous to Efron-
Stein decomposition over product spaces

This work
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Useful notions for hypercontractivity
An orthogonal decomposition of f ∈ L2(μ)

orthogonal and unique

Example: {±1}n, f = ∑
S⊆[k]

̂f(S) χS
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DS,x f has degree at most deg( f ) − |S |

A derivative operator for f ∈ L2(μ)
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DS,x f( ⋅ ) = ∑
T⊇S
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∥DS,x f − (DS,x f )≤deg( f )−|S|∥2 ≤ Ok(ϵ)∥f∥2

DS,x f( ⋅ ) = ∑
T⊆S

(−1)|T|A[k]∖T f(x, ⋅ )
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2 !

Generalized Efron-Stein decomposition of (Vk, (μ(0))k)

ϵ-close to orthogonal

f = ∑
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f =S

Different decompositions are close in ∥.∥2 distance
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For ϵ-product space (Ω, μ) and f ∈ L2(μ)

∥f∥4
4 ≤ (400d)dδ ⋅ ∥f∥2

2 + Ok(ϵδ)∥f∥2
2

Theorem:
if f is deg-d and (d, δ)-global, then

+ induction on the deg of f

∥f∥4
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2 + ∑
∅≠T⊆[k]
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4] + Ok(ϵδ)∥f∥2
2

Key lemma:

=

Hypercontractivity over -product spaceϵ



Open questions

Show (global) hypercontractivity for other spaces 
(coboundary expanders, other partially ordered sets, 
noncommutative probability space)

Improve the parameter  by considering  and/or 
stochastic processes

C Tρ




