Global hypercontractivity inequality on ε-product spaces

Tom Gur

Siqi Liu
joint work with

Noam Lifshitz

Setup

Consider a probability space (Ω, μ). A linear operator T_{ρ} over $L^{\infty}(\mu)$ is hypercontractive if

Setup

Consider a probability space (Ω, μ). A linear operator T_{ρ} over $L^{\infty}(\mu)$ is hypercontractive if
(1) $\forall f \in L^{1}(\mu), 0<\rho<1,\left\|T_{\rho} f\right\|_{1} \leq\|f\|_{1}$
(2) $\exists \rho_{0}>0$, s.t. $\forall 0<\rho<\rho_{0},\left\|T_{\rho} f\right\|_{4}^{4} \leq C\|f\|_{2}^{4}$

Setup

Consider a probability space (Ω, μ). A linear operator T_{ρ} over $L^{\infty}(\mu)$ is hypercontractive if
(1) $\forall f \in L^{1}(\mu), 0<\rho<1,\left\|T_{\rho} f\right\|_{1} \leq\|f\|_{1}$
(2) $\exists \rho_{0}>0$, s.t. $\forall 0<\rho<\rho_{0},\left\|T_{\rho} f\right\|_{4}^{4} \leq C\|f\|_{2}^{4}$

$$
\text { * where }\|f\|_{p}^{p}=\mathbb{E}_{\mu}\left[f^{p}\right]
$$

Notes

$$
\begin{gathered}
T_{\rho} \text { is a semigroup operator defined as } \\
T_{\rho}=e^{-\log \rho \cdot L} \text { where } L f(x)=\Delta f(x)-\langle x, \nabla f(x)\rangle
\end{gathered}
$$

Notes

$$
\begin{gathered}
T_{\rho} \text { is a semigroup operator defined as } \\
T_{\rho}=e^{-\log \rho \cdot L} \text { where } L f(x)=\Delta f(x)-\langle x, \nabla f(x)\rangle
\end{gathered}
$$

Over Gaussian space T_{ρ} is the Ornstein-Uhlenbeck semigroup.
Over the Boolean hypercube T_{ρ} is the noise operator.

Notes

Notes

$$
\begin{aligned}
& \text { In a blackbox way, } \\
& \left\|T_{\rho} f\right\|_{4}^{4} \leq C\|f\|_{2}^{4} \Rightarrow\left\|T_{\rho} f\right\|_{q}^{q} \leq C_{p, q}\|f\|_{p}^{q} \forall 1<p<q
\end{aligned}
$$

Notes

$$
\begin{gathered}
\text { In a blackbox way, } \\
\left\|T_{\rho} f\right\|_{4}^{4} \leq C\|f\|_{2}^{4} \Rightarrow\left\|T_{\rho} f\right\|_{q}^{q} \leq C_{p, q}\|f\|_{p}^{q} \forall 1<p<q
\end{gathered}
$$

Sometimes written as $\|f\|_{4}^{4} \leq C_{d}\|f\|_{2}^{4}$ rather than

$$
\left\|T_{\rho} f\right\|_{4}^{4} \leq C\|f\|_{2}^{4}
$$

Hypercontractivity inequality

Theorem: We say (Ω, μ) is hypercontractive if there

 exists C such that $\forall f \in L^{2}(\mu) \quad\|f\|_{4}^{4} \leq C(\operatorname{deg}(f)) \cdot\|f\|_{2}^{4}$
Hypercontractivity inequality

Theorem: We say (Ω, μ) is hypercontractive if there exists C such that $\forall f \in L^{2}(\mu) \quad\|f\|_{4}^{4} \leq C(\operatorname{deg}(f)) \cdot\|f\|_{2}^{4}$

Implications

Improved (anti-)concentration for f :

$$
\begin{array}{cc}
\forall t>0 & \forall t \in(0,1) \\
\operatorname{Pr}\left[|f| \geq t\|f\|_{2}\right] \leq C / t^{4} & \operatorname{Pr}\left[|f| \geq t\|f\|_{2}\right] \geq\left(1-t^{2}\right)^{2} / C
\end{array}
$$

Hypercontractivity inequality

Theorem: We say (Ω, μ) is hypercontractive if there exists C such that $\forall f \in L^{2}(\mu) \quad\|f\|_{4}^{4} \leq C(\operatorname{deg}(f)) \cdot\|f\|_{2}^{4}$

Implications

Improved (anti-)concentration for f :

$$
\begin{array}{cc}
\forall t>0 & \forall t \in(0,1) \\
\operatorname{Pr}\left[|f| \geq t\|f\|_{2}\right] \leq C / t^{4} & \operatorname{Pr}\left[|f| \geq t\|f\|_{2}\right] \geq\left(1-t^{2}\right)^{2} / C
\end{array}
$$

Hypercontractivity inequality

Theorem: We say (Ω, μ) is hypercontractive if there exists C such that $\forall f \in L^{2}(\mu) \quad\|f\|_{4}^{4} \leq C(\operatorname{deg}(f)) \cdot\|f\|_{2}^{4}$

Implications

Level- d inequality: There exists C such that for all

$$
f: \Omega \rightarrow\{0,1\} \quad\left\|f^{\leq d}\right\|_{2} \leq C^{1 / 4} \cdot\|f\|_{2}^{3 / 2}
$$

Hypercontractivity inequality

Theorem: We say (Ω, μ) is hypercontractive if there exists C such that $\forall f \in L^{2}(\mu) \quad\|f\|_{4}^{4} \leq C(\operatorname{deg}(f)) \cdot\|f\|_{2}^{4}$

Implications

Level- d inequality: There exists C such that for all

$$
f: \Omega \rightarrow\{0,1\} \quad\left\|f^{\leq d}\right\|_{2} \leq C^{1 / 4} \cdot\|f\|_{2}^{3 / 2}
$$

Hypercontractivity $\Rightarrow \quad$ Weights of low density boolean functions concentrate on high degrees

Hypercontractivity inequality

For certain Markov chain G (defined by T_{ρ}) over (Ω, μ) :
Small Set Expander (Qualitative): G is a small set expander if every small set of vertices has most adjacent edges outside the set.

Hypercontractivity inequality

For certain Markov chain G (defined by T_{ρ}) over (Ω, μ) :

Small Set Expander (Qualitative): G is a small set expander

 if every small set of vertices has most adjacent edges outside the set.

Hypercontractivity inequality

For certain Markov chain G (defined by T_{ρ}) over (Ω, μ) :

Small Set Expander (Qualitative): G is a small set expander

 if every small set of vertices has most adjacent edges outside the set.

Hypercontractivity inequality

For certain Markov chain G (defined by T_{ρ}) over (Ω, μ) :

Small Set Expander (Qualitative): G is a small set expander

 if every small set of vertices has most adjacent edges outside the set.

Hypercontractivity inequality

For certain Markov chain G (defined by T_{ρ}) over (Ω, μ) :

Small Set Expander (Qualitative): G is a small set expander

 if every small set of vertices has most adjacent edges outside the set.

Hypercontractivity inequality

For certain Markov chain G (defined by T_{ρ}) over (Ω, μ) :

Small Set Expander (Qualitative): G is a small set expander

 if every small set of vertices has most adjacent edges outside the set.Hard instance for Unique Games: small set expanders with many large eigenvalues?

Agreement test on graphs: for Grassmann graph, 2-to-2 Games Conjecture

Hypercontractivity inequality

Hypercontractivity inequality

Weights of low density boolean functions concentrate on high degrees
\Longrightarrow
Small set expansion theorem

Hypercontractivity inequality

Weights of low density boolean functions concentrate on high degrees \Rightarrow

Small set expansion theorem

Hypercontractivity inequality

Weights of low density boolean functions concentrate on high degrees

Small set expansion theorem

$$
\text { for } f \text { indicator function of } A \subseteq\{ \pm 1\}^{n}
$$

$$
T_{\rho} \text { noise operator, } T_{\rho} f(x)=\mathbb{E}_{y \sim N_{\rho}(x)}[f(y)]
$$

Hypercontractivity inequality

Weights of low density boolean functions concentrate on high degrees
\Rightarrow
Small set expansion theorem

$$
\text { for } f \text { indicator function of } A \subseteq\{ \pm 1\}^{n}
$$

$$
T_{\rho} \text { noise operator, } T_{\rho} f(x)=\mathbb{E}_{y \sim N_{\rho}(x)}[f(y)]
$$

$$
\left\|T_{\rho} f\right\|_{2} \leq\left\|f^{\leq d}\right\|_{2}+\rho^{d}\left\|f^{>d}\right\|_{2}
$$

Hypercontractivity inequality

Weights of low density boolean functions concentrate on high degrees
\Rightarrow
Small set expansion theorem

$$
\text { for } f \text { indicator function of } A \subseteq\{ \pm 1\}^{n}
$$

$$
T_{\rho} \text { noise operator, } T_{\rho} f(x)=\mathbb{E}_{y \sim N_{\rho}(x)}[f(y)]
$$

$$
\left\|T_{\rho} f\right\|_{2} \leq\left\|f^{\leq d}\right\|_{2}+\rho^{d}\left\|f^{>d}\right\|_{2}
$$

$$
\leq\left(C_{d}^{1 / 4}\|f\|_{2}^{1 / 2}+\rho^{d}\right)\|f\|_{2}
$$

Hypercontractivity inequality example

Hypercontractivity inequality example

OU hypercontractivity: In standard Gaussian space

Hypercontractivity inequality example

OU hypercontractivity: In standard Gaussian space

$$
\forall 0<\rho<1 / \sqrt{3},\left\|T_{\rho} f\right\|_{4}^{4} \leq\|f\|_{2}^{4}
$$

Hypercontractivity inequality example

OU hypercontractivity: In standard Gaussian space

$$
\forall 0<\rho<1 / \sqrt{3},\left\|T_{\rho} f\right\|_{4}^{4} \leq\|f\|_{2}^{4}
$$

Bonami lemma: for $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R},\|f\|_{4}^{4} \leq 9^{\operatorname{deg}(f)} \cdot\|f\|_{2}^{4}$

More examples

Theorem: We say (Ω, μ) is hypercontractive if there exists C such that $\forall f \in L^{2}(\mu) \quad\|f\|_{4}^{4} \leq C(\operatorname{deg}(f)) \cdot\|f\|_{2}^{4}$

More examples

Theorem: We say (Ω, μ) is hypercontractive if there exists C such that $\forall f \in L^{2}(\mu) \quad\|f\|_{4}^{4} \leq C(\operatorname{deg}(f)) \cdot\|f\|_{2}^{4}$
(Ω, μ)
$C(d)$
constraints on f
[Bon] $\{ \pm 1\}^{n}$, Unif
general product space
S_{n}
$\binom{[n]}{k}$, Unif
multi-slice, Unif

$$
\begin{gathered}
100^{d} \delta /\|f\|_{2}^{2} \\
\exp \left(d^{3}\right) \delta /\|f\|_{2}^{2} \\
\left(\frac{n^{2}}{k(n-k)}\right)^{o(n)}
\end{gathered}
$$

$$
\tilde{O}(n)^{2 n}
$$

f is global
f is global

More examples

Theorem: We say (Ω, μ) is hypercontractive if there exists C such that $\forall f \in L^{2}(\mu) \quad\|f\|_{4}^{4} \leq C(\operatorname{deg}(f)) \cdot\|f\|_{2}^{4}$

	(Ω, μ)	$C(d)$	constraints on	product spaces		
[Bon]	$\{ \pm 1\}^{n}$, Unif	$9^{\text {d }}$	/			
[KLLM]	general product space	$100^{d} \delta /\\|f\\|_{2}^{2}$	f is global			
[FKLM]	S_{n}	$\exp \left(d^{3}\right) \delta /\\|f\\|_{2}^{2}$	f is global			
[OW]	$\binom{[n]}{k}$ Unif	$\left(\frac{n^{2}}{k(n-k)}\right)^{o(n)}$	/			
[FOW]	multi-slice, Unif	$\tilde{O}(n)^{2 n}$	/			

More examples

Theorem: We say (Ω, μ) is hypercontractive if there exists C such that $\forall f \in L^{2}(\mu) \quad\|f\|_{4}^{4} \leq C(\operatorname{deg}(f)) \cdot\|f\|_{2}^{4}$
(Ω, μ)
$C(d)$
constraints on f
[Bon] $\{ \pm 1\}^{n}$, Unif

$[$ Bon $]$	$\{ \pm 1\}^{n}$, Unif	9^{d}	$/$		
$[$ KLLM $]$	general product space	$100^{d} \delta /\\|f\\|_{2}^{2}$	f is global		
$[$ FKLM $]$	S_{n}	$\exp \left(d^{3}\right) \delta /\\|f\\|_{2}^{2}$	f is global		
$[\mathrm{OW}]$	$\binom{[n]}{k}$, Unif	$\left(\frac{n^{2}}{k(n-k)}\right)^{o(n)}$	1		
$[$ FOW $]$	multi-slice, Unif	$\tilde{O}(n)^{2 n}$	1		

product spaces
non-product spaces
but close

Previous approaches

(Ω, μ)
[Bon] $\{ \pm 1\}^{n}$
[KLLM] general product spaces

Previous approaches

(Ω, μ)
[Bon] $\{ \pm 1\}^{n}$
[KLLM] general product spaces

Inducting on the number of variables

Previous approaches

(Ω, μ)
[Bon] $\{ \pm 1\}^{n}$
[KLLM]
general product spaces

Inducting on the number of variables

* product space

Previous approaches

$$
(\Omega, \mu)
$$

$$
\text { [Bon] } \quad\{ \pm 1\}^{n}
$$

[KLLM] general product spaces
[FKLM] $\quad S_{n} \approx[n]^{n}$
[OW]

$$
\binom{[n]}{k} \approx[n]^{k}
$$

[FOW] multi-slice $\approx[n]^{k_{1}+\ldots+k_{n}}$

Inducting on the number of variables

* product space

Previous approaches

$$
(\Omega, \mu)
$$

[Bon] $\quad\{ \pm 1\}^{n}$
[KLLM] general product spaces
[FKLM] $\quad S_{n} \approx[n]^{n}$
[OW] $\binom{[n]}{k} \approx[n]^{k}$
[FOW] multi-slice $\approx[n]^{k_{1}+\ldots+k_{m}}$

Inducting on the number of variables * product space

Coupling with a product space

Previous approaches

$$
(\Omega, \mu)
$$

[Bon] $\quad\{ \pm 1\}^{n}$
[KLLM] general product spaces
[FKLM] $\quad S_{n} \approx[n]^{n}$
[OW]
$\binom{[n]}{k} \approx[n]^{k}$
[FOW] multi-slice $\approx[n]^{k_{1}+\ldots+k_{m}}$

Inducting on the number of variables * product space

Coupling with a product space

* $o_{n}(1)$-close to marginals of a product space

Previous approaches

$$
(\Omega, \mu)
$$

$[$ Bon $]$	$\{ \pm 1\}^{n}$
$[$ KLLM $]$	general product spaces

[FKLM] $\quad S_{n} \approx[n]^{n}$
[OW]
$\binom{[n]}{k} \approx[n]^{k}$
[FOW] multi-slice $\approx[n]^{k_{1}+\ldots+k_{m}}$

Inducting on the number of variables * product space

Coupling with a product space

* $o_{n}(1)$-close to marginals of a product space
$\}$ From log-Sobolev inequality

Previous approaches

$$
(\Omega, \mu)
$$

$[$ Bon $]$	$\{ \pm 1\}^{n}$
$[$ KLLM $]$	general product spaces

[FKLM] $\quad S_{n} \approx[n]^{n}$
[OW] $\quad\binom{[n]}{k} \approx[n]^{k}$
[FOW] multi-slice $\approx[n]^{k_{1}+\ldots+k_{n}}$

Inducting on the number of variables * product space

Coupling with a product space

* $o_{n}(1)$-close to marginals of a product space
$\}$ From log-Sobolev inequality * balanced spaces

Previous approaches

$$
(\Omega, \mu)
$$

[Bon] $\quad\{ \pm 1\}^{n}$
[KLLM] general product spaces
[FKLM] $\quad S_{n} \approx[n]^{n}$
[OW]
[FOW] multi-slice $\approx[n]^{k_{1}+\ldots+k_{m}}$

Inducting on the number of variables * product space

Coupling with a product space

* $o_{n}(1)$-close to marginals of a product space
\} From log-Sobolev inequality * balanced spaces

All close to product spaces

Previous approaches

$$
(\Omega, \mu)
$$

All close to product spaces

Holds for more general almost product spaces?

Can hypercontractivity be generalized to
 "almost" product spaces?

Can hypercontractivity be generalized to
 "almost" product spaces?

Yes! Generalize to ε-product space.

Can hypercontractivity be generalized to "almost" product spaces?

Yes! Generalize to ε-product space.
Product space: $\left(\Omega=V^{k},\left(\mu^{(0)}\right)^{k}\right)$

Can hypercontractivity be generalized to "almost" product spaces?

Yes! Generalize to ε-product space.
Product space: $\left(\Omega=V^{k},\left(\mu^{(0)}\right)^{k}\right)$
ε-product space: $\left(\Omega=V^{k}, \mu\right)$ s.t.

Can hypercontractivity be generalized to "almost" product spaces?

Yes! Generalize to ε-product space.
Product space: $\left(\Omega=V^{k},\left(\mu^{(0)}\right)^{k}\right)$
ε-product space: $\left(\Omega=V^{k}, \mu\right)$ s.t.
\forall conditional distribution $\left(V^{k-|S|}, \mu^{\prime}=\mu_{s \rightarrow x}\right)$
conditioned on coordinates in S being assigned x

Can hypercontractivity be generalized to "almost" product spaces?

Yes! Generalize to ε-product space.
Product space: $\left(\Omega=V^{k},\left(\mu^{(0)}\right)^{k}\right)$
ε-product space: $\left(\Omega=V^{k}, \mu\right)$ s.t.
\forall conditional distribution $\left(V^{k-|S|}, \mu^{\prime}=\mu_{S \rightarrow x}\right)$
conditioned on coordinates in S being assigned x $\forall f, g: V \rightarrow \mathbb{R}$ and variables i, j in $[k] \backslash S$

Can hypercontractivity be generalized to "almost" product spaces?

Yes! Generalize to ε-product space.
Product space: $\left(\Omega=V^{k},\left(\mu^{(0)}\right)^{k}\right)$ ε-product space: $\left(\Omega=V^{k}, \mu\right)$ s.t.
\forall conditional distribution $\left(V^{k-|S|}, \mu^{\prime}=\mu_{S \rightarrow x}\right)$
conditioned on coordinates in S being assigned x $\forall f, g: V \rightarrow \mathbb{R}$ and variables i, j in $[k] \backslash S$

$$
|\operatorname{Corr}(f, g)|=\frac{\left|\left\langle f-\mathbb{E}_{\mu_{i}^{\prime}} f, g-\mathbb{E}_{\mu_{j} g} g\right\rangle_{\mu_{i, k}^{\prime}}\right|}{\left\|f-\mathbb{E}_{\mu_{i}} f\right\|_{\mu_{i}} \mid l g-\mathbb{E}_{\mu_{j}^{\prime}} g \|_{\mu_{j}^{\prime}}} \leq \epsilon
$$

Can hypercontractivity be generalized to "almost" product spaces?

Yes! Generalize to ε-product space.
Product space: $\left(\Omega=V^{k},\left(\mu^{(0)}\right)^{k}\right)$
ε-product space: $\left(\Omega=V^{k}, \mu\right)$ s.t.
\forall conditional distribution $\left(V^{k-|S|}, \mu^{\prime}=\mu_{s \rightarrow x}\right)$
conditioned on coordinates in S being assigned x $\forall f, g: V \rightarrow \mathbb{R}$ and variables i, j in $[k] \backslash S$

$$
|\operatorname{Corr}(f, g)|=\frac{\left|\left\langle f-\mathbb{E}_{\mu} f, g-\mathbb{E}_{\mu,} g\right\rangle_{\mu_{j}}\right|}{\left\|f-\mathbb{E}_{\mu_{j}}\right\|_{\mu_{i} i} \mid g-\mathbb{E}_{\mu j} g \|_{\mu_{j}} \leq \epsilon} \leq \epsilon
$$

close to pair-wise independent

Example: ϵ high-dimensional expander

Example: ϵ high-dimensional expander

ϵ-HDXs are hypergraphs with associated edge distribution $\left(V^{k}, \mu\right)$ over size k hyperedges

Example: ϵ high-dimensional expander

ϵ-HDXs are hypergraphs with associated edge distribution $\left(V^{k}, \mu\right)$ over size k hyperedges

$$
\left(E=V^{3}, \mu\right)
$$

Example: ϵ high-dimensional expander

ϵ-HDXs are hypergraphs with associated edge distribution $\left(V^{k}, \mu\right)$ over size k hyperedges with $\lambda_{2}($ Link $) \leq \epsilon$ for every edge

Example: ϵ high-dimensional expander

ϵ-HDXs are hypergraphs with associated edge distribution $\left(V^{k}, \mu\right)$ over size k hyperedges with $\lambda_{2}($ Link $) \leq \epsilon$ for every edge

Link of an edge $\{2\}$:

$$
\left(V^{3}, \mu\right)
$$

Example: ϵ high-dimensional expander

ϵ-HDXs are hypergraphs with associated edge distribution $\left(V^{k}, \mu\right)$ over size k hyperedges with $\lambda_{2}(\operatorname{Link}) \leq \epsilon$ for every edge

Link of an edge $\{2\}$:
$\left(V^{3}, \mu\right)$

After removing $\{2\}$:

Example: ϵ high-dimensional expander

ϵ-HDXs are hypergraphs with associated edge distribution $\left(V^{k}, \mu\right)$ over size k hyperedges with $\lambda_{2}(\operatorname{Link}) \leq \epsilon$ for every edge

Link of an edge $\{2\}$:

After removing $\{2\}$:

(walk mixes fast)

Example: ϵ high-dimensional expander

Example: ϵ high-dimensional expander

ϵ-product space: $\left(V^{k}, \mu\right)$ s.t.

$$
\epsilon \text {-HDX: }\left(V^{k}, \mu\right) \text { s.t. }
$$

Example: ϵ high-dimensional expander

ϵ-product space: $\left(V^{k}, \mu\right)$ s.t.
\forall conditional distribution $\left(V^{k-|S|}, \mu^{\prime}=\mu_{s \rightarrow x}\right)$
conditioned on coordinates in S being assigned x

$$
\epsilon \text {-HDX: }\left(V^{k}, \mu\right) \text { s.t. }
$$

\forall link distribution $\left(V^{k-|S|}, \mu^{\prime}=\mu_{s \rightarrow x}\right)$ conditioned on coordinates in S being assigned x variables in $V^{k-|S|}$ have identical marginal dist $\mu^{\prime(0)}$

Example: ϵ high-dimensional expander

ϵ-product space: $\left(V^{k}, \mu\right)$ s.t. \forall conditional distribution $\left(V^{k-|S|}, \mu^{\prime}=\mu_{s \rightarrow x}\right)$ conditioned on coordinates in S being assigned x $\forall f, g: V \rightarrow \mathbb{R}$ and variables i, j in $[k] \backslash S$

$$
\epsilon \text {-HDX: }\left(V^{k}, \mu\right) \text { s.t. }
$$

\forall link distribution $\left(V^{k-|S|}, \mu^{\prime}=\mu_{s \rightarrow x}\right)$ conditioned on coordinates in S being assigned x variables in $V^{k-|S|}$ have identical marginal dist $\mu^{\prime(0)}$

$$
\forall f, g: V \rightarrow \mathbb{R}
$$

Example: ϵ high-dimensional expander

ϵ-product space: $\left(V^{k}, \mu\right)$ s.t. \forall conditional distribution $\left(V^{k-|S|}, \mu^{\prime}=\mu_{s \rightarrow x}\right)$ conditioned on coordinates in S being assigned x $\forall f, g: V \rightarrow \mathbb{R}$ and variables i, j in $[k] \backslash S$

$$
\operatorname{Corr}(f, g)=\frac{\left\langle f-\mathbb{E}_{\mu_{i}} f, g-\mathbb{E}_{\mu_{j} g} g\right\rangle_{\mu_{i j}^{\prime}}}{\left\|f-\mathbb{E}_{\mu_{i}} f\right\|_{\mu_{1}} \|} \leq g-\mathbb{E}_{\mu_{j} j} \|_{\mu_{j}^{\prime}} \leq \epsilon
$$

$$
\epsilon \text {-HDX: }\left(V^{k}, \mu\right) \text { s.t. }
$$

\forall link distribution $\left(V^{k-|S|}, \mu^{\prime}=\mu_{s \rightarrow x}\right)$
conditioned on coordinates in S being assigned x

$$
\text { variables in } V^{k-|S|} \text { have identical marginal dist } \mu^{\prime(0)}
$$

$$
\begin{gathered}
\forall f, g: V \rightarrow \mathbb{R} \\
\lambda_{2}(\text { Link })=\max _{f, g} \frac{\left\langle f-\mathbb{E}_{\mu^{(0)}} f, g-\mathbb{E}_{\left.\mu^{\prime}(0) g\right\rangle_{\mu^{\prime}}}^{\left\|f-\mathbb{E}_{\left.\mu^{(0)}\right)} f\right\|_{\left.\mu^{\prime}\right)}\left\|g-\mathbb{E}_{\mu^{(0)} g} g\right\|_{\mu^{(0)}}} \leq \epsilon\right.}{}=\epsilon
\end{gathered}
$$

Example: ϵ high-dimensional expander

ϵ-product space: $\left(V^{k}, \mu\right)$ s.t. \forall conditional distribution $\left(V^{k-|S|}, \mu^{\prime}=\mu_{s \rightarrow x}\right)$ conditioned on coordinates in S being assigned x $\forall f, g: V \rightarrow \mathbb{R}$ and variables i, j in $[k] \backslash S$

$\left\langle f-\mathbb{E}_{\mu_{i}} f, g-\mathbb{E}_{\mu_{j}} g\right\rangle_{\mu_{i j}}$

ϵ high-dimensional expanders are ϵ-product spaces

$$
\epsilon \text {-HDX: }\left(V^{k}, \mu\right) \text { s.t. }
$$

$$
\begin{aligned}
& \forall \text { link distribution }\left(V^{k-|S|}, \mu^{\prime}=\mu_{S \rightarrow x}\right) \\
& \text { conditioned on coordinates in } S \text { being assigned } x \\
& \text { variables in } V^{k-|S|} \text { have identical marginal dist } \mu^{\prime(0)} \\
& \qquad \forall f, g: V \rightarrow \mathbb{R} \\
& \lambda_{2}(\text { Link })=\max _{f, g} \frac{\left\langle f-\mathbb{E}_{\mu^{\prime}(0)} f, g-\mathbb{E}_{\left.\mu^{\prime}(0) g\right\rangle_{\mu^{\prime}}}^{\left\|f-\mathbb{E}_{\mu^{\prime}(0)} f\right\|_{\mu^{\prime}(0)}\left\|g-\mathbb{E}_{\mu^{\prime}(0)} g\right\|_{\mu^{\prime}(0)}} \leq \epsilon\right.}{}
\end{aligned}
$$

This talk

Theorem: For ϵ-product space (Ω, μ) and $f \in L^{2}(\mu)$ if f is deg- d and (d, δ)-global, then

$$
\|f\|_{4}^{4} \leq(400 d)^{d} \delta \cdot\|f\|_{2}^{2}+O_{k}(\epsilon \delta)\|f\|_{2}^{2}
$$

This talk

$$
\begin{aligned}
& \text { Theorem: For } \epsilon \text {-product space }(\Omega, \mu) \text { and } f \in L^{2}(\mu) \\
& \text { if } f \text { is deg- } d \text { and }(d, \delta) \text {-global, then } \\
& \|f\|_{4}^{4} \leq(400 d)^{d} \delta \cdot\|f\|_{2}^{2}+O_{k}(\epsilon \delta)\|f\|_{2}^{2}
\end{aligned}
$$

Bafna-Hopkins-Kaufman-Lovett obtain the same result via different techniques

This talk

$$
\begin{aligned}
& \text { Theorem: For } \epsilon \text {-product space }(\Omega, \mu) \text { and } f \in L^{2}(\mu) \\
& \text { if } f \text { is deg- } d \text { and }(d, \delta) \text {-global, then } \\
& \|f\|_{4}^{4} \leq(400 d)^{d} \delta \cdot\|f\|_{2}^{2}+O_{k}(\epsilon \delta)\|f\|_{2}^{2}
\end{aligned}
$$

Bafna-Hopkins-Kaufman-Lovett obtain the same result via different techniques Decomposition of $f \in L^{2}(\mu)$

This talk

$$
\begin{aligned}
& \text { Theorem: For } \epsilon \text {-product space }(\Omega, \mu) \text { and } f \in L^{2}(\mu) \\
& \text { if } f \text { is deg- } d \text { and }(d, \delta) \text {-global, then } \\
& \|f\|_{4}^{4} \leq(400 d)^{d} \delta \cdot\|f\|_{2}^{2}+O_{k}(\epsilon \delta)\|f\|_{2}^{2}
\end{aligned}
$$

Bafna-Hopkins-Kaufman-Lovett obtain the same result via different techniques Decomposition of $f \in L^{2}(\mu)$

[BHKL]

Use walk operators defined on HDXs to obtain almost orthogonal decomposition

This talk

> Theorem: For ϵ-product space (Ω, μ) and $f \in L^{2}(\mu)$ if f is deg- d and (d, δ)-global, then $\|f\|_{4}^{4} \leq(400 d)^{d} \delta \cdot\|f\|_{2}^{2}+O_{k}(\epsilon \delta)\|f\|_{2}^{2}$

Bafna-Hopkins-Kaufman-Lovett obtain the same result via different techniques Decomposition of $f \in L^{2}(\mu)$
[BHKL]
Use walk operators defined on HDXs to obtain almost orthogonal decomposition

This work
Use decomposition analogous to EfronStein decomposition over product spaces

Global functions

Theorem: For ϵ-product space (Ω, μ) and $f \in L^{2}(\mu)$ if f is deg- d and (d, δ)-global, then $\|f\|_{4}^{4} \leq(400 d)^{d} \delta \cdot\|f\|_{2}^{2}+O_{k}(\epsilon \delta)\|f\|_{2}^{2}$

Global functions

> Theorem: For ϵ-product space (Ω, μ) and $f \in L^{2}(\mu)$ if f is deg- d and (d, δ)-global, then $\|f\|_{4}^{4} \leq(400 d)^{d} \delta \cdot\|f\|_{2}^{2}+O_{k}(\epsilon \delta)\|f\|_{2}^{2}$

Over ϵ-product spaces, hypercontractivity doesn't hold in general since exists low density \& low degree boolean functions

Global functions

> Theorem: For ϵ-product space (Ω, μ) and $f \in L^{2}(\mu)$ if f is deg- d and (d, δ)-global, then $\|f\|_{4}^{4} \leq(400 d)^{d} \delta \cdot\|f\|_{2}^{2}+O_{k}(\epsilon \delta)\|f\|_{2}^{2}$

Over ϵ-product spaces, hypercontractivity doesn't hold in general since exists low density \& low degree boolean functions

General $\quad \Rightarrow \quad$ Weights of low density boolean hypercontractivity
\Rightarrow functions concentrate on high degrees

Global functions

Theorem: For ϵ-product space (Ω, μ) and $f \in L^{2}(\mu)$ if f is deg- d and (d, δ)-global, then $\|f\|_{4}^{4} \leq(400 d)^{d} \delta \cdot\|f\|_{2}^{2}+O_{k}(\epsilon \delta)\|f\|_{2}^{2}$

Over ϵ-product spaces, hypercontractivity doesn't hold in general since exists low density \& low degree boolean functions

General $\quad \Rightarrow \quad$ Weights of low density boolean hypercontractivity functions concentrate on high degrees

A function $f \in L^{2}(\mu)$ is (d, δ)-global if

$$
\begin{gathered}
\forall S \subseteq[k],|S| \leq d, \text { and } x \in V^{S} \\
\|f\|_{\mu_{S \rightarrow x}}^{2} \leq \delta
\end{gathered}
$$

Useful notions for hypercontractivity

Useful notions for hypercontractivity

An orthogonal decomposition of $f \in L^{2}(\mu)$

Useful notions for hypercontractivity

An orthogonal decomposition of $f \in L^{2}(\mu)$

$$
\text { Example: }\{ \pm 1\}^{n}, f=\sum_{S \subseteq[k]} \widehat{f(S)} \chi_{S}
$$

orthogonal and unique

Useful notions for hypercontractivity

An orthogonal decomposition of $f \in L^{2}(\mu)$

$$
\begin{gathered}
\text { Example: }\{ \pm 1\}^{n}, f=\sum_{S \subseteq[k]} \widehat{f(S)} \chi_{S} \\
\text { orthogonal and unique }
\end{gathered}
$$

A derivative operator for $f \in L^{2}(\mu)$

Useful notions for hypercontractivity

An orthogonal decomposition of $f \in L^{2}(\mu)$

$$
\text { Example: }\{ \pm 1\}^{n}, f=\sum_{S \subseteq[k]} \widehat{f(S)} \chi_{S}
$$

orthogonal and unique

A derivative operator for $f \in L^{2}(\mu)$
$D_{S, x} f$ derivative wrt to variables in S, evaluated at $S \rightarrow x$
$D_{S, x} f$ has degree at $\operatorname{most} \operatorname{deg}(f)-|S|$

Notions over product space

Notions over product space

Efron-Stein decomposition of $\left(V^{k},\left(\mu^{(0)}\right)^{k}\right)$

Notions over product space

Efron-Stein decomposition of $\left(V^{k},\left(\mu^{(0)}\right)^{k}\right)$

$$
\begin{gathered}
f=\sum_{S \subseteq[k]} f=S \\
A_{S} f=\sum_{T \subseteq S} f^{=T}=\mathbb{E}_{\mu_{[[\backslash] S}} f \text { depends only on coordinates in } S \\
\text { orthogonal and unique }
\end{gathered}
$$

Notions over product space

Efron-Stein decomposition of $\left(V^{k},\left(\mu^{(0)}\right)^{k}\right)$

$$
f=\sum_{S \subseteq[k]} f^{=S}
$$

$$
A_{S} f=\sum_{T \subseteq S} f^{=T}=\mathbb{E}_{\mu_{[[] \backslash S}} f^{N \subseteq[k]} \text { depends only on coordinates in } S
$$ orthogonal and unique

$$
D_{S, x} f(\cdot)=\sum_{T \supseteq S} f^{=T}(x, \cdot)
$$

$D_{S, x} f$ has degree at most $\operatorname{deg}(f)-|S|$

Hypercontractivity over product space

Hypercontractivity over product space

Theorem: For product space (Ω, μ) and $f \in L^{2}(\mu)$ if f is deg- d and (d, δ)-global, then $\|f\|_{4}^{4} \leq(400 d)^{d} \delta \cdot\|f\|_{2}^{2}$

Hypercontractivity over product space

Theorem: For product space (Ω, μ) and $f \in L^{2}(\mu)$ if f is deg- d and (d, δ)-global, then $\|f\|_{4}^{4} \leq(400 d)^{d} \delta \cdot\|f\|_{2}^{2}$

II

+ induction on the deg of f

Key lemma:

$$
\|f\|_{4}^{4} \leq 2\left(9^{d} \delta\|f\|_{2}^{2}+\sum_{\varnothing \neq T \subseteq[k]}(4 d)^{|T|} \mathbb{E}_{x \sim \mu_{T}}\left[\left\|D_{T, x} f\right\|_{4}^{4}\right]\right)
$$

Key lemma:

$$
\|f\|_{4}^{4} \leq 2\left(9^{d} \delta\|f\|_{2}^{2}+\sum_{\varnothing \neq T \subseteq[k]}(4 d)^{|T|} \mathbb{E}_{x \sim \mu_{T}}\left[\left\|D_{T, x} f\right\|_{4}^{4}\right]\right)
$$

$$
\|f\|_{4}^{4}=\left\|f^{2}\right\|_{2}^{2}=\sum_{S \subseteq[k]}\left\|\left(f^{2}\right)^{=S}\right\|_{2}^{2}=\sum_{S \subseteq[k]}\left\|\sum_{T_{1}, T_{2} \subseteq[k]}\left(f^{=T_{1} f=T_{2}}\right)^{=S}\right\|_{2}^{2}
$$

Key lemma:

$$
\|f\|_{4}^{4} \leq 2\left(9^{d} \delta\|f\|_{2}^{2}+\sum_{\varnothing \neq T \subseteq[k]}(4 d)^{|T|} \mathbb{E}_{x \sim \mu_{T}}\left[\left\|D_{T, x} f\right\|_{4}^{4}\right]\right)
$$

$$
\|f\|_{4}^{4}=\left\|f^{2}\right\|_{2}^{2}=\sum_{S \subseteq[k]}\left\|\left(f^{2}\right)^{=S}\right\|_{2}^{2}=\sum_{S \subseteq[k]}\left\|\sum_{T_{1}, T_{2} \subseteq[k]}\left(f^{=T_{1} f=T_{2}}\right)^{=S}\right\|_{2}^{2}
$$

Key lemma:

$$
\|f\|_{4}^{4} \leq 2\left(9^{d} \delta\|f\|_{2}^{2}+\sum_{\varnothing \neq T \subseteq[k]}(4 d)^{|T|} \mathbb{E}_{x \sim \mu_{T}}\left[\left\|D_{T, x} f\right\|_{4}^{4}\right]\right)
$$

$$
\|f\|_{4}^{4}=\left\|f^{2}\right\|_{2}^{2}=\sum_{S \subseteq[k]}\left\|\left(f^{2}\right)^{S}\right\|_{2}^{2}=\sum_{S \subseteq[k]}\left\|\sum_{T_{1}, T_{2} \subseteq[k]}\left(f=T_{1} f=T_{2}\right)=S\right\|_{2}^{2}
$$

$$
\begin{array}{|lll}
\hline & & \\
& & \\
& & \\
T_{1} & & T_{2} \\
\hline
\end{array}
$$

Key lemma:

$$
\|f\|_{4}^{4} \leq 2\left(9^{d} \delta\|f\|_{2}^{2}+\sum_{\varnothing \neq T \subseteq[k]}(4 d)^{|T|} \mathbb{E}_{x \sim \mu_{T}}\left[\left\|D_{T, x} f\right\|_{4}^{4}\right]\right)
$$

$$
\|f\|_{4}^{4}=\left\|f^{2}\right\|_{2}^{2}=\sum_{S \subseteq[k]}\left\|\left(f^{2}\right)^{=S}\right\|_{2}^{2}=\sum_{S \subseteq[k]}\left\|\sum_{T_{1}, T_{2} \subseteq[k]}\left(f^{=T_{1} f=T_{2}}\right)^{=S}\right\|_{2}^{2}
$$

Key lemma:

$$
\|f\|_{4}^{4} \leq 2\left(9^{d} \delta\|f\|_{2}^{2}+\sum_{\varnothing \neq T \subseteq[k]}(4 d)^{|T|} \mathbb{E}_{x \sim \mu_{T}}\left[\left\|D_{T, x} f\right\|_{4}^{4}\right]\right)
$$

$$
\|f\|_{4}^{4}=\left\|f^{2}\right\|_{2}^{2}=\sum_{S \subseteq[k]}\left\|\left(f^{2}\right)^{S}\right\|_{2}^{2}=\sum_{S \subseteq[k]}\left\|\sum_{T_{1}, T_{2} \subseteq[k]}\left(f=T_{1} f=T_{2}\right)=S\right\|_{2}^{2}
$$

Key lemma:

$$
\|f\|_{4}^{4} \leq 2\left(9^{d} \delta\|f\|_{2}^{2}+\sum_{\varnothing \neq T \subseteq[k]}(4 d)^{|T|} \mathbb{E}_{x \sim \mu_{T}}\left[\left\|D_{T, x} f\right\|_{4}^{4}\right]\right)
$$

$$
\|f\|_{4}^{4}=\left\|f^{2}\right\|_{2}^{2}=\sum_{S \subseteq[k]}\left\|\left(f^{2}\right)^{=S}\right\|_{2}^{2}=\sum_{S \subseteq[k]}\left\|\sum_{T_{1}, T_{2} \subseteq[k]}\left(f^{=T_{1} f=T_{2}}\right)^{=S}\right\|_{2}^{2}
$$

		$[k]$
T_{1}	T_{2}	

\exists i \in exactly one of T_{1}, T_{2}, S\end{array} \quad $$
\begin{array}{ll}T_{1} \Delta T_{2}=S & \mathbb{E}_{x \sim \mu_{T}}\left[\left\|D_{T, x} f\right\|_{4}^{4}\right]=\sum_{S \supseteq T}\left\|\sum_{T_{1}, T_{2} \supseteq T}\left(f=T_{1} f=T_{2}\right)^{S}\right\|_{2}^{2}\end{array}
$$\right.\)

Key lemma:

$$
\|f\|_{4}^{4} \leq 2\left(9^{d} \delta\|f\|_{2}^{2}+\sum_{\varnothing \neq T \subseteq[k]}(4 d)^{|T|} \mathbb{E}_{x \sim \mu_{T}}\left[\left\|D_{T, x} f\right\|_{4}^{4}\right]\right)
$$

$$
\|f\|_{4}^{4}=\left\|f^{2}\right\|_{2}^{2}=\sum_{S \subseteq[k]}\left\|\left(f^{2}\right)^{=S}\right\|_{2}^{2}=\sum_{S \subseteq[k]}\left\|\sum_{T_{1}, T_{2} \subseteq[k]}\left(f^{=T_{1}} f^{=T_{2}}\right)^{=S}\right\|_{2}^{2}
$$

Key lemma:

$$
\|f\|_{4}^{4} \leq 2\left(9^{d} \delta\|f\|_{2}^{2}+\sum_{\varnothing \neq T \subseteq[k]}(4 d)^{|T|} \mathbb{E}_{x \sim \mu_{T}}\left[\left\|D_{T, x} f\right\|_{4}^{4}\right]\right)
$$

$$
\|f\|_{4}^{4}=\left\|f^{2}\right\|_{2}^{2}=\sum_{S \subseteq[k]}\left\|\left(f^{2}\right)^{=S}\right\|_{2}^{2}=\sum_{S \subseteq[k]}\left\|\sum_{T_{1}, T_{2} \subseteq[k]}\left(f^{=T_{1}} f^{=T_{2}}\right)^{=S}\right\|_{2}^{2}
$$

 unique decomp. $A_{U} f=\sum_{T \subseteq U} f^{=T}$

Key lemma:

$$
\|f\|_{4}^{4} \leq 2\left(9^{d} \delta\|f\|_{2}^{2}+\sum_{\varnothing \neq T \subseteq[k]}(4 d)^{|T|} \mathbb{E}_{x \sim \mu_{T}}\left[\left\|D_{T, x} f\right\|_{4}^{4}\right]\right)
$$

$$
\|f\|_{4}^{4}=\left\|f^{2}\right\|_{2}^{2}=\sum_{S \subseteq[k]}\left\|\left(f^{2}\right)^{=S}\right\|_{2}^{2}=\sum_{S \subseteq[k]}\left\|\sum_{T_{1}, T_{2} \subseteq[k]}\left(f=T_{1} f=T_{2}\right)=S\right\|_{2}^{2}
$$

	S	$[k]$
T_{1}		T_{2}

\exists i \in exactly one of T_{1}, T_{2}, S

T_{1} \Delta T_{2}=S\end{array}\right.\)

$$
\begin{aligned}
& \text { unique decomp. } A_{U} f=\sum_{T \subseteq U} f=T \\
& i \in S \Rightarrow S \nsubseteq T_{1} \cup T_{2} \\
& \left(f^{=T_{1}} f^{=T_{2}}\right)^{=S}=\left(A_{T_{1} \cup T_{2}} f^{=T_{1}} f^{=T_{2}}\right)^{=S}=0
\end{aligned}
$$

Key lemma:

$$
\|f\|_{4}^{4} \leq 2\left(9^{d} \delta\|f\|_{2}^{2}+\sum_{\varnothing \neq T \subseteq[k]}(4 d)^{|T|} \mathbb{E}_{x \sim \mu_{T}}\left[\left\|D_{T, x} f\right\|_{4}^{4}\right]\right)
$$

$$
\|f\|_{4}^{4}=\left\|f^{2}\right\|_{2}^{2}=\sum_{S \subseteq[k]}\left\|\left(f^{2}\right)^{=S}\right\|_{2}^{2}=\sum_{S \subseteq[k]}\left\|\sum_{T_{1}, T_{2} \subseteq[k]}\left(f^{=T_{1}} f^{=T_{2}}\right)^{=S}\right\|_{2}^{2}
$$

$$
\begin{gathered}
\text { unique decomp. } A_{U} f=\sum_{T \subseteq U} f^{=T} \\
i \in S \Rightarrow S \nsubseteq T_{1} \cup T_{2} \\
\left(f^{=T_{1}} f=T_{2}\right)=S=\left(A_{T_{1} \cup T_{2}} f_{1}^{=T_{1}} f^{=T_{2}}\right)=S=0 \\
i \in T_{1} \Rightarrow T_{1} \nsubseteq[k] \backslash\{i\}
\end{gathered}
$$

$$
\left(f^{=T_{1}} f^{\left.=T_{2}\right)}=S=\left(A_{[k] \backslash i i]} f^{=T_{1}} f^{-T_{2}}\right)^{=S}=0\right.
$$

Key lemma:

$$
\|f\|_{4}^{4} \leq 2\left(9^{d} \delta\|f\|_{2}^{2}+\sum_{\varnothing \neq T \subseteq[k]}(4 d)^{|T|} \mathbb{E}_{x \sim \mu_{T}}\left[\left\|D_{T, x} f\right\|_{4}^{4}\right]\right)
$$

$$
\|f\|_{4}^{4}=\left\|f^{2}\right\|_{2}^{2}=\sum_{S \subseteq[k]}\left\|\left(f^{2}\right)^{=S}\right\|_{2}^{2}=\sum_{S \subseteq[k]}\left\|\sum_{T_{1}, T_{2} \subseteq[k]}\left(f=T_{1} f=T_{2}\right)=S\right\|_{2}^{2}
$$

Key lemma:

$$
\|f\|_{4}^{4} \leq 2\left(9^{d} \delta\|f\|_{2}^{2}+\sum_{\varnothing \neq T \subseteq[k]}(4 d)^{|T|} \mathbb{E}_{x \sim \mu_{T}}\left[\left\|D_{T, x} f\right\|_{4}^{4}\right]\right)
$$

$$
\|f\|_{4}^{4}=\left\|f^{2}\right\|_{2}^{2}=\sum_{S \subseteq[k]}\left\|\left(f^{2}\right)^{=S}\right\|_{2}^{2}=\sum_{S \subseteq[k]}\left\|\sum_{T_{1}, T_{2} \subseteq[k]}\left(f=T_{1} f=T_{2}\right)=S\right\|_{2}^{2}
$$

By unique decomp.

$$
\left(f^{=T_{1}} f=T_{2}\right)=S=A_{s}\left(f^{=T_{1}} f^{=T_{2}}\right)=A_{s} f^{=T_{1}} A_{s} f^{=T_{2}}
$$

Key lemma:

$$
\|f\|_{4}^{4} \leq 2\left(9^{d} \delta\|f\|_{2}^{2}+\sum_{\varnothing \neq T \subseteq[k]}(4 d)^{|T|} \mathbb{E}_{x \sim \mu_{T}}\left[\left\|D_{T, x} f\right\|_{4}^{4}\right]\right)
$$

$$
\|f\|_{4}^{4}=\left\|f^{2}\right\|_{2}^{2}=\sum_{S \subseteq[k]}\left\|\left(f^{2}\right)^{=S}\right\|_{2}^{2}=\sum_{S \subseteq[k]}\left\|\sum_{T_{1}, T_{2} \subseteq[k]}\left(f^{=T_{1}} f^{=T_{2}}\right)=S\right\|_{2}^{2}
$$

	S	$[k]$	
T_{1}		T_{2}	$\left\{\begin{array}{l}T_{1} \cap T_{2} \cap S \neq \varnothing \\ \exists i \in \text { exactly one of } T_{1}, T_{2}, S\end{array}\right.$
$T_{1} \Delta T_{2}=S$			

By unique decomp.

$$
\left(f^{=T_{1}} f=T_{2}\right)=S=A_{s}\left(f f^{=T_{1}} f^{\prime}=T_{2}\right)=A_{s} f^{\in T_{1}} A_{s} f^{=T_{2}}
$$

Key lemma:

$$
\|f\|_{4}^{4} \leq 2\left(9^{d} \delta\|f\|_{2}^{2}+\sum_{\varnothing \neq T \subseteq[k]}(4 d)^{|T|} \mathbb{E}_{x \sim \mu_{T}}\left[\left\|D_{T, x} f\right\|_{4}^{4}\right]\right)
$$

$$
\|f\|_{4}^{4}=\left\|f^{2}\right\|_{2}^{2}=\sum_{S \subseteq[k]}\left\|\left(f^{2}\right)^{=S}\right\|_{2}^{2}=\sum_{S \subseteq[k]}\left\|\sum_{T_{1}, T_{2} \subseteq[k]}\left(f=T_{1} f=T_{2}\right)=S\right\|_{2}^{2}
$$

By unique decomp.

$$
\left(f^{=T_{1}} f=T_{2}\right)=S=A_{s}\left(f^{=T_{1}} f^{=T_{2}}\right)=A_{s} f^{=T_{1}} A_{s} f^{=T_{2}}
$$

Key lemma:
 $$
\|f\|_{4}^{4} \leq 2\left(9^{d} \delta\|f\|_{2}^{2}+\sum_{\varnothing \neq T \subseteq[k]}(4 d)^{|T|} \mathbb{E}_{x \sim \mu_{T}}\left[\left\|D_{T, x} f\right\|_{4}^{4}\right]\right)
$$

$$
\|f\|_{4}^{4}=\left\|f^{2}\right\|_{2}^{2}=\sum_{S \subseteq[k]}\left\|\left(f^{2}\right)^{=S}\right\|_{2}^{2}=\sum_{S \subseteq[k]}\left\|\sum_{T_{1}, T_{2} \subseteq[k]}\left(f=T_{1} f=T_{2}\right)=S\right\|_{2}^{2}
$$

	S	$[k]$	
T_{1}		T_{2}	$\left\{\begin{array}{l}T_{1} \cap T_{2} \cap S \neq \varnothing \\ \exists i \in \text { exactly one of } T_{1}, T_{2}, S\end{array}\right.$
$T_{1} \Delta T_{2}=S$			

By unique decomp.

$$
\left(f^{=T_{1}} f=T_{2}\right)=S=A_{s}\left(f^{=T_{1}} f^{=T_{2}}\right)=A_{s} f^{=T_{1}} A_{s} f^{=T_{2}}
$$

$A_{s} f=T_{1}$ is a function over coordinates $S \cap T_{1}$ $A_{s} f=T_{2}$ is a function over coordinates $S \cap T_{2}$

Key lemma:

$$
\|f\|_{4}^{4} \leq 2\left(9^{d} \delta\|f\|_{2}^{2}+\sum_{\varnothing \neq T \subseteq[k]}(4 d)^{|T|} \mathbb{E}_{x \sim \mu_{T}}\left[\left\|D_{T, x} f\right\|_{4}^{4}\right]\right)
$$

$$
\|f\|_{4}^{4}=\left\|f^{2}\right\|_{2}^{2}=\sum_{S \subseteq[k]}\left\|\left(f^{2}\right)^{=S}\right\|_{2}^{2}=\sum_{S \subseteq[k]}\left\|\sum_{T_{1}, T_{2} \subseteq[k]}\left(f=T_{1}=T_{2}\right)=S\right\|_{2}^{2}
$$

By unique decomp.

$$
\left(f^{=T_{1}} f=T_{2}\right)^{=S}=A_{s}\left(f^{=T_{1}} f=T_{2}\right)=A_{s} f^{=T_{1}} A_{s} f=T_{2}
$$

$A_{S} f=T_{1}$ is a function over coordinates $S \cap T_{1}$ $A_{s} f=T_{2}$ is a function over coordinates $S \cap T_{2}$

$$
\begin{aligned}
\left\|\left(f^{=T_{1}} f=T_{2}\right)=S\right\|_{2} & =\left\|A_{s} f=T_{1}\right\|_{2}\left\|A_{s} f^{=T_{2}}\right\|_{2} \\
& \leq\left\|f^{=T_{1}}\right\|_{2}\left\|f^{=T_{2}}\right\|_{2}
\end{aligned}
$$

Hypercontractivity over ϵ-product space

Hypercontractivity over ϵ-product space

Generalized Efron-Stein decomposition of $\left(V^{k},\left(\mu^{(0)}\right)^{k}\right)$

$$
f=\sum_{S \subseteq[k]} f=S \quad A_{S} f=\mathbb{E}_{\mu_{[k] \backslash S}} f
$$

ϵ-close to orthogonal
Different decompositions are close in $\|.\|_{2}$ distance

Hypercontractivity over ϵ-product space

Generalized Efron-Stein decomposition of $\left(V^{k},\left(\mu^{(0)}\right)^{k}\right)$

$$
f=\sum_{S \subseteq[k]} f^{=S} \quad A_{S} f=\mathbb{E}_{\mu_{[[] \mid S}} f
$$

ϵ-close to orthogonal
Different decompositions are close in $\|.\|_{2}$ distance

$$
\begin{gathered}
D_{S, x} f(\cdot)=\sum_{T \subseteq S}(-1)^{|T|} A_{[k] \backslash T} f(x, \cdot) \\
\left\|D_{S, x} f-\left(D_{S, x} f\right)^{\leq \operatorname{deg}(f)-|S|}\right\|_{2} \leq O_{k}(\epsilon)\|f\|_{2}
\end{gathered}
$$

Hypercontractivity over ϵ-product space

Generalized Efron-Stein decomposition of $\left(V^{k},\left(\mu^{(0)}\right)^{k}\right)$

$$
f=\sum_{S \subseteq[k]} f^{=S} \quad A_{S} f=\mathbb{E}_{\mu_{[[] \backslash S}} f
$$

ϵ-close to orthogonal
Different decompositions are close in $\|.\|_{2}$ distance

$$
\begin{gathered}
D_{S, x} f(\cdot)=\sum_{T \subseteq S}(-1)^{|T|} A_{[k] \backslash T} f(x, \cdot) \\
\left\|D_{S, x} f-\left(D_{S, x} f\right)^{\leq \operatorname{deg}(f)-|S|}\right\|_{2} \leq O_{k}(\epsilon)\|f\|_{2}
\end{gathered}
$$

The same proof goes through with error term $O_{k}(\epsilon \delta)\|f\|_{2}^{2}$!

Hypercontractivity over ϵ-product space

Theorem: For ϵ-product space (Ω, μ) and $f \in L^{2}(\mu)$

$$
\begin{gathered}
\text { if } f \text { is deg- } d \text { and }(d, \delta) \text {-global, then } \\
\|f\|_{4}^{4} \leq(400 d)^{d} \delta \cdot\|f\|_{2}^{2}+O_{k}(\epsilon \delta)\|f\|_{2}^{2}
\end{gathered}
$$

> Key lemma:
> $\|f\|_{4}^{4} \leq 2\left(9^{d} \delta\|f\|_{2}^{2}+\sum_{\varnothing \neq T \subseteq[k]}(4 d)^{|T|} \mathbb{E}_{x \sim \mu_{T}}\left[\left\|\left(D_{T, x} f\right)^{\leq d-|T|}\right\|_{4}^{4}\right]\right)+O_{k}(\epsilon \delta)\|f\|_{2}^{2}$ + induction on the deg of f

Open questions

Show (global) hypercontractivity for other spaces (coboundary expanders, other partially ordered sets, noncommutative probability space)

Improve the parameter C by considering T_{ρ} and/or stochastic processes

