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1, is a semigroup operator defined as

T,= e """ where Lf(x) = Af(x) — (x, VA(x))

Over Gaussian space / , is the Ornstein-Uhlenbeck
semigroup.

Over the Boolean hypercube Tp is the noise operator.
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In a blackbox way,
IT,fll; < CIAL = IT,A1E < G, lIflF VI <p <g

Sometimes written as ||/ ||j < C,f ||42l rather than

I7,1113 < CIIAI5
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Hypercontractivity inequality

For certain Markov chain G (defined by 1) over (€2, 1):

Small Set Expander (Qualitative): G is a small set expander

if every small set of vertices has most adjacent edges outside the set.

Hard instance for
Unique Games:
small set expanders
with many large
eigenvalues?

Agreement test on
graphs: for
Grassmann graph,
2-t0-2 Games

Conjecture
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Weights of low density boolean % Small set expansion
functions concentrate on high degrees theorem

for findicator function of A C {£1}”
T, noise operator, 7,f(x) = —yNNp(x)[ )]
1T, A1, < =2l + 9
< (C/HAL + DAL
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Hypercontractivity inequality
example

OU hypercontractivity: In standard Gaussian space

V0 < p < 1A/3, IT, A% < A1

Bonami lemma: for f: {£1}" — | ||fH4 < 9dee(/) . HfH;l
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More examples

Theorem: We say (€, 1) is hypercontractive if there

exists C such that V f € L*(u) ||ij < C(deg(f)) - H]‘H‘zl

(2, u) C(d) constraints on f
[Bon] {+1}" Unif 94 /
[KLLM]  general product space  10096/||f]|3 f is global
[FKLM] S exp(d?)s/||f]13 f is global
o
(OW] <[Z]>’Umf (k(nni k>> /
but close

|[FOW] multi-slice, Unif O(n)*" /
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[Bon] (+1}" Inducting on the number of variables
[KLLM] general product spaces § prOdUCt Space

[FKLM] S, ~ [n]" Coupling with a product space
([n]) L *0,(1)-close to marginals of a product space

[OW] :

} From log-Sobolev inequality
[FOW] " multislice [ * halanced spaces

All close to product spaces

Holds for more general almost product spaces?
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Can hypercontractivity be generalized to

“almost”

product spaces?

Yes! Generalize to e-product space.

Product space: (Q = V¥, ()"

e-product space: (Q = V¥, //t) S.t.

V conditional distribution (V¥ /= )

conditioned on coordinates in S being assigned x

Vig: Vol

and variables i, j in [k]\S

‘(f_ _//ti,f;g o _//{;{g>/4i/,j‘

<€

Corr(f. 2)| =
| Corr(f,g)| =

_,ul-’fH,ul-’Hg o _M]ngM]( B

close to pair-wise independent
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Example: € high-dimensional expander

e-HDXs are hypergraphs with associated edge distribution (V*, u)
over size k hyperedges with 1,(Link) < ¢ for every edge

Link of an edge {2} : After removing {2} :

(V3, ) {1,2,3} {1, 2, 4) (Vz, u')

{1,3} {1, 4}
up, Hypy-4(1)
M down, %
{1, 3} {2, 3} {1, 2} {1, 4} {2, 4}

—
{3} {1} {2} {4}
\/ %)
D /12([41111() S €

(walk mixes fast)
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Example: € high-dimensional expander

e-product space: (V¥ u)s.t.

V conditional distribution (V¥ 4" = He o)

conditioned on coordinates in S being assigned x

V f,g: V- R and variables i, j in [k]\S

J—E,.f,.g—E.8).
Corr(f, g) = . T < %
If — E,.All, /s — E,gll,;

e-HDX: (Vk, //t) s.t.
V link distribution (V¥="P y/ = p )

conditioned on coordinates in S being assigned x
variables in V¥~ have identical marginal dist u

Viig: V-R

(f—E 0f, 8 —E,08),
2,(Link) = max i A

re Nf—E,ofllollg —E,ogllo




Example: € high-dimensional expander

V conditional distribution (V<" ' = p__ )
conditioned on coordinates in S being assigned x

Vf,g:V —> Rand variables i, j in [k]\S

{1, 3}

{1, 4}

NN

{3} {1} {4}
\

o o o 7
¢ high-dimensional expanders are eLprL)duct spaces
e-HDX: (VX p)s.t.

(f — ‘M'«))fag — ‘ﬂ'«))g}ﬂ'

A,(Link) = max

fe f =

Eofllollg —

=08 | 1'©)

<

€
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This talk

Theorem: For e-product space (Q, u) and f € L*(u)
if fis deg-d and (d, 6)-global, then

A1l < (400d)76 - |If1l5 + Oed)IIf1l3

This work

Use decomposition analogous to Efron-
Stein decomposition over product spaces
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Theorem: For e-product space (Q, u) and f € L*(u)
if fis deg-d and (d, 6)-global, then

LA < (400d)75 - 1115 + Oled)IIf1I3

Over e-product spaces, hypercontractivity doesn’t hold in general

since exists low density & low degree boolean functions

General % Weights of low density boolean
hypercontractivity functions concentrate on high degrees

A function f € L*(u) is (d, 5)-global if
VS C[k], |S| <d, and x € V>,
Iflls. <6

Hsx —
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An orthogonal decomposition of f € L*(u)
Example: {£1}", f = Z ﬁﬁxs

SCIk]
orthogonal and unique

A derivative operator for f € L*(u)

Dq . f derivative wrt to variables in §, evaluated at § — x

Dq . f has degree at most deg(f) — [ S|
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Notions over product space

Efron-Stein decomposition of (V¥, (u")")

Agf = Z ' =E uas/ depends only on coordinates in §

orthogonal and unique

DS,xf( ' ) — Zf:T(X, | )
T2S
Dq . fhas degree at most deg(f) — | S|
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Hypercontractivity over e-product space

Generalized Efron-Stein decomposition of (V, (u™)¥)

=D 1% Agf= S

e-close to orthogonal
Different decompositions are close in ||.||, distance

Dy, f() = ) (=DMAp rf(x, )

TCS
|IDs .f = (Ds . )=V~ B||, < O(o)lIfll,

The same proof goes through with error term O,(ed)||f]|5 !



Hypercontractivity over e-product space

Theorem: For e-product space (Q, u) and f € L*(u)
if fis deg-d and (d, 6)-global, then

A1l < (400d)76 - 1115 + Oled)IIf1I3

Key lemma:
11114 < 2T9daufu§+ N @)TE, ., (1D < + Oued) I

@FTCk]

+ induction on the deg of f



Open questions

Show (global) hypercontractivity for other spaces
(coboundary expanders, other partially ordered sets,
noncommutative probability space)

Improve the parameter C by considering 1, and/or

stochastic processes





