Global hypercontractivity inequality on *E***-product spaces**

Tom Gur

Siqi Liu joint work with

Noam Lifshitz

Consider a probability space (Ω , μ). A linear operator T_{ρ} over $L^{\infty}(\mu)$ is hypercontractive if

Setup

Consider a probability space (Ω , μ). A linear operator T_{ρ} over $L^{\infty}(\mu)$ is hypercontractive if

Setup

(1) $\forall f \in L^1(\mu), 0 < \rho < 1, ||T_\rho f||_1 \le ||f||_1$ (2) $\exists \rho_0 > 0$, s.t. $\forall 0 < \rho < \rho_0$, $||T_\rho f||_4^4 \le C ||f||_2^4$

(1) $\forall f \in L^1(\mu), 0 < \rho < 1, ||T_\rho f||_1 \le ||f||_1$ (2) $\exists \rho_0 > 0$, s.t. $\forall 0 < \rho < \rho_0$, $\|T_\rho f\|_4^4 \le C \|f\|_2^4$

* where $||f||_p^p = \mathbb{E}_{\mu}[f^p]$

Setup

Consider a probability space (Ω , μ). A linear operator T_{ρ} over $L^{\infty}(\mu)$ is hypercontractive if

$T_{\rho} \text{ is a semigroup operator defined as}$ $T_{\rho} = e^{-\log \rho \cdot L} \text{ where } Lf(x) = \Delta f(x) - \langle x, \nabla f(x) \rangle$

T_{ρ} is a semigroup operator defined as $T_{\rho} = e^{-\log \rho \cdot L}$ where L.

Over Gaussian space T_{ρ} is the Ornstein-Uhlenbeck semigroup. Over the Boolean hypercube T_{ρ} is the noise operator.

$$f(x) = \Delta f(x) - \langle x, \nabla f(x) \rangle$$

In a blackbox way, $\|T_{\rho}f\|_{4}^{4} \leq C\|f\|_{2}^{4} \Rightarrow \|T_{\rho}f\|_{q}^{q} \leq C_{p,q}\|f\|_{p}^{q} \forall 1$

In a blackbox way, $\|T_{\rho}f\|_{4}^{4} \leq C \|f\|_{2}^{4} \Rightarrow \|T_{\rho}f\|_{q}^{q} \leq C_{p,q} \|f\|_{p}^{q} \forall 1$

Sometimes written as $||f||_4^4 \leq C_d ||f||_2^4$ rather than $||T_\rho f||_4^4 \leq C ||f||_2^4$

Theorem: We say (Ω, μ) is hypercontractive if there exists *C* such that $\forall f \in L^2(\mu) \quad ||f||_4^4 \leq C(\deg(f)) \cdot ||f||_2^4$

Theorem: We say (Ω, μ) is hypercontractive if there exists *C* such that $\forall f \in L^2(\mu) \quad ||f||_4^4 \leq C(\deg(f)) \cdot ||f||_2^4$

Implications

Improved (anti-)concentration for f: $\forall t > 0$ $\Pr[|f| \ge t ||f||_2] \le C/t^4$ $\Pr[|f|] \ge t ||f||_2$

tion for f: $\forall t \in (0,1)$ $\Pr[|f| \ge t ||f||_2] \ge (1 - t^2)^2 / C$

Theorem: We say (Ω, μ) is hypercontractive if there exists *C* such that $\forall f \in L^2(\mu) \quad ||f||_4^4 \leq C(\deg(f)) \cdot ||f||_2^4$

Implications

Improved (anti-)concentration for f:
 $\forall t > 0$ $\forall t \in (0,1)$ $\Pr[|f| \ge t ||f||_2] \le C/t^4$ $\Pr[|f| \ge t ||f||_2] \ge (1 - t^2)^2/C$

By Markov's

By Paley-Zygmund

Theorem: We say (Ω, μ) is hypercontractive if there exists C such that $\forall f \in L^2(\mu)$ $||f||_4^4 \leq C(\deg(f)) \cdot ||f||_2^4$

Implications

Level-*d* **inequality:** There exists *C* such that for all $f: \Omega \to \{0,1\}$ $\|f^{\leq d}\|_2 \leq C^{1/4} \cdot \|f\|_2^{3/2}$

Theorem: We say (Ω, μ) is hypercontractive if there exists C such that $\forall f \in L^2(\mu)$ $||f||_4^4 \leq C(\deg(f)) \cdot ||f||_2^4$

Implications

Level-d inequality: There exists C such that for all $f: \Omega \to \{0,1\}$ $\|f^{\leq d}\|_2 \leq C^{1/4} \cdot \|f\|_2^{3/2}$

Hypercontractivity \Rightarrow Weights of low density boolean functions concentrate on high degrees

Small Set Expander (Qualitative): *G* is a small set expander if every small set of vertices has most adjacent edges outside the set.

Small Set Expander (Qualitative): *G* is a small set expander if every small set of vertices has most adjacent edges outside the set.

Small Set Expander (Qualitative): *G* is a small set expander if every small set of vertices has most adjacent edges outside the set.

Small Set Expander (Qualitative): *G* is a small set expander if every small set of vertices has most adjacent edges outside the set.

Small Set Expander (Qualitative): *G* is a small set expander if every small set of vertices has most adjacent edges outside the set.

For certain Markov chain G (defined by T_{ρ}) over (Ω, μ) :

Small Set Expander (Qualitative): *G* is a small set expander if every small set of vertices has most adjacent edges outside the set.

Hard instance for Unique Games: small set expanders with many large eigenvalues?

Agreement test on graphs: for Grassmann graph, 2-to-2 Games Conjecture

Weights of low density boolean functions concentrate on high degrees

Small set expansion theorem

Weights of low density boolean functions concentrate on high degrees

for *f* indicator function of $A \subseteq \{\pm 1\}^n$

Small set expansion theorem

Weights of low density boolean functions concentrate on high degrees

Small set expansion theorem

for *f* indicator function of $A \subseteq \{\pm 1\}^n$ T_{ρ} noise operator, $T_{\rho}f(x) = \mathbb{E}_{y \sim N_{\rho}(x)}[f(y)]$

Weights of low density boolean functions concentrate on high degrees

Small set expansion theorem

for f indicator function of $A \subseteq \{\pm 1\}^n$ T_{ρ} noise operator, $T_{\rho}f(x) = \mathbb{E}_{y \sim N_{\rho}(x)}[f(y)]$ $\|T_{\rho}f\|_{2} \leq \|f^{\leq d}\|_{2} + \rho^{d}\|f^{>d}\|_{2}$

Weights of low density boolean functions concentrate on high degrees

Small set expansion theorem

- for f indicator function of $A \subseteq \{\pm 1\}^n$ T_{ρ} noise operator, $T_{\rho}f(x) = \mathbb{E}_{y \sim N_{\rho}(x)}[f(y)]$ $\|T_{\rho}f\|_{2} \le \|f^{\le d}\|_{2} + \rho^{d}\|f^{>d}\|_{2}$
 - $\leq (C_d^{1/4} \|f\|_2^{1/2} + \rho^d) \|f\|_2$

OU hypercontractivity: In standard Gaussian space

OU hypercontractivity: In standard Gaussian space $\forall 0 < \rho < 1/\sqrt{3}, \|T_{\rho}f\|_{4}^{4} \leq \|f\|_{2}^{4}$

OU hypercontractivity: In standard Gaussian space $\forall 0 < \rho < 1/\sqrt{3}, \|T_{\rho}f\|_{4}^{4} \leq \|f\|_{2}^{4}$ Bonami lemma: for $f: \{\pm 1\}^n \to \mathbb{R}, \|f\|_4^4 \le 9^{\deg(f)} \cdot \|f\|_2^4$

More examples

Theorem: We say (Ω, μ) is hypercontractive if there exists *C* such that $\forall f \in L^2(\mu) \quad ||f||_4^4 \leq C(\deg(f)) \cdot ||f||_2^4$

More examples

Theorem: We say (Ω, μ) is hypercontractive if there exists C such that $\forall f \in L^2(\mu)$ $||f||_4^4 \leq C(\deg(f)) \cdot ||f||_2^4$

 (Ω, μ) $\{\pm 1\}^n$, Unif [Bon] |KLLM| general product space [FKLM] S_n $\binom{[n]}{k}$, Unif [OW] [FOW]

multi-slice, Unif

C(d)**9**^{*d*} $100^{d}\delta / \|f\|_{2}^{2}$ $\exp(d^3)\delta / \|f\|_2^2$ $\binom{n^2}{n^2}$ k(n-k) $\tilde{O}(n)^{2n}$

constraints on f f is global f is global

(Ω, μ) $\{\pm 1\}^n$, Unif [Bon] [KLLM] general product space [FKLM] S_n [OW], Unif $\langle K \rangle$ [FOW] multi-slice, Unif

Theorem: We say (Ω, μ) is hypercontractive if there exists C such that $\forall f \in L^2(\mu)$ $||f||_4^4 \leq C(\deg(f)) \cdot ||f||_2^4$

More examples

(Ω, μ) $\{\pm 1\}^n$, Unif [Bon] [KLLM] general product space [FKLM] S_n , Unif [OW] $\left(k \right)$ [FOW] multi-slice, Unif

Theorem: We say (Ω, μ) is hypercontractive if there exists C such that $\forall f \in L^2(\mu)$ $||f||_4^4 \leq C(\deg(f)) \cdot ||f||_2^4$

More examples

Previous approaches

 (Ω,μ)

$\{\pm 1\}^n$

[KLLM]

[Bon]

general product spaces

Previous approaches

 (Ω, μ)

[Bon] [KLLM]

$\{\pm 1\}^n$

general product spaces

Inducting on the number of variables

 (Ω, μ)

[Bon] [KLLM]

general product spaces

Inducting on the number of variables * product space

 (Ω, μ)

[Bon]	$\{\pm 1\}^n$	I
[KLLM]	general product spaces	*
[FKLM]	$S_n \approx [n]^n$	
[OW]	$\binom{[n]}{k} \approx [n]^k$	
[FOW]	multi-slice $\approx [n]^{k_1 + \ldots + k_m}$	

nducting on the number of variables product space

 (Ω, μ)

[Bon] [KLLM]	$\{\pm 1\}^n$ general product spaces	Indue * pro
[FKLM]	$S_n \approx [n]^n$	Coup
[OW]	$\binom{[n]}{k} \approx [n]^k$	
[FOW]	multi-slice $\approx [n]^{k_1 + \ldots + k_m}$	

- icting on the number of variables oduct space
- pling with a product space

 (Ω, μ)

[Bon] [KLLM]	$\{\pm 1\}^n$ general product spaces	Induc * proc
[FKLM]	$S_n \approx [n]^n$	Coup
[OW]	$\binom{[n]}{k} \approx [n]^k$	* 0 _n (1
[FOW]	multi-slice $\approx [n]^{k_1 + \ldots + k_m}$	

- cting on the number of variables duct space
- pling with a product space 1)-close to marginals of a product space

 (Ω, μ)

[Bon]	{±1} ⁿ	Induc
[KLLM]	general product spaces	* proc
[FKLM]	$S_n \approx [n]^n$	Coupl
[OW]	$\binom{[n]}{k} \approx [n]^k$	$* o_n(1)$ From
[FOW]	multi-slice $\approx [n]^{k_1 + \ldots + k_m}$	J From

- cting on the number of variables duct space
- ling with a product space 1)-close to marginals of a product space
- n log-Sobolev inequality

 (Ω, μ) Bon $\{\pm 1\}^n$ |KLLM| general product spaces $S_n \approx [n]^n$ [FKLM] $\binom{\lfloor n \rfloor}{k} \approx [n]^k$ [OW]

multi-slice $\approx [n]^{k_1 + \ldots + k_m}$

- Inducting on the number of variables * product space
- Coupling with a product space * $o_n(1)$ -close to marginals of a product space
- From log-Sobolev inequality * balanced spaces

 (Ω, μ) [Bon] $\{\pm 1\}^n$ |KLLM| general product spaces $S_n \approx [n]^n$ [FKLM] $\binom{[n]}{k} \approx [n]^k$ [OW] multi-slice $\approx [n]^{k_1 + \ldots + k_m}$ FOW

- Inducting on the number of variables * product space
- Coupling with a product space * $o_n(1)$ -close to marginals of a product space
- From log-Sobolev inequality * balanced spaces
- All close to product spaces

- Inducting on the number of variables * product space
- Coupling with a product space * $o_n(1)$ -close to marginals of a product space
- From log-Sobolev inequality * balanced spaces
- All close to product spaces
- Holds for more general almost product spaces?

Yes! Generalize to *E*-product space.

Yes! Generalize to *E*-product space.

Product space: $(\Omega = V^k, (\mu^{(0)})^k)$

Yes! Generalize to *E*-product space.

Product space: $(\Omega = V^k, (\mu^{(0)})^k)$ ε -product space: $(\Omega = V^k, \mu)$ s.t.

- Yes! Generalize to *E*-product space.
- Product space: $(\Omega = V^k, (\mu^{(0)})^k)$
- ε -product space: $(\Omega = V^k, \mu)$ s.t.
- \forall conditional distribution ($V^{k-|S|}, \mu' = \mu_{s \to x}$) conditioned on coordinates in *S* being assigned *x*

- Yes! Generalize to *E*-product space.
- Product space: $(\Omega = V^k, (\mu^{(0)})^k)$
- ε -product space: $(\Omega = V^k, \mu)$ s.t.
- \forall conditional distribution ($V^{k-|S|}, \mu' = \mu_{S \to X}$) conditioned on coordinates in *S* being assigned *x* $\forall f,g: V \to \mathbb{R} \text{ and variables } i,j \text{ in } [k] \setminus S$

- Yes! Generalize to *E*-product space.
- Product space: $(\Omega = V^k, (\mu^{(0)})^k)$ ε -product space: $(\Omega = V^k, \mu)$ s.t.
- \forall conditional distribution ($V^{k-|S|}, \mu' = \mu_{s \to x}$) conditioned on coordinates in *S* being assigned *x* $\forall f,g: V \rightarrow \mathbb{R} \text{ and variables } i,j \text{ in } [k] \setminus S$
 - $|\operatorname{Corr}(f,g)| = \frac{|\langle f \mathbb{E}_{\mu'_i} f, g \mathbb{E}_{\mu'_j} g \rangle_{\mu'_{i,j}}|}{\|f \mathbb{E}_{\mu'_i} f\|_{\mu'_i} \|g \mathbb{E}_{\mu'_j} g\|_{\mu'_j}} \le \epsilon$

 ε -product space: $(\Omega = V^k, \mu)$ s.t.

- Yes! Generalize to *E*-product space.
- Product space: $(\Omega = V^k, (\mu^{(0)})^k)$
- \forall conditional distribution ($V^{k-|S|}, \mu' = \mu_{s \to x}$) conditioned on coordinates in *S* being assigned *x* $\forall f,g: V \rightarrow \mathbb{R} \text{ and variables } i,j \text{ in } [k] \setminus S$
 - $|\operatorname{Corr}(f,g)| = \frac{|\langle f \mathbb{E}_{\mu'_i}f, g \mathbb{E}_{\mu'_j}g \rangle_{\mu'_{i,j}}|}{||f \mathbb{E}_{\mu'_i}f||_{\mu'_i}||g \mathbb{E}_{\mu'_j}g||_{\mu'_j}} \le \epsilon$
 - close to pair-wise independent

 ϵ -HDXs are hypergraphs with associated edge distribution (V^k , μ) over size k hyperedges

over size *k* hyperedges

 ϵ -HDXs are hypergraphs with associated edge distribution (V^k , μ)

 ϵ -HDXs are hypergraphs with associated edge distribution (V^k , μ) over size *k* hyperedges with λ_2 (Link) ≤ ϵ for every edge

 ϵ -HDXs are hypergraphs with associated edge distribution (V^k , μ) over size k hyperedges with $\lambda_2(\text{Link}) \leq \epsilon$ for every edge

Link of an edge {2} :

 (V^3,μ)

 ϵ -HDXs are hypergraphs with associated edge distribution (V^k , μ) over size k hyperedges with $\lambda_2(\text{Link}) \leq \epsilon$ for every edge

Link of an edge {2} :

 (V^3,μ)

 ϵ -HDXs are hypergraphs with associated edge distribution (V^k , μ) over size k hyperedges with $\lambda_2(\text{Link}) \leq \epsilon$ for every edge

Link of an edge {2} :

 (V^3,μ)

 ϵ -product space: (V^k, μ) s.t.

 ϵ -HDX: (V^k, μ) s.t.

 ϵ -product space: (V^k, μ) s.t. \forall conditional distribution ($V^{k-|S|}, \mu' = \mu_{S \to X}$) conditioned on coordinates in *S* being assigned *x*

ϵ -HDX: (V^k, μ) s.t.

 \forall link distribution ($V^{k-|S|}, \mu' = \mu_{s \to x}$)

conditioned on coordinates in *S* being assigned *x* variables in $V^{k-|S|}$ have identical marginal dist $\mu'^{(0)}$

 ϵ -product space: (V^k, μ) s.t. \forall conditional distribution ($V^{k-|S|}, \mu' = \mu_{S \to X}$) conditioned on coordinates in *S* being assigned *x* $\forall f,g: V \rightarrow \mathbb{R}$ and variables i, j in $[k] \setminus S$

ϵ -HDX: (V^k, μ) s.t.

 \forall link distribution ($V^{k-|S|}, \mu' = \mu_{s \to x}$)

 $\forall f, g: V \to \mathbb{R}$

conditioned on coordinates in *S* being assigned *x* variables in $V^{k-|S|}$ have identical marginal dist $\mu'^{(0)}$

 ϵ -product space: (V^k, μ) s.t. \forall conditional distribution ($V^{k-|S|}, \mu' = \mu_{S \to X}$) conditioned on coordinates in *S* being assigned *x* $\forall f,g: V \rightarrow \mathbb{R}$ and variables i, j in $[k] \setminus S$ $\langle f - \mathbb{E}_{\mu'_i} f, g - \mathbb{E}_{\mu'_j} g \rangle_{\mu'_{i,j}}$

$$\operatorname{Corr}(f,g) = \frac{1}{\|f - \mathbb{E}_{\mu'_i} f\|_{\mu'_i} \|g - \mathbb{E}_{\mu'_j} g\|_{\mu'_j}} \le \epsilon$$

 ϵ -HDX: (V^k, μ) s.t. \forall link distribution ($V^{k-|S|}, \mu' = \mu_{s \to x}$) conditioned on coordinates in *S* being assigned *x* variables in $V^{k-|S|}$ have identical marginal dist $\mu'^{(0)}$

$$\forall f,g:V \to \mathbb{R}$$

$$\lambda_2(\text{Link}) = \max_{f,g} \frac{\langle f - \mathbb{E}_{\mu'(0)}f,g - \mathbb{E}_{\mu'(0)}g \rangle_{\mu'}}{\|f - \mathbb{E}_{\mu'(0)}f\|_{\mu'(0)}\|g - \mathbb{E}_{\mu'(0)}g\|_{\mu'(0)}} \le \epsilon$$

 ϵ -product space: (V^k, μ) s.t. \forall conditional distribution ($V^{k-|S|}, \mu' = \mu_{S \to X}$) conditioned on coordinates in *S* being assigned *x* $\forall f, g : V \rightarrow \mathbb{R}$ and variables *i*, *j* in $[k] \setminus S$ $\begin{array}{l} \operatorname{Corr}(f,g) = & \overbrace{\mathcal{C} \text{ high-dimensional expanders are } \mathcal{C} \text{ product spaces}}^{\mathsf{Corr}(f,g)} \leq \epsilon \\ \mathcal{C} \text{ high-dimensional expanders are } \mathcal{C} \text{ -product spaces} \end{array}$ ϵ -HDX: (V

> \forall link distribution (conditioned on coordina variables in $V^{k-|S|}$ have

 $\forall f, g: V \to \mathbb{R}$ $\lambda_2(\text{Link}) = \max_{f,g} \frac{\langle f - \mu_{g'(0)}}{\|f - \mathbb{E}_{\mu'(0)}}$

^{*k*},
$$\mu$$
) s.t.
 $(V^{k-|S|}, \mu' = \mu_{s \to x})$
ates in *S* being assigned *x*
i dentical marginal dist $\mu'^{(0)}$

$$V \to \mathbb{R}$$

$$\mathbb{E}_{\mu'(0)} f, g - \mathbb{E}_{\mu'(0)} g \rangle_{\mu'}$$

$$\frac{\|g - \mathbb{E}_{\mu'(0)} g\|_{\mu'(0)}}{\|g - \mathbb{E}_{\mu'(0)} g\|_{\mu'(0)}} \leq \epsilon$$

Theorem: For ϵ -product space (Ω, μ) and $f \in L^2(\mu)$ if f is deg-d and (d, δ) -global, then $\|f\|_4^4 \le (400d)^d \delta \cdot \|f\|_2^2 + O_k(\epsilon \delta) \|f\|_2^2$

Theorem: For ϵ -product space (Ω, μ) and $f \in L^2(\mu)$ if *f* is deg-*d* and (d, δ) -global, then $\|f\|_{4}^{4} \leq (400d)^{d} \delta \cdot \|f\|_{2}^{2} + O_{k}(\epsilon\delta)\|f\|_{2}^{2}$

Bafna-Hopkins-Kaufman-Lovett obtain the same result via different techniques

Theorem: For ϵ -product space (Ω, μ) and $f \in L^2(\mu)$ if *f* is deg-*d* and (d, δ) -global, then $\|f\|_{4}^{4} \leq (400d)^{d} \delta \cdot \|f\|_{2}^{2} + O_{k}(\epsilon\delta)\|f\|_{2}^{2}$

Bafna-Hopkins-Kaufman-Lovett obtain the same result via different techniques Decomposition of $f \in L^2(\mu)$

Theorem: For ϵ -product space (Ω, μ) and $f \in L^2(\mu)$ if *f* is deg-*d* and (d, δ) -global, then $\|f\|_{4}^{4} \leq (400d)^{d} \delta \cdot \|f\|_{2}^{2} + O_{k}(\epsilon\delta)\|f\|_{2}^{2}$

Bafna-Hopkins-Kaufman-Lovett obtain the same result via different techniques Decomposition of $f \in L^2(\mu)$

|BHKL|

Use walk operators defined on HDXs to obtain almost orthogonal decomposition

Theorem: For ϵ -product space (Ω, μ) and $f \in L^2(\mu)$

Bafna-Hopkins-Kaufman-Lovett obtain the same result via different techniques Decomposition of $f \in L^2(\mu)$

|BHKL|

Use walk operators defined on HDXs to obtain almost orthogonal decomposition

if *f* is deg-*d* and (d, δ) -global, then $\|f\|_{4}^{4} \leq (400d)^{d} \delta \cdot \|f\|_{2}^{2} + O_{k}(\epsilon\delta)\|f\|_{2}^{2}$

> This work Use decomposition analogous to Efron-Stein decomposition over product spaces

Global functions

Theorem: For ϵ -product space (Ω, μ) and $f \in L^2(\mu)$

if *f* is deg-*d* and (d, δ) -global, then $\|f\|_{4}^{4} \leq (400d)^{d} \delta \cdot \|f\|_{2}^{2} + O_{k}(\epsilon\delta)\|f\|_{2}^{2}$

Global functions

Theorem: For ϵ -product space (Ω, μ) and $f \in L^2(\mu)$

- if *f* is deg-*d* and (d, δ) -global, then $\|f\|_{4}^{4} \leq (400d)^{d} \delta \cdot \|f\|_{2}^{2} + O_{k}(\epsilon\delta) \|f\|_{2}^{2}$
- **Over** *e***-product spaces**, **hypercontractivity doesn't hold in general** since exists low density & low degree boolean functions

Global functions

Theorem: For ϵ -product space (Ω, μ) and $f \in L^2(\mu)$

Over *e***-product spaces**, **hypercontractivity doesn't hold in general** since exists low density & low degree boolean functions

General hypercontractivity

if *f* is deg-*d* and (d, δ) -global, then $\|f\|_{4}^{4} \leq (400d)^{d} \delta \cdot \|f\|_{2}^{2} + O_{k}(\epsilon\delta) \|f\|_{2}^{2}$

> Weights of low density boolean functions concentrate on high degrees

Global functions

Theorem: For ϵ -product space (Ω, μ) and $f \in L^2(\mu)$

- if *f* is deg-*d* and (d, δ) -global, then $\|f\|_{4}^{4} \leq (400d)^{d} \delta \cdot \|f\|_{2}^{2} + O_{k}(\epsilon\delta) \|f\|_{2}^{2}$
- **Over** *e***-product spaces**, **hypercontractivity doesn't hold in general** since exists low density & low degree boolean functions
 - General hypercontractivity \rightarrow Weights of low density boolean functions concentrate on high degrees
 - A function $f \in L^2(\mu)$ is (d, δ) -global if
 - $\forall S \subseteq [k], |S| \leq d, \text{ and } x \in V^S,$
 - $\|f\|_{\mu_{S \to x}}^2 \le \delta$

An orthogonal decomposition of $f \in L^2(\mu)$

orthogonal and unique

- An orthogonal decomposition of $f \in L^2(\mu)$
 - Example: $\{\pm 1\}^n$, $f = \sum f(S) \chi_S$ $S \subseteq [k]$

orthogonal and unique

- An orthogonal decomposition of $f \in L^2(\mu)$
 - Example: $\{\pm 1\}^n$, $f = \sum f(S) \chi_S$ $S \subseteq [k]$

A derivative operator for $f \in L^2(\mu)$

- An orthogonal decomposition of $f \in L^2(\mu)$
 - Example: $\{\pm 1\}^n$, $f = \sum f(S) \chi_S$ $S \subseteq [k]$ orthogonal and unique

- A derivative operator for $f \in L^2(\mu)$
- $D_{S,x}f$ derivative wrt to variables in S, evaluated at $S \rightarrow x$
 - $D_{S,x}f$ has degree at most deg(f) |S|

Efron-Stein decomposition of $(V^k, (\mu^{(0)})^k)$

 $T \subseteq S$

- Efron-Stein decomposition of $(V^k, (\mu^{(0)})^k)$
 - $f = \sum f^{=S}$ $S \subseteq |k|$
- $A_S f = \sum f^{=T} = \mathbb{E}_{\mu_{[k]\setminus S}} f$ depends only on coordinates in *S*
 - orthogonal and unique

$T \subseteq S$

 $D_{S,x}f(\cdot)$

 $D_{S_x} f$ has degree

- Efron-Stein decomposition of $(V^k, (\mu^{(0)})^k)$
 - $f = \sum f^{=S}$ $S \subseteq |k|$
- $A_S f = \sum f^{=T} = \mathbb{E}_{\mu_{[k] \setminus S}} f$ depends only on coordinates in *S*
 - orthogonal and unique

$$= \sum_{T \supseteq S} f^{=T}(x, \cdot)$$

$$T \supseteq S$$

at most deg(f) - |S

Hypercontractivity over product space

Hypercontractivity over product space

Theorem: For product space (Ω, μ) and $f \in L^2(\mu)$

if *f* is deg-*d* and (d, δ) -global, then $\|f\|_4^4 \le (400d)^d \delta \cdot \|f\|_2^2$

Hypercontractivity over product space

Theorem: For product space (Ω, μ) and $f \in L^2(\mu)$

if *f* is deg-*d* and (d, δ) -global, then $\|f\|_4^4 \le (400d)^d \delta \cdot \|f\|_2^2$

Key lemma: $||f||_{4}^{4} \leq 2 \left(9^{d} \delta ||f||_{2}^{2} + \sum_{\emptyset \neq T \subseteq [k]} (4d)^{|T|} \mathbb{E}_{x \sim \mu_{T}} [||D_{T,x}f||_{4}^{4}] \right)$

+ induction on the deg of f

Key lemma: $||f||_{4}^{4} \leq 2 \left(9^{d} \delta ||f||_{2}^{2} + \sum_{\emptyset \neq T \subseteq [k]} (4d)^{|T|} \mathbb{E}_{x \sim \mu_{T}} [||D_{T,x}f||_{4}^{4}] \right)$

Key lemma: $||f||_{4}^{4} \leq 2 \left(9^{d} \delta ||f||_{2}^{2} + \sum_{\emptyset \neq T \subseteq [k]} (4d)^{|T|} \mathbb{E}_{x \sim \mu_{T}} [||D_{T,x}f||_{4}^{4}] \right)$

 $\|f\|_{4}^{4} = \|f^{2}\|_{2}^{2} = \sum_{S \subseteq [k]} \|(f^{2})^{=S}\|_{2}^{2} = \sum_{S \subseteq [k]} \left\| \sum_{T_{1}, T_{2} \subseteq [k]} (f^{=T_{1}}f^{=T_{2}})^{=S} \right\|_{2}^{2}$

Key lemma: $||f||_{4}^{4} \leq 2 \left(9^{d} \delta ||f||_{2}^{2} + \sum_{\emptyset \neq T \subseteq [k]} (4d)^{|T|} \mathbb{E}_{x \sim \mu_{T}} [||D_{T,x}f||_{4}^{4}] \right)$

 $\|f\|_{4}^{4} = \|f^{2}\|_{2}^{2} = \sum_{S \subseteq [k]} \|(f^{2})^{=S}\|_{2}^{2} = \sum_{S \subseteq [k]} \left\| \sum_{T_{1}, T_{2} \subseteq [k]} (f^{=T_{1}}f^{=T_{2}})^{=S} \right\|_{2}^{2}$

Key lemma: $||f||_{4}^{4} \leq 2 \left(9^{d} \delta ||f||_{2}^{2} + \sum_{\emptyset \neq T \subseteq [k]} (4d)^{|T|} \mathbb{E}_{x \sim \mu_{T}} [||D_{T,x}f||_{4}^{4}] \right)$

 $||f||_{4}^{4} = ||f^{2}||_{2}^{2} = \sum_{S \subseteq [k]} ||(f^{2})^{=S}||_{2}^{2} = \sum_{S \subseteq [k]} \left\| \sum_{T_{1}, T_{2} \subseteq [k]} (f^{=T_{1}}f^{=T_{2}})^{=S} \right\|_{2}^{2}$

Key lemma: $||f||_{4}^{4} \leq 2 \left(9^{d} \delta ||f||_{2}^{2} + \sum_{\emptyset \neq T \subseteq [k]} (4d)^{|T|} \mathbb{E}_{x \sim \mu_{T}} [||D_{T,x}f||_{4}^{4}] \right)$

 $\|f\|_{4}^{4} = \|f^{2}\|_{2}^{2} = \sum_{S \subseteq [k]} \|(f^{2})^{=S}\|_{2}^{2} = \sum_{S \subseteq [k]} \left\| \sum_{T_{1}, T_{2} \subseteq [k]} (f^{=T_{1}}f^{=T_{2}})^{=S} \right\|_{2}^{2}$

Key lemma: $||f||_{4}^{4} \leq 2 \left(9^{d} \delta ||f||_{2}^{2} + \sum_{\emptyset \neq T \subseteq [k]} (4d)^{|T|} \mathbb{E}_{x \sim \mu_{T}} [||D_{T,x}f||_{4}^{4}] \right)$

 $\|f\|_{4}^{4} = \|f^{2}\|_{2}^{2} = \sum_{S \subseteq [k]} \|(f^{2})^{=S}\|_{2}^{2} = \sum_{S \subseteq [k]} \left\| \sum_{T_{1}, T_{2} \subseteq [k]} (f^{=T_{1}}f^{=T_{2}})^{=S} \right\|_{2}^{2}$

 $\begin{bmatrix} k \\ S \\ T_1 \\ T_2 \end{bmatrix} \xrightarrow{T_1 \cap T_2 \cap S \neq \emptyset} \exists i \in \text{exactly one of } T_1, T_2, S$

$$\|f\|_{4}^{4} = \|f^{2}\|_{2}^{2} = \sum_{S \subseteq [k]} \|(f^{2})^{=S}\|_{2}^{2} = \sum_{S \subseteq [k]} \left\| \sum_{T_{1}, T_{2} \subseteq [k]} \left(f^{=T_{1}} f^{=T_{2}} \right)^{=S} \right\|_{2}^{2}$$

[*k*] S $[\kappa]$ T_2 T_1

 $T_1 \cap T_2 \cap S \neq \emptyset$ appears in $\mathbb{E}_{x \sim \mu_T}[\|D_{T,x}f\|_4^4]$ for $T \subseteq T_1 \cap T_2 \cap S$ $\exists i \in \text{exactly one of } T_1, T_2, S$ $\mathbb{E}_{x \sim u_{T}}[\|D_{T,x}f\|_{4}^{4}] = \sum \|\sum_{x \sim u_{T}}[|f^{T}|_{4}^{2}] = \sum \|2^{T}|_{2}^{2}$

$$T_1 \Delta T_2 = S$$

$$\sum_{\substack{k \in T \subseteq [k]}} (4d)^{|T|} \mathbb{E}_{x \sim \mu_T} [||D_{T,x}f||_4^4]$$

$$S \supseteq T \quad T_1, T_2 \supseteq T$$

Key lemma: $||f||_{4}^{4} \leq 2 \left(9^{d} \delta ||f||_{2}^{2} + \sum_{\emptyset \neq T \subseteq [k]} (4d)^{|T|} \mathbb{E}_{x \sim \mu_{T}} [||D_{T,x}f||_{4}^{4}] \right)$

$$\|f\|_{4}^{4} = \|f^{2}\|_{2}^{2} = \sum_{S \subseteq [k]} \|(f^{2})^{=S}\|$$

 $\begin{bmatrix} k \\ S \\ T_2 \end{bmatrix} \begin{bmatrix} T_1 \cap T_2 \cap S \neq \emptyset \\ \exists i \in \text{exactly one of } T_1, T_2, S \end{bmatrix}$

$$T_1 \Delta T_2 = S$$

 ${}^{S}\|_{2}^{2} = \sum_{S \subseteq [k]} \left\| \sum_{T_{1}, T_{2} \subseteq [k]} (f^{=T_{1}}f^{=T_{2}})^{=S} \right\|_{2}^{-1}$

Key lemma: $||f||_{4}^{4} \leq 2 \left(9^{d} \delta ||f||_{2}^{2} + \sum_{\emptyset \neq T \subseteq [k]} (4d)^{|T|} \mathbb{E}_{x \sim \mu_{T}} [||D_{T,x}f||_{4}^{4}] \right)$

$$\|f\|_{4}^{4} = \|f^{2}\|_{2}^{2} = \sum_{S \subseteq [k]} \|(f^{2})^{=S}\|$$

 $T_1 \cap T_2 \cap S \neq \emptyset$ $\exists i \in \text{exactly one of } T_1, T_2, S$

$$T_1 \Delta T_2 = S$$

 ${}^{S}\|_{2}^{2} = \sum_{S \subseteq [k]} \left\| \sum_{T_{1}, T_{2} \subseteq [k]} (f^{=T_{1}}f^{=T_{2}})^{=S} \right\|_{2}^{2}$ unique decomp. $A_U f = \sum f^{=T}$

 $T \subseteq U$

Key lemma: $||f||_4^4 \le 2 \left(9^d \delta ||f||_2^2 + \sum_{\emptyset \neq T \subseteq [k]} (4d)^{|T|} \mathbb{E}_{x \sim \mu_T} [||D_{T,x}f||_4^4] \right)$

$$\|f\|_{4}^{4} = \|f^{2}\|_{2}^{2} = \sum_{S \subseteq [k]} \|(f^{2})^{=S}\|$$

 $\begin{bmatrix} k \\ S \\ T_2 \end{bmatrix} \xrightarrow{T_1 \cap T_2 \cap S \neq \emptyset} \exists i \in \text{exactly one of } T_1, T_2, S$

$$T_1 \Delta T_2 = S$$

 ${}^{S}\|_{2}^{2} = \sum_{S \subseteq [k]} \left\| \sum_{T_{1}, T_{2} \subseteq [k]} (f^{=T_{1}} f^{=T_{2}})^{=S} \right\|_{2}^{2}$

unique decomp. $A_U f = \sum f^{=T}$ $i \in S \Rightarrow S \nsubseteq T_1 \cup T_2$ $(f^{=T_1}f^{=T_2})^{=S} = (A_{T_1 \cup T_2}f^{=T_1}f^{=T_2})^{=S} = 0$

Key lemma: $||f||_{4}^{4} \leq 2 \left(9^{d} \delta ||f||_{2}^{2} + \sum_{\emptyset \neq T \subseteq [k]} (4d)^{|T|} \mathbb{E}_{x \sim \mu_{T}} [||D_{T,x}f||_{4}^{4}] \right)$

$$\|f\|_{4}^{4} = \|f^{2}\|_{2}^{2} = \sum_{S \subseteq [k]} \|(f^{2})^{=S}\|$$

 $T_1 \cap T_2 \cap S \neq \emptyset$ $\begin{bmatrix} \kappa \\ T_1 \\ T_2 \end{bmatrix} = \begin{bmatrix} \kappa$

$$T_1 \Delta T_2 = S$$

 ${}^{S}\|_{2}^{2} = \sum_{S \subseteq [k]} \left\| \sum_{T_{1}, T_{2} \subseteq [k]} (f^{=T_{1}}f^{=T_{2}})^{=S} \right\|_{2}^{2}$

unique decomp. $A_U f = \sum f^{=T}$ $i \in S \Rightarrow S \not\subseteq T_1 \cup T_2$ $(f^{=T_1}f^{=T_2})^{=S} = (A_{T_1 \cup T_2}f^{=T_1}f^{=T_2})^{=S} = 0$ $i \in T_1 \Rightarrow T_1 \nsubseteq [k] \setminus \{i\}$ $(f^{=T_1}f^{=T_2})^{=S} = (A_{[k]\setminus\{i\}}f^{=T_1}f^{=T_2})^{=S} = 0$

Key lemma: $||f||_{4}^{4} \leq 2 \left(9^{d} \delta ||f||_{2}^{2} + \sum_{\emptyset \neq T \subseteq [k]} (4d)^{|T|} \mathbb{E}_{x \sim \mu_{T}} [||D_{T,x}f||_{4}^{4}] \right)$

$$\|f\|_{4}^{4} = \|f^{2}\|_{2}^{2} = \sum_{S \subseteq [k]} \|(f^{2})^{=S}\|$$

 $\begin{bmatrix} k \\ S \\ T_2 \end{bmatrix} \xrightarrow{T_1 \cap T_2 \cap S \neq \emptyset} \exists i \in \text{exactly one of } T_1, T_2, S$ $T_1 \Delta T_2 = S$

 ${}^{S}\|_{2}^{2} = \sum_{S \subseteq [k]} \left\| \sum_{T_{1}, T_{2} \subseteq [k]} (f^{=T_{1}}f^{=T_{2}})^{=S} \right\|_{2}^{-1}$

Key lemma: $||f||_4^4 \le 2$ $9^d \delta ||f||_2^2 + \sum_{\emptyset \neq \emptyset}$

$$\|f\|_{4}^{4} = \|f^{2}\|_{2}^{2} = \sum_{S \subseteq [k]} \|(f^{2})^{=S}\|_{2}^{2} = \sum_{S \subseteq [k]} \left\| \sum_{T_{1}, T_{2} \subseteq [k]} \left(f^{=T_{1}} f^{=T_{2}} \right)^{=S} \right\|_{2}^{2}$$

 $T_1 \cap T_2 \cap S \neq \emptyset$ $\exists i \in \text{exactly one of } T_1, T_2, S$ $T_1 \Delta T_2 = S$

$$\sum_{\substack{k \in T \subseteq [k]}} (4d)^{|T|} \mathbb{E}_{x \sim \mu_T} [\|D_{T,x}f\|_4^4]$$

By unique decomp. $(f^{=T_1}f^{=T_2})^{=S} = A_s(f^{=T_1}f^{=T_2}) = A_sf^{=T_1}A_sf^{=T_2}$

Key lemma: $||f||_4^4 \le 2 \qquad 9^d \delta ||f||_2^2 + \sum_{\emptyset \neq \emptyset} \delta \|f\|_2^2 + \delta \|f\|_2$

$$\|f\|_{4}^{4} = \|f^{2}\|_{2}^{2} = \sum_{S \subseteq [k]} \|(f^{2})^{=S}\|_{2}^{2} = \sum_{S \subseteq [k]} \left\| \sum_{T_{1}, T_{2} \subseteq [k]} \left(f^{=T_{1}} f^{=T_{2}} \right)^{=S} \right\|_{2}^{2}$$

By unique decomp. $T_1 \cap T_2 \cap S \neq \emptyset$ $(f^{=T_1}f^{=T_2})^{=S} = A_s(f^{=T_1}f^{=T_2}) = A_sf^{=T_1}A_sf^{=T_2}$ $\exists i \in \text{exactly one of } T_1, T_2, S \qquad \forall S' \subsetneq S, \ (f^{=T_1}f^{=T_2})^{=S'} = 0 \text{ by case (2)}$ $T_1 \Delta T_2 = S$

$$\sum_{\substack{i \in T \subseteq [k]}} (4d)^{|T|} \mathbb{E}_{x \sim \mu_T} [\|D_{T,x}f\|_4^4]$$

Key lemma: $||f||_4^4 \le 2$ $9^d \delta ||f||_2^2 + \sum_{\emptyset \neq \emptyset}$

$$\|f\|_{4}^{4} = \|f^{2}\|_{2}^{2} = \sum_{S \subseteq [k]} \|(f^{2})^{=S}\|_{2}^{2} = \sum_{S \subseteq [k]} \left\| \sum_{T_{1}, T_{2} \subseteq [k]} \left(f^{=T_{1}} f^{=T_{2}} \right)^{=S} \right\|_{2}^{2}$$

 $T_1 \cap T_2 \cap S \neq \emptyset$ $\exists i \in \text{exactly one of } T_1, T_2, S$ $T_1 \Delta T_2 = S$

$$\sum_{\substack{k \in T \subseteq [k]}} (4d)^{|T|} \mathbb{E}_{x \sim \mu_T} [\|D_{T,x}f\|_4^4]$$

By unique decomp. $(f^{=T_1}f^{=T_2})^{=S} = A_s(f^{=T_1}f^{=T_2}) = A_sf^{=T_1}A_sf^{=T_2}$

Key lemma: $||f||_4^4 \le 2$ $9^d \delta ||f||_2^2 +$ $\emptyset \neq$

$$\|f\|_{4}^{4} = \|f^{2}\|_{2}^{2} = \sum_{S \subseteq [k]} \|(f^{2})^{=S}\|_{2}^{2} = \sum_{S \subseteq [k]} \left\| \sum_{T_{1}, T_{2} \subseteq [k]} (f^{=T_{1}}f^{=T_{2}})^{=S} \right\|_{2}^{2}$$

By unique decomp. $T_1 \cap T_2 \cap S \neq \emptyset$ $(f^{=T_1}f^{=T_2})^{=S} = A_s(f^{=T_1}f^{=T_2}) = A_sf^{=T_1}A_sf^{=T_2}$ $\exists i \in \text{exactly one of } T_1, T_2, S$ $A_{s}f^{=T_{1}}$ is a function over coordinates $S \cap T_{1}$ $A_{s}f^{=T_2}$ is a function over coordinates $S \cap T_2$ $T_1 \Delta T_2 = S$

$$\sum_{\substack{i \in T \subseteq [k]}} (4d)^{|T|} \mathbb{E}_{x \sim \mu_T} [\|D_{T,x}f\|_4^4]$$

Key lemma: $||f||_4^4 \le 2$ $9^d \delta ||f||_2^2 +$ $\emptyset \neq$

$$\|f\|_{4}^{4} = \|f^{2}\|_{2}^{2} = \sum_{S \subseteq [k]} \|(f^{2})^{=S}\|_{2}^{2} = \sum_{S \subseteq [k]} \left\| \sum_{T_{1}, T_{2} \subseteq [k]} (f^{=T_{1}}f^{=T_{2}})^{=S} \right\|_{2}^{2}$$

 $T_1 \cap T_2 \cap S \neq \emptyset$ $\exists i \in \text{exactly one of } T_1, T_2, S$ $A_{s}f^{=T_{1}}$ is a function over coordinates $S \cap T_{1}$ $A_{s}f^{=T_2}$ is a function over coordinates $S \cap T_2$ $T_1 \Delta T_2 = S$

$$\sum_{\substack{k=T \subseteq [k]}} (4d)^{|T|} \mathbb{E}_{x \sim \mu_T} [\|D_{T,x}f\|_4^4]$$

By unique decomp. $(f^{=T_1}f^{=T_2})^{=S} = A_s(f^{=T_1}f^{=T_2}) = A_sf^{=T_1}A_sf^{=T_2}$

$$\|(f^{=T_1}f^{=T_2})^{=S}\|_2 = \|A_s f^{=T_1}\|_2 \|A_s f^{=T_2}\|_2$$
$$\leq \|f^{=T_1}\|_2 \|f^{=T_2}\|_2$$

Hypercontractivity over *e*-product space

c-close to orthogonal Different decompositions are close in ||.||₂ distance

Hypercontractivity over ϵ -product space Generalized Efron-Stein decomposition of $(V^k, (\mu^{(0)})^k)$

$$A_{S}f = \mathbb{E}_{\mu_{[k]\setminus S}}f$$

 $D_{S,x}f(\cdot) = \sum$ $T \subseteq S$ $\|D_{S,x}f - (D_{S,x}f)^{\leq \deg(f) - |S|}\|_{2} \leq O_{k}(\epsilon)\|f\|_{2}$

Hypercontractivity over *e*-product space Generalized Efron-Stein decomposition of $(V^k, (\mu^{(0)})^k)$

$$A_{S}f = \mathbb{E}_{\mu_{[k]\backslash S}}f$$

e-close to orthogonal Different decompositions are close in ||.||₂ distance

$$(-1)^{|T|}A_{[k]\setminus T}f(x, \cdot)$$

$$deg(f) - |S| \parallel \leq O(c) \|f|$$

e-close to orthogonal Different decompositions are close in ||.||, distance

> $D_{S,x}f(\cdot) = \sum_{x \in X} f(\cdot) = \sum_{x \in$ $T\subseteq S$

The same proof goes through with error term $O_k(\epsilon \delta) ||f||_2^2$!

Hypercontractivity over *e*-product space Generalized Efron-Stein decomposition of $(V^k, (\mu^{(0)})^k)$

$$A_{S}f = \mathbb{E}_{\mu_{[k]\setminus S}}f$$

$$(-1)^{|T|}A_{[k]\setminus T}f(x,\cdot)$$

 $\|D_{Sx}f - (D_{Sx}f)^{\leq \deg(f) - |S|}\|_{2} \leq O_{k}(\epsilon)\|f\|_{2}$

Hypercontractivity over *e*-product space

Theorem: For ϵ -product space (Ω, μ) and $f \in L^2(\mu)$

Key lemma:
$$\|f\|_{4}^{4} \leq 2 \qquad 9^{d} \delta \|f\|_{2}^{2} + \sum_{\emptyset \neq T \subseteq [k]} (4d)^{|f|}_{4}$$

+ induction on the deg of f

if f is deg-d and (d, δ) -global, then $\|f\|_{4}^{4} \leq (400d)^{d} \delta \cdot \|f\|_{2}^{2} + O_{k}(\epsilon\delta)\|f\|_{2}^{2}$

 $||^{T}|\mathbb{E}_{x \sim \mu_{T}}[||(D_{T,x}f)^{\leq d-|T|}||_{4}^{4}] + O_{k}(\epsilon\delta)||f||_{2}^{2}$

Show (global) hypercontractivity for other spaces (coboundary expanders, other partially ordered sets, noncommutative probability space)

Improve the parameter C by considering T_{ρ} and/or stochastic processes

Open questions