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3-Term Arithmetic Progressions

Triple (𝑥, 𝑧, 𝑦) with 𝑥 + 𝑦 = 2𝑧

“trivial” when 𝑥 = 𝑦 =  𝑧



3-Term Arithmetic Progressions

Theorem (Roth ‘53)

If 𝐴 ⊆ 1, 2, … , 𝑁  is dense enough*,

where density δ ≔
𝐴

𝑁
,

then 𝐴 must have a (nontrivial) 3-progression.

* (density threshold 𝛿 ≈ ൗ1
log log 𝑁)



History (𝐴 ⊆ 𝑁 , 𝐴 ≥ 𝛿𝑁 ⇒ 3-progression)

𝛿 ≈ Τ1 log log 𝑁 (Roth ‘53)

𝛿 ≈ Τ1 log 𝑁 𝑐 , 𝑐 > 0
(Heath-Brown ‘87)

(Szemerédi ‘90)

𝛿 ≈ Τ1 log 𝑁 2/3 (Bourgain ‘08)

𝛿 ≈ Τlog log 𝑁 𝑂(1) log 𝑁 (Sanders ‘12)

𝛿 ≈ Τ1 log(𝑁)1+𝑐 , 𝑐 > 0 (Bloom-Sisask ‘20)



Our Result

Theorem (K-Meka ‘23)

If 𝐴 ⊆ [𝑁] is dense enough*, then 𝐴 must have a 

(nontrivial) 3-progression.

* (density threshold 𝛿 ≈ 2− log 𝑁 1/12
)

Compare to lower bound, 𝛿 ≈ 2− log 𝑁 1/2



Dense sets have many 3-progressions

Theorem (K-Meka ‘23)

If 𝐴 ⊆ [𝑁], |𝐴| ≥ 2−𝑑𝑁 then 𝐴 has ~2−𝑑12
𝑁2 solutions 

to 𝑥 + 𝑦 = 2𝑧

(At most |𝐴| ≤ 𝑁 trivial solutions)



3-Progression over finite abelian 𝐺

 If 𝐴 ⊆ 𝐺, we can ask if A must have many 

solutions to 𝑥 + 𝑦 = 2𝑧 (in 𝐺).

(𝐴 ⊆ 𝑁 , 𝐴 ≥ 2−𝑑𝑁 ⇒  2−𝑑12
𝑁2 solutions.)

𝐴 ⊆ 𝑁 , 𝐴 ≥ 2−𝑑|𝔽𝑞
𝑛|  ⇒  2−𝑑9

|𝔽𝑞
𝑛|2 solutions.

𝐴 ⊆ 𝐺, 𝐴 ≥ 2−𝑑|𝐺|  ⇒  2−𝑑12
|𝐺|2 solutions. [BS ‘23]

(𝐺 =  ℤ𝑛 is roughly equivalent to [𝑁]) 



The “Analytic” Approach (𝐴 ⊆ 𝐺)

Find A′ ⊆ 𝐴, with ≈
𝐴′ 3

|𝐺|
 solutions to 𝑥 + 𝑦 = 2𝑧.

(Want 𝐴′ large)

E.g. try 𝐴′ = 𝐴 ∩ 𝑉, 𝑉 structured:

𝑉 = translate of some approximate subgroup:

Subgroup

Bohr set

Generalized Arithmetic Progression



The “Analytic” approach

𝑉 = structured set.

𝐴′ = 𝐴 ∩ 𝑉 has the 
”right” number of 
solutions to 𝑥 + 𝑦 = 2𝑧

 (= (1 ± 𝜖)
|𝐴′|3

|𝑉|
.)

(𝜖 is some small constant, like 1/10)



Approximate Subgroups

Example: 𝐼 = −𝑚, 𝑚 ⊆ ℤ.

For generic sets 𝑆 ⊆ ℤ, we expect 

𝑆 + 𝑆 ≈ 𝑆 2

 In contrast, 𝐼 + 𝐼 = 2 𝐼 :

 “approximately closed under addition”



𝑨 ⊆ 𝔽𝒒
𝒏, 𝑽 = subgroup 𝑨 ⊆ [𝑵], 𝑽 ≈ subgroup

𝛿 =  Τ1 log 𝑁  (Roth)

𝛿 =  Τ1 log log 𝑁  

𝛿 =  Τ1 log 𝑁 𝑐 , c > 0 

𝛿 = Τ 1 log 𝑁 2/3 

𝛿 =  ൗlog log 𝑁 𝑂 1 log 𝑁  

𝛿 = Τ 1 log 𝑁 1+𝑐  (BK ‘12) 𝛿 =  Τ1 log 𝑁 1+𝑐  (BS ‘20)

𝛿 =  2− log 𝑁 1/9
(KM ‘23) 𝛿 =  2− log 𝑁 1/12

(KM ‘23)



The “Analytic” approach

𝑉 = structured set.

𝐴′ = 𝐴 ∩ 𝑉 has the 

“right” number of 

solutions to 𝑥 + 𝑦 = 2𝑧

𝐴′ is “pseudorandom”.



Notion of Pseudorandomness (𝐴 ⊆ 𝐺)

Draw 𝑎, 𝑎′~ 𝐴 (uniformly) at random

★Say that A is pseudorandom if:

 𝑎 + 𝑎′ is near-uniform over 𝐺.



Notion of Pseudorandomness (a, a′~𝐴)

Let 𝐷 𝑥 = PDF(𝑎 + 𝑎′)

⇒ for any C ⊆ 𝐺,

#sol 𝑎 + 𝑎′ = 𝑐

= (1 ± 𝜖)
𝐴 2|𝐶|

|𝐺|

⇒(e.g. 𝐶 = 2𝑧 𝑧 ∈ 𝐴})



Definition of “near-uniform”
𝐴 = 2−𝑑 𝐺 ,

𝐷 𝑥 = 𝑃𝐷𝐹(𝑎 + 𝑎′)
𝐶 = 2𝑧 𝑧 ∈ 𝐴} 

( 𝐷 − 1 𝑝≤ 𝜖 ≅)
|𝑆|

|𝐺|
≤ 2−𝑝

If 𝑝 ≔ 𝑑 + 1, then

#sol(𝑎 + 𝑎′ = 𝑐)

≥
1

4

𝐴 3

|𝐺|



Notation For (Min)-Entropy Deficit

 Write 

∆ 𝐴 = 𝑑

iff

𝐴 =  2−𝑑|𝐺|



Main Lemma (for general 𝐺)

Let 𝐴 ⊆ 𝐺, ∆ 𝐴 ≤ 𝑑.

Either

I.  𝑃𝐷𝐹 𝑎 + 𝑎′  is near-uniform, or

II.
|𝐴∩𝑉|

|𝑉|
≥ 1 + 𝜖

|𝐴|

|𝐺|
, 

 for some approximate subgroup 𝑉,

 ∆ 𝑉 ≤ 𝑝𝑜𝑙𝑦 𝑑, 𝑝 .



Main Lemma (visualized) 𝐷 𝑥 = PDF(𝑎 + 𝑎′)

Plan for (II): Zoom in on 𝐴′ = 𝐴 ∩ 𝑉 until it looks like (I)



Main Lemma (for 𝐺 =  𝔽𝑞
𝑛)

Let 𝐴 ⊆  𝔽𝑞
𝑛, ∆ 𝐴 ≤ 𝑑.

Either

I.  𝑃𝐷𝐹 𝑎 + 𝑎′  is near-uniform, or

II.
|𝐴∩𝑉|

|𝑉|
≥ 1 + 𝜖

|𝐴|

|𝔽𝑞
𝑛|

, 

 for some affine subspace 𝑉,

 Codim(𝑉) ≤ 𝑂 𝑑4𝑝4 .



Density Increments

 Initialize 𝐴0 = 𝐴, 𝑉0 =  𝔽𝑞
𝑛.

 If 𝐴𝑖 is not pseudorandom, pass to some

𝐴𝑖+1  ≔ 𝐴𝑖 ∩ 𝑉𝑖+1,
𝐴𝑖+1

𝑉𝑖+1
≥ 1 + 𝜖

𝐴𝑖

𝑉𝑖
.

 If 
|𝐴𝑡|

|𝑉𝑡|
≥ 1 + 𝜖 𝑡 𝐴

𝔽𝑞
𝑛 ≥ 2𝜖𝑡−𝑑, then 𝑡 ≤ 𝑑/𝜖, and 

∆ 𝐴𝑡 ≤ 𝑂 𝑡𝑑8 = 𝑂(𝑑9).



Proof of Main Lemma: Setup

 Let 𝐷 𝑥 = PDF 𝑎 + 𝑎′ .

Assume 𝐷 is not near-uniform: 𝐷 − 1 𝑝 ≥ 𝜖.

We want to find a large 𝑉, 𝔼𝑉 𝟏𝐴 ≥ 1 + 𝜖 𝔼𝔽𝑞
𝑛 𝟏𝐴 .

Actually, we will find a “density increment”

𝔼𝑉 𝐷 ≥ 1 + 𝜖



Main Idea #1: Spectral Positivity

Let 𝐷 = PDF(𝑎 + 𝑎′), 𝐹 = PDF 𝑎 − 𝑎′ .

★ 𝐷 − 1 𝑝 ≤ 𝐹 − 1 𝑝.

★ 𝐹 − 1 − 𝑝 ≤ 𝐹 − 1 + p. because 

𝐹 𝑥 − 𝑦 ≽ 0.



Main Idea #2: Sifting

Hard case: 𝐴 is mostly pseudorandom, but with a 

“planted” (strong but rare) structured part. 

Suppose 𝐴 = 𝑉 ∪ 𝑅, for some subspace 𝑉 and a 

random set 𝑅. How to find 𝑉?



Main Idea #2: Sifting

 Let 𝐹(𝑥) = PDF(𝑎 − 𝑎′) and assume 𝐹 𝑝 ≥ 1 + 𝜖.

We use sifting to find a set 𝐵 = ∩ 𝑖=1
𝑝

𝐴 + 𝑠𝑖 , 

of size roughly 𝐵 ≥ 2−𝑑𝑝|𝐴|, 

witnessing

 𝔼b,b′∈𝐵 F b − b′ ≥ 1 + 𝜖/2



Rough Proof Outline

𝔼C F − 1 ≥ 𝜖,

𝔼S F ≥ 1 + 𝜖/2,

𝔼b,b′∈𝐵 F b − b′ ≥ 1 + 𝜖/4,

𝔼V F ≥ 1 + 𝜖/8,

∆ 𝐶 ≤ 𝑝

∆ 𝑆 ≤ 𝑂(𝑝)

∆ 𝐵 ≤ 𝑂(𝑝𝑑)

∆ 𝑉 ≤ 𝑂 𝑝4𝑑4 .

⇒

⇒

⇒

Spectral 

positivity

Sifting

𝐹 𝑥 = PDF(𝑎 − 𝑎′)
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