IN SEARCH OF THE HARD INSTANCES

Albert Atserias

Universitat Politècnica de Catalunya (UPC)
Barcelona

The Complexity of Theorem-Proving Procedures

Stephen A. Cook
University of Toronto

Abstract

Summary It is shown that any recognition problem solved by a polynomial timebounded nondeterministic Turing machine can be "reduced" to the problem of determining whether a given propositional formula is a tautology. Here "reduced" means, roughly speaking, that the first problem can be solved deterministically in polynomial time provided an oracle is available for solving the second.

certain recursive set of strings on this alphabet, and we are interested in the problem of finding a good lower bound on its possible recognition times. We provide no such lower bound here, but theorem 1 will give evidence that \{tautologies\} is a difficult set to recognize, since many apparently difficult problems can be reduced to determining tautologyhood. By reduced we mean, roughly speaking, that if tautologyhood could be decided instantly

```
The field of mechanical theorem proving badly needs a basis for comparing and evaluating the dozens of procedures which appear in the literature. Performance of a procedure on examples by computer is a good criterion, but not sufficient (unless the procedure proves useful in some practical way). A theoretical complexity criterion is needed which will bring out fundamental limitations and suggest new goals to pursue.
```


Proof Complexity Theorist Dream

1	2	3	2	3	4	$-1-2-3$	$-2-3-4$
1	2	4	2	3	5	$-1-2-4$	$-2-3-5$
1	2	5	2	3	6	$-1-2-5$	$-2-3-6$
1	2	6	2	4	5	$-1-2-6$	$-2-4-5$
1	3	4	2	4	6	$-1-3-4$	$-2-4-6$
1	3	5		2	5	6	
1	3	6	3	4	5	$-1-3-5$	$-2-5-6$
1	4	5	3	4	6	$-1-3-6$	$-3-4-5$
1	4	6	3	5	6	$-1-4-5$	$-3-4-6$
1	5	6	4	5	6	$-1-4-6$	$-3-5-6$
1							

Proof Complexity Theorist Dream

REQUIRES 7, IN RESOLUTION

1	3	5			
1	3	6			
1	4	5	3	4	6

A SELECTION OF "THEMES" IN PROOF COMPLEXITY

Theme 1 : Lower bounds AND upper bounds

Example: Every Resolution refutation of the pigeonhole principle formulas PHP $_{n}$ must be of exponential size $2^{\Omega(n)}$
[Haken 1986]
answering a question in Cook's 1971 paper

provides lower bounds for the black-box query models of TFNP classes

tight: size $2^{0(n)}$ is an upper bound (but
cannot be tree-like!)

Theme 2 : Proof search/Automatability

Given an unsatisfiable CNF formula F

1) find a Resolution refutation of F
2) estimate the Resolution proof length of F

both NP-hard to solve even very approximately matching subexp. algs. [A.-Müller 2019]

Theme 3 : Application to analysis of heuristics

- Average-case complexity (e.g., Erdos-Renyi, R3SAT, ...)
- Approximation algorithms (e.g., gap instances)
- Heuristics analysis (e.g., in SAT solving)
- ...

Resolution Inference Rule

Tree/Dag Proofs, Size, and Width

Dag-size Tree-size Width Space

Algebraic Proofs

Algebraic proofs:

- Indeterminates x_{i} and x_{i}^{\prime} over a ring ($\left.\mathbb{R}, \mathbb{Q}, \mathbb{Z}, \mathbb{Z}_{p}, \ldots\right)$.
- Boolean axioms: $x_{i}^{2}-x_{i}=0$ and $x_{i}+x_{i}^{\prime}-1=0$
- Clauses $x_{i} \vee x_{j} \vee \neg x_{k}$ are polynomial eq's $x_{i}{ }^{\prime} x_{j}{ }^{\prime} x_{k}=0$.
- Inferences are polynomial identities.

Sums-of-Monomials Proofs (SOM) Sums-of-Squares Proofs (SOS)

Let F be a CNF with clauses $C_{1}, \ldots, C_{\mathrm{m}}$ and variables $x_{1}, \ldots, x_{\mathrm{n}}$.

	a sound proof that F entails $P \geq 0$
clauses of F or Boolean axioms	$A_{i} P_{i}+\sum_{k} R_{k}=P$

degree : max degree of $A_{i} P_{i}$'s and R_{k}^{\prime} 's
monomial size : number of monomials in the $A_{i} P_{i}^{\prime} \mathrm{s}$ and $R_{k}^{\prime} \mathrm{s}$
bit size : bit complexity of the proof (the c_{k} 's)

The Point of SOM and SOS Proofs : Adds Counting

GOAL: From PHP derive $1-\sum_{i} x_{i h} \geq 0$ at most one SOS proof:

$$
\sum_{i \neq j}\left(x_{i h} x_{j h}\right)(-1)+\sum_{i}\left(x_{i h}^{2}-x_{i h}\right)(-1)+\left(1-\sum_{i} x_{i h}\right)^{2}=1-\sum_{i} x_{i h}
$$

pigeon sits in hole h

Meets a Classic of SDP : Lovász' Theta

$$
\begin{aligned}
\vartheta(G)=\vartheta_{3}(G):=\max & \sum_{u, v}<x_{u}, x_{v}> \\
& \text { s.t. } \\
& <x_{u}, x_{v}>=0 \\
& \sum_{u}<x_{u}, x_{u}>\leq 1
\end{aligned} \quad \text { for } u v \notin E(G)
$$

Meets a Classic of SDP : Lovász' Theta

Sandwich Theorem [Lovász 1979]

$$
\omega(G) \leq \vartheta\left(G^{c}\right) \leq \chi(G)
$$

Theorem [Banks-Kleinberg-Moore 2019]
$\vartheta\left(G^{c}\right)>q$ iff SOS has degree-2 refutation of $\operatorname{COL}(G, q)$
the standard CNF encoding of
q-colorability

ANALYSIS OF HEURISTICS

CASE STUDY 1: CLIQUE CASE STUDY 2: COLORING

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{k}} \rightarrow \mathrm{G} \\
& \mathrm{G} \rightarrow \mathrm{~K}_{\mathrm{q}}
\end{aligned}
$$

CASE STUDY 1: CLIQUE PROBLEM

The CLIQUE problem

Given a graph G and an integer k does G have a clique of size k ?

Computational complexity of CLIQUE

- NP-complete [Karp'72]
- appears hard on average for $\mathrm{G}=\mathrm{G}\left(\mathrm{n}, \mathrm{p}=\mathrm{n}^{-2 /(k-1)}\right)$ [Karp'76]
- approximating largest k is NP-hard [Arora-Safra'92, ... PCP ...]
- W[1]-complete when parameterized by k [Downey-Fellows'95]
- requires time $n^{\Omega(k)}$ assuming ETH [Impagliazzo-Paturi'01]
- circuit compexity [Razborov'86, Raz-Wigderson'92, Rossman'10]
- planted clique model [Feige-Krauthgamer'03] [Barak et al.'16]
- etc ...

A common heuristic in practical CLIQUE solvers

1) Greedily properly color the vertices with few colors
2) Branch on different color classes
3) Backtrack if "current clique size + remaining colors < k"

More complex heuristics certainly possible (Lovasz theta, etc)

The CLIQUE(G, k) formula

Variables:

$$
x(i, u): \text { " } u \text { is the } i \text {-th vertex of the clique" }
$$

Clauses:

$$
\begin{array}{ll}
x(i, 1) \vee \ldots v x(i, n) \quad \text { for } i \text { in }[k] \\
\neg x(i, u) \vee \neg x(j, v) & \text { for } i, j \text { in }[k] \text { and }(u, v) \text { in } V^{2}-E \\
& \begin{array}{l}
G=(v, E) \\
v=[n]=\{1, \ldots ., n\} \\
k=s m a l l e r
\end{array}
\end{array}
$$

Resolution proof complexity of CLIQUE

The trivial upper bound:

The Resolution complexity of $\operatorname{CLIQUE}(\mathrm{G}, \mathrm{k})$ is at most $\mathrm{n}^{0(\mathrm{k})}$, even for Tree-like Resolution.

Question: [Beyersdorff-Galesi-Lauria 2013]

Motivation 1:
Resolution
can simulate
state of the art practical
Can one prove that the (general) Resolution complexity algorithms of CLIQUE(G, k) can be $n^{\Omega(k)}$?

Motivation 2:
Answering this

Answered for tree-like Resolution

Theorem: [BGL 2013]

For $k=0(1)$, the Tree-like Resolution complexity
of CLIQUE(G,k) can be $n^{\Omega(k)}$.
a "weighted" adversary argument

Moreover: it is so for $\mathrm{G}=\mathrm{G}\left(\mathrm{n}, \mathrm{p}=\mathrm{n}^{-2.01 /(\mathrm{k}-1)}\right)$ a.a.s.

Question:

What from $\mathrm{G}(\mathrm{n}, \mathrm{p})$ is really needed to produce the hard instances?

Structure of the lower bound proof

Step 1: If G has a certain property (P), then Tree-like Resolution complexity of $\operatorname{CLIQUE}(\mathrm{G}, \mathrm{k})$ is $\mathrm{n}^{\Omega(k)}$.

Step 2: If $G=G\left(n, p=n^{-2.01 /(k-1)}\right)$,
then G has property (P) a.a.s.
The complete (k-1)-partite
$\begin{array}{cc}\text { Property (P): Rich extension property } & \begin{array}{c}\text { graph } \mathrm{K}(\mathrm{n}, \mathrm{k}-1) \\ \text { has this } \\ \text { Every } \mathrm{k} / \mathrm{C} \text {-subset of vertices }\end{array} \quad \text { property too! }\end{array}$
has at least $n^{1-3 / c}$ common neighbours

... but the ($k-1$)-colorable graphs are not hard instances, not even for Resolution

Observation: [BGL 2013]

If G is $(\mathrm{k}-1)$-colorable, then the Resolution complexity of $\operatorname{CLIQUE}(\mathrm{G}, \mathrm{k})$ is $2^{0(\mathrm{k})} \mathrm{n}^{0(1)}$.

$$
k=5
$$

k pigeons
k-1 "meta" holes

Compare
Lovasz' Theta's
Sandwich Theorem
$\omega(\mathrm{G}) \leq \vartheta\left(\mathrm{G}^{\mathrm{c}}\right) \leq \chi(\mathrm{G})$

Beyond Tree-like Resolution

Theorem: [A.-Bonacina-de Rezende-Lauria-Nordström-Razborov 2019]
For $k=o\left(n^{1 / 4}\right)$, the Regular Resolution complexity
of CLIQUE($G, k)$ can be $n^{\Omega(k)}$.
Moreover: it is so for $G=G\left(n, p=n^{-2.01 /(k-1)}\right)$ a.a.s.

Question (again):

What from $\mathrm{G}(\mathrm{n}, \mathrm{p})$ is really needed to produce the hard instances?

A refined and novel Extension Property (P)

"Clique-Density" Property (P):
Every k/c-set of vertices
has many common neighbours
and
for every set W of vertices for which
every k / cd-set has enough common neighbours in W , there exists a smallish set S such that every k/c-set that doesn't have many common neighbours in W intersects S at k/cd places.

Sanity check:

Lessons learned from CLIQUE

- Resolution complexity brings new perspective into $\omega(\mathrm{G}) \leq \operatorname{INT}(\mathrm{G}) \leq \chi(\mathrm{G})$.

Could LP-size replace SDP in INT(G) and still get an efficient interpolant?

- A new (convoluted) density property \longleftarrow Open: simplify (expander-style?). of $G(n, p)$ was identified. Does it hide a new concept? Can explicit graphs be found?
- Still open: Can the (general) Resolution complexity of CLIQUE(G, k) be $n^{\Omega(k)}$? Does Clique-Density suffice?

CASE STUDY 2: COLORING PROBLEM

The COLORING problem

Given a graph G and an integer q can the vertices of G be q-colored without monochromatic edges?

Computational complexity of COLORING

- NP-complete even for fixed $q \geq 3$ [Karp'72]
- appears hard on average for $G=G(n, p=2 q \ln (q) / n)$
- approximating $\chi(\mathrm{G})$ is a major problem [... PCP/UGC ...]
- etc ...

The COL(G, q) formula

Variables:

$$
y(u, i): \text { "u is coloured } i "
$$

Clauses:

$$
\begin{array}{ll}
x(u, 1) \vee \ldots v x(u, q) & \text { for } u \text { in }[n] \\
\neg x(u, i) \vee \neg x(v, i) & \text { for }(u, v) \text { in } E \text { and } i \text { in }[q]
\end{array}
$$

Resolution proof complexity of COLORING

Question: [Beame-Culberson-Mitchell-Moore 2005]

What is the worst-case/average-case
Resolution complexity of $\operatorname{COL}(\mathrm{G}, \mathrm{q})$ formulas?

Resolution models backtracking algorithms

McDiarmid calculus:
lines: non-q-colorable graphs.
axioms: $\mathrm{K}_{\mathrm{q}+1}$
inference rule 1:
size of proof
is defined as
number of
inference steps
if $G \subseteq H$, and G is derived, then derive H
inference rule 2:
if $u v$ is non-edge of H, and $H+u v$ is derived, and $H_{u v}$ is derived, then derive H

Resolution models backtracking algorithms

Lemma [BCMM 2005]:

If non-q-colorability of G has Tree-like McDiarmid proof of size S, then $\operatorname{COL}(G, q)$ has Resolution refutation of width $O\left(q^{2}+q \log (S)\right)$.

Theorem [BCMM 2005]:

For fixed $q \geq 3$ and large $G=G(n, p=O(1 / n))$, the Resolution complexity of $\operatorname{COL}(\mathrm{G}, \mathrm{q})$ is, w.h.p.:

$$
\begin{aligned}
& \text { width }=\Omega(n) \\
& \text { size }=\exp (\Omega(n))
\end{aligned}
$$

Prove once for Resolution apply many times (to many backtracking algorithms)

COL formulas beyond Resolution

Theorem [Krivilevich-Vu 2002] [Coja-Oghlan 2003]

For fixed $q \geq 3$ and large $G=G\left(n, p=\Omega\left(q^{2} / n\right)\right)$,
it holds that $\vartheta\left(G^{c}\right)>q$ w.h.p.

Recall
Lovasz' Theta:
$\omega(\mathrm{G}) \leq \vartheta\left(\mathrm{G}^{\mathrm{C}}\right) \leq \chi(\mathrm{G})$
Sandwich Theorem
This gives degree-2 SOS refutations of $\operatorname{COL}(\mathrm{G}, \mathrm{q})$ at average degree q^{2} and beyond

Status : Contrast With Random 3SAT

CASE STUDY 2': APPROXIMATE GRAPH COLORING

Approximate Chromatic Number

For integers $p \leq q$:
Given a p-colorable graph G, $\quad \begin{aligned} & \text { search } \\ & \text { version }\end{aligned}$ find a q-coloring of G.

Given a graph G , output: $\longleftarrow \quad \begin{gathered}\text { decision } \\ \text { version }\end{gathered}$
YES : if G is p-colorable
NO : if G is not even q-colorable
a promise problem

Computational complexity of approximate χ

Width-Based Algorithm Wigderson's algorithm revisited

Fact:

If $\mathrm{COL}(\mathrm{G}, 3)$ is not refutable in width 3 , then G is $O\left(n^{1 / 2}\right)$-colorable.

If $\mathrm{COL}(\mathrm{G}, 3)$ is not refutable in width 3 , then G is $\mathrm{O}\left(\mathrm{n}^{1 / 2}\right)$-colorable.

Case 1 : Every u has $d(u)<n^{1 / 2}$: color greedily as in [W'83]. Case 2 : Some u has $d(u) \geq n^{1 / 2}$:
enough: as in [W83],
3 -color and recurse
Claim: $\mathrm{G}[\mathrm{N}(\mathrm{u}) \mathrm{U}\{\mathrm{u}\}]$ is 3-colorable.
Proof:

- If not, then $\mathrm{G}[\mathrm{N}(\mathrm{u})]$ is not 2-colorable.
- But then $\operatorname{COL}(\mathrm{G}[\mathrm{N}(\mathrm{u})], 2)$ is refutable in width 2: it's a 2-SAT formula.
- So $\operatorname{COL}(G[N(u) \cup\{u\}], 3)$ is refutable in width 3: add $x_{u, 1} \vee x_{u, 2} \vee x_{u, 3}$
- Hence $\operatorname{COL}(G, 3)$ is refutable in width $3 . \quad$ QED

Generalizing further

Thm: [A.-Dalmau'22] Fix ε in ($0,1 / 2$).
If $\operatorname{COL}(\mathrm{G}, 3)$ is not refutable in width $\mathrm{n}^{1-2 \varepsilon}$, then G is $\mathrm{O}\left(\mathrm{n}^{\varepsilon}\right)$-colorable.

Corollary:

There is an algorithm that solves " 3 vs $O\left(n^{\varepsilon}\right)$ " coloring in time $\exp \left(O\left(n^{1-2 \varepsilon} \log n\right)\right)$

If $\operatorname{COL}(\mathrm{G}, 3)$ is not refutable in width $\mathrm{n}^{1-2 \varepsilon}$, then G is $\mathrm{O}\left(\mathrm{n}^{\varepsilon}\right)$-colorable.

Case 1 : Some $S \subseteq V$ with $|S|=n^{1-2 \varepsilon}$ has $|N(S) \cup S| \geq n^{1-\varepsilon}$. Case 2: Every $S \subseteq \vee$ with $|S|=n^{1-2 \varepsilon}$ has $|N(S) \cup S|<n^{1-\varepsilon}$.

Case 1:
Case 2:
a) loop over 3-colorings of G[S],
b) unit propagate to $N(S)$,
c) try to 3-color $\mathrm{G}[\mathrm{N}(\mathrm{S}) \cup \mathrm{S}]$,
d) on success:
e) recurse on $G[V-(N(S) \cup S)]$.
a) get n^{ε} such S_{i} with disjoint $N\left(S_{i}\right) \cup S_{i}$
b) 3-color each $G\left[S_{i}\right]$, so $G\left[U S_{i}\right]$,
c) recurse on $G\left[V-\left(U S_{i}\right)\right]$.

A CHALLENGE

Recall

Let's Make This Concrete

END

