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A SELECTION OF “THEMES” 
IN PROOF COMPLEXITY
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Theme 1 : Lower bounds AND upper bounds

Example: Every Resolution refutation of 
the pigeonhole principle formulas PHPn

must be of exponential size 2Ω(n)

[Haken 1986]
answering a question
in Cook’s 1971 paper

tight: size 2O(n) is an 
upper bound (but

cannot be tree-like!)

provides lower bounds for
the black-box query models
of TFNP classes 7



Given an unsatisfiable CNF formula 𝐹
1) find a Resolution refutation of 𝐹
2) estimate the Resolution proof length of 𝐹

Theme 2 : Proof search/Automatability

both NP-hard to solve 
even very approximately
matching subexp. algs.

[A.-Müller 2019]
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- Average-case complexity (e.g., Erdos-Renyi, R3SAT, ...)
- Approximation algorithms (e.g., gap instances)
- Heuristics analysis (e.g., in SAT solving)
- ...

Theme 3 : Application to analysis of heuristics
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given    C ∨ x    and    D ∨ ¬x    infer C ∨ D

left premise right premise resolvent

Resolution Inference Rule
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𝐶", … , 𝐶# , … , 𝐶$: 𝐷", … , 𝐷% , … , 𝐷&, … , 𝐷' , … , 𝐷( = ∅
Left RightHypothesis

Dag-size     Tree-size      Width      Space

empty clause

the proof-graph

Tree/Dag Proofs, Size, and Width

F P
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Algebraic Proofs

Algebraic proofs:

- Indeterminates 𝑥𝑖 and 𝑥𝑖′ over a ring (ℝ, ℚ, ℤ, ℤp, ...).
- Boolean axioms: 𝑥𝑖2 − 𝑥𝑖 = 0 and 𝑥𝑖 + 𝑥𝑖) − 1 = 0
- Clauses 𝑥𝑖 ∨ 𝑥𝑗 ∨ ¬𝑥𝑘 are polynomial eq’s 𝑥𝑖)𝑥𝑗)𝑥𝑘 = 0.
- Inferences are polynomial identities.
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Let F be a CNF with clauses C1,...,Cm and variables x1,...,xn.

%
%

𝐴%𝑃% + %
&

𝑐&𝑅& = 𝑃

clauses of F or
Boolean axioms

the “lift”
polynomials

non-negative 
coefficients

a sound
proof that 
F entails 𝑃 ≥ 0

Sums-of-Monomials Proofs (SOM)
Sums-of-Squares Proofs (SOS)

SOS: square polynomials P 2

SOM: monomials M

degree : max degree of AiPi ‘s and Rk’s
monomial size : number of monomials in the AiPi’s and Rk’s
bit size : bit complexity of the proof (the ck’s) 13



The Point of SOM and SOS Proofs : Adds Counting

2
!"#

(𝑥!$ 𝑥#$)(−1) + 2
!

(𝑥!$% − 𝑥!$)(−1) + 1 −2
!

𝑥!$

%

= 1 −2
!

𝑥!$

hole h
exclusivity 
clauses

boolean 
axioms

a square

at most one
pigeon sits
in hole h1 −2

!

𝑥!$ ≥ 0GOAL:  From   PHP derive

SOS proof:
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Meets a Classic of SDP : Lovász’ Theta

𝜗 𝐺 = 𝜗3 𝐺 ∶= max ∑',) < 𝑥𝑢, 𝑥𝑣 >
s. t.

< 𝑥𝑢, 𝑥𝑣 >= 0 for 𝑢𝑣 ∉ 𝐸 𝐺
∑' < 𝑥𝑢, 𝑥𝑢 > ≤ 1
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Meets a Classic of SDP : Lovász’ Theta

Sandwich Theorem [Lovász 1979]
𝜔 𝐺 ≤ 𝜗 𝐺𝑐 ≤ 𝜒(𝐺)

Theorem [Banks-Kleinberg-Moore 2019]
𝜗 𝐺𝑐 > 𝑞 iff  SOS has degree-2 refutation of COL(G,q)

the standard CNF
encoding of 
q-colorability
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ANALYSIS OF HEURISTICS
CASE STUDY 1: CLIQUE 
CASE STUDY 2: COLORING

Kk → G
G → Kq

17



CASE STUDY 1:
CLIQUE PROBLEM
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Given a graph G and an integer k
does G have a clique of size k?

The CLIQUE problem
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- NP-complete [Karp’72]
- appears hard on average for G = G(n, p = n-2/(k-1)) [Karp’76]
- approximating largest k is NP-hard [Arora-Safra’92, ... PCP ...]
- W[1]-complete when parameterized by k [Downey-Fellows’95]
- requires time nΩ(k) assuming ETH [Impagliazzo-Paturi’01]
- circuit compexity [Razborov’86, Raz-Wigderson’92, Rossman’10]
- planted clique model [Feige-Krauthgamer’03] [Barak et al.’16]
- etc ...

Computational complexity of CLIQUE

20



1) Greedily properly color the vertices with few colors
2) Branch on different color classes
3) Backtrack if “current clique size + remaining colors < k”

A common heuristic in practical CLIQUE solvers

k = 4

More complex heuristics
certainly possible
(Lovasz theta, etc)
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Variables:
x(i,u) : “u is the i-th vertex of the clique”

Clauses:
x(i,1) v ... v x(i,n) for i in [k]
¬x(i,u) v ¬x(j,v) for i,j in [k] and (u,v) in V2 - E

G = (V, E)
V = [n] = {1,...,n}
k = smaller

The CLIQUE(G, k) formula

22



The trivial upper bound:
The Resolution complexity of CLIQUE(G, k)
is at most nO(k), even for Tree-like Resolution.

Question: [Beyersdorff-Galesi-Lauria 2013]
Can one prove that the (general) Resolution complexity
of CLIQUE(G, k) can be nΩ(k)? 

Exhaustive
enumeration
of k-subsets

Motivation 2:
Answering this

seems to
require new

methods

Resolution proof complexity of CLIQUE

Motivation 1:
Resolution

can simulate
state of the art

practical 
algorithms
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Theorem: [BGL 2013]
For k = O(1), the Tree-like Resolution complexity
of CLIQUE(G,k) can be nΩ(k).
Moreover: it is so for G = G(n, p = n-2.01/(k-1)) a.a.s.

a “weighted”
adversary
argument

Question: 
What from G(n, p) is really needed 
to produce the hard instances?

Answered for tree-like Resolution
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Property (P): Rich extension property
Every k/c-subset of vertices 

has at least n1-3/c common neighbours

Step 1: If G has a certain property (P), 
then Tree-like Resolution complexity 
of CLIQUE(G, k) is nΩ(k).

Step 2: If G = G(n, p = n-2.01/(k-1)), 
then G has property (P) a.a.s. The complete

(k-1)-partite
graph K(n, k-1)

has this
property too!

Structure of the lower bound proof
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Observation: [BGL 2013]
If G is (k-1)-colorable, then
the Resolution complexity of CLIQUE(G, k) is 2O(k) nO(1).

... but the (k-1)-colorable graphs 
are not hard instances,
not even for Resolution

Compare 
Lovasz’ Theta’s

Sandwich Theorem
𝜔(G) ≤ 𝜗(Gc) ≤ 𝜒(G)

k = 5
k pigeons
k-1 ”meta” holes
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Theorem: [A.-Bonacina-de Rezende-Lauria-Nordström-Razborov 2019]
For k = o(n1/4), the Regular Resolution complexity
of CLIQUE(G,k) can be nΩ(k).
Moreover: it is so for G = G(n, p = n-2.01/(k-1)) a.a.s.

Question (again): 
What from G(n, p) is really needed 
to produce the hard instances?

Beyond Tree-like Resolution

27



“Clique-Density” Property (P):
Every k/c-set of vertices 

has many common neighbours
and

for every set W of vertices for which 
every k/cd-set has enough common neighbours in W, 

there exists a smallish set S such that 
every k/c-set that doesn’t have many common neighbours in W

intersects S at k/cd places.

Sanity check:
Not true in K(n,k-1)!

A refined and novel Extension Property (P)
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Lessons learned from CLIQUE

- Resolution complexity brings 
new perspective into 𝜔(G) ≤ INT(G) ≤ 𝜒(G).

- A new (convoluted) density property 
of G(n, p) was identified.

- Still open: Can the (general) Resolution complexity 
of CLIQUE(G, k) be nΩ(k)? Does Clique-Density suffice?

Could LP-size replace SDP 
in INT(G) and still get an 
efficient interpolant?

Open: simplify (expander-style?).
Does it hide a new concept?
Can explicit graphs be found?
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CASE STUDY 2:
COLORING PROBLEM

30



Given a graph G and an integer q
can the vertices of G be q-colored without

monochromatic edges?

The COLORING problem
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- NP-complete even for fixed q ≥ 3 [Karp’72]
- appears hard on average for G = G(n, p = 2q ln(q) / n)
- approximating 𝜒(G) is a major problem [... PCP/UGC ...]
- etc ...

Computational complexity of COLORING

32



Variables:
y(u, i) : “u is coloured i”

Clauses:
x(u,1) v ... v x(u,q) for u in [n]
¬x(u,i) v ¬x(v,i) for (u,v) in E and i in [q]

The COL(G, q) formula

33



Resolution proof complexity of COLORING

Question: [Beame-Culberson-Mitchell-Moore 2005]
What is the worst-case/average-case
Resolution complexity of COL(G, q) formulas?

Motivation:
Resolution

can simulate
many backtracking

algorithms 34



McDiarmid calculus: 
lines: non-q-colorable graphs.
axioms: Kq+1

inference rule 1: 
if G⊆ H, and G is derived, 
then derive H

inference rule 2: 
if uv is non-edge of H, and H + uv is derived, and Huv is derived,
then derive H

Resolution models backtracking algorithms

size of proof
is defined as
number of
inference steps

identify u and vadd edge uv
35



Lemma [BCMM 2005]:
If non-q-colorability of G has Tree-like McDiarmid proof of size S,
then COL(G, q) has Resolution refutation of width O(q2 + q log(S)).

Theorem [BCMM 2005]:
For fixed q≥ 3 and large G = G(n, p = O(1/n)), 
the Resolution complexity of COL(G,q) is, w.h.p.:

width = Ω(n)
size = exp(Ω(n))

Resolution models backtracking algorithms

Prove once for Resolution
apply many times
(to many backtracking
algorithms)

36



Theorem [Krivilevich-Vu 2002] [Coja-Oghlan 2003]
For fixed q≥ 3 and large G = G(n, p = Ω(q2/n)), 
it holds that 𝜗(Gc) > q w.h.p.

COL formulas beyond Resolution

Recall
Lovasz’ Theta:

𝜔(G) ≤ 𝜗(Gc) ≤ 𝜒(G)
Sandwich Theorem 

This gives degree-2 SOS refutations of COL(G, q) at 
average degree q2 and beyond
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Status : Contrast With Random 3SAT

2𝑞 ln 𝑞 2𝑞2 (𝑛/𝑤)(,-.)/,

first-moment
threshold

𝜒 𝐺 > 𝑞
threshold

𝜗 𝐺 > 𝑞
threshold

Res−width ≱ 𝑤
threshold

SAT UNSAT

easy for degree-2 SOS
hard for width

𝑛(,-.)/,

𝜔 𝐺 > 𝑞
threshold

trivial

𝑝𝑛 =

hard?
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CASE STUDY 2’:
APPROXIMATE GRAPH COLORING
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Approximate Chromatic Number

Given a p-colorable graph G,
find a q-coloring of G.

Given a graph G, output:
YES : if G is p-colorable
NO : if G is not even q-colorable 

For integers p ≤ q :
search 
version

decision 
version

a promise problem
40



3 vs 3 : 3-colorability, NP-complete [Karp’72]
3 vs 4 : NP-complete, PCP Theorem [Khanna-Linial-Safra’00]
3 vs 5 : NP-complete, (PCP +) algebra [Barto-Bulin-Krokhin-Oprsal’21]
3 vs 6 : ?
3 vs q : ?
…
3 vs n1/2 :  in P  [Wigderson’83]

NP-complete assuming the
d-to-1 Conjecture 
[Dinur-Mosel-Regev’09]

number of
vertices

has been improved many times
current record 0.199 < 1/5
[Kawarabashi-Thorup’17]

Computational complexity of approximate 𝝌
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Width-Based Algorithm
Wigderson’s algorithm revisited

Fact: 
If COL(G, 3) is not refutable in width 3,
then G is O(n1/2)-colorable.

Much weaker 
assumption
than 𝝌(G) ≤ 3 (!)

42



Case 1 : Every u has d(u) < n1/2 : color greedily as in [W’83].
Case 2 : Some u has d(u) ≥ n1/2 :

Claim: G[N(u) U {u}] is 3-colorable.
Proof: 
- If not, then G[N(u)] is not 2-colorable. 
- But then COL(G[N(u)], 2) is refutable in width 2: it’s a 2-SAT formula.
- So COL(G[N(u) U {u}], 3) is refutable in width 3: add xu,1 v xu,2 v xu,3 
- Hence COL(G, 3) is refutable in width 3.             QED

If COL(G, 3) is not refutable in width 3, 
then G is O(n1/2)-colorable.

enough: as in [W83],
3-color and recurse
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Generalizing further

Thm: [A.-Dalmau’22] Fix 𝜀 in (0,1/2).
If COL(G, 3) is not refutable in width n1-2𝜀,
then G is O(n𝜀)-colorable.

Corollary:
There is an algorithm that 
solves “3 vs O(n𝜀)” coloring
in time exp(O(n1-2𝜀 log n))

Beats the naif
exp(O(n1-𝜀))
bound
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Case 1 : Some S ⊆ V with |S|= n1-2𝜀 has |N(S) U S| ≥ n1- 𝜀.
Case 2 : Every S ⊆ V with |S|= n1-2𝜀 has |N(S) U S| < n1- 𝜀.

If COL(G, 3) is not refutable in width n1-2𝜀, 
then G is O(n𝜀)-colorable.

Case 1: 
a) loop over 3-colorings of G[S], 
b) unit propagate to N(S), 
c) try to 3-color G[N(S) U S], 
d) on success:
e) recurse on G[V-(N(S) U S)].

Case 2: 
a) get n𝜀 such Si with disjoint N(Si) U Si

b) 3-color each G[Si], so G[∪Si ],
c) recurse on G[V-(∪Si)].

size: n - n1- 𝜺
repeat ≤n𝜺 times
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A CHALLENGE
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Recall

2𝑞 ln 𝑞 2𝑞2 (𝑛/𝑤)(,-.)/,

first-moment
threshold

𝜒 𝐺 > 𝑞
threshold

𝜗 𝐺 > 𝑞
threshold

min−ref−width ≱ 𝑤
threshold

SAT UNSAT

easy for degree-2 SOS
hard for width

𝑛(,-.)/,

𝜔 𝐺 > 𝑞
threshold

trivial

𝑝𝑛 =

hard?
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Let’s Make This Concrete
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𝑞 = 3
𝑑 = 18
𝑛 = large

G(n, d/n) Gq(n, d/n)

1/2

⏳

Left / Right



END
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