
Designing Samplers is Easy: The Boon of Testers

Mate Soos1

(Substitute Presenter: Kuldeep S. Meel1)

Joint work with Sourav Chakraborty2 and Priyanka Golia1

1 National University of Singapore
2 Indian Statistical Institute, Kolkata

(Relevant Publications: AAAI-19, FMCAD-21, CP-22)

Slide 1/ 20

Uniform Sampling

Input A CNF Formula F and tolerance parameter ε
Output σ ∈ Sol(F) such that

1

(1 + ε)|Sol(F)|
≤ Pr[A(F) = σ] ≤

1 + ε

|Sol(F)|

Motivation: Fundamental problem in CS (theory) and applications in hardware and software
testing (practice)

Snapshot from early 2010’s

Scalability WES04,NRJK+06, KK07

Guarantees JVV86, BGP00, YAPA04

Slide 2/ 20

UniGen: Almost-uniform Sampler

• Core Idea: Use 3-wise independence (random XORs) to partition the solution space

• Makes O(log n) calls to SAT oracle

• Theoretical guarantees

1

(1 + ε)|Sol(F)|
≤ Pr[A(F) = y] ≤

1 + ε

|Sol(F)|

• Scalability: CryptoMiniSat (A specialized solver for CNF+XOR)

Slide 3/ 20

How do you test a sampler is uniform?

Input: A reference sampler U , a test sampler A, and a formula F
Approach: Run both samplers and plot their distributions

• Eyeball the distributions

• Run statistical tests (KL divergence, chi-square)

Caveat Requires number of samples >> number of solutions

What if you try to draw conclusions based on fewer samples?

DLBS18: Efficient Sampling of SAT Solutions for Testing

“We can see that SearchTreeSampler and UniGen2 are more uniform, but QuickSampler is
still close to uniform on most benchmarks. However, this result should be taken with care,
since the uniformity test is not very reliable on benchmarks where QuickSampler completed
a small number of epochs or when the number of produced samples is too low.”

Slide 4/ 20

How do you test a sampler is uniform?

Input: A reference sampler U , a test sampler A, and a formula F
Approach: Run both samplers and plot their distributions

• Eyeball the distributions

• Run statistical tests (KL divergence, chi-square)

Caveat Requires number of samples >> number of solutions

What if you try to draw conclusions based on fewer samples?

DLBS18: Efficient Sampling of SAT Solutions for Testing

“We can see that SearchTreeSampler and UniGen2 are more uniform, but QuickSampler is
still close to uniform on most benchmarks. However, this result should be taken with care,
since the uniformity test is not very reliable on benchmarks where QuickSampler completed
a small number of epochs or when the number of produced samples is too low.”

Slide 4/ 20

In search of principled approach

Input: A reference sampler U , a test sampler A, and a formula F
Problem: Return Yes if the distribution of U(F) (known to be uniform) and A(F) are close,
else return No
Approach II: Just keep sampling and stop the first time you see a collision

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

P
ro
b
a
b
il
it
y

Figure: U : Reference Distribution

2
|S|

0
|S|

0
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

0
|S|

0
|S|

0
|S|

2
|S|

0
|S|

2
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

2
|S|

P
ro
b
a
b
il
it
y

Figure: A: far from uniform

No collisions until you have generated at least
√

|Sol(F)| solutions!
BFRSW98 =⇒ The above technique is optimal (i.e., if we are only allowed to look at
samples)

Slide 5/ 20

Advances in Distribution Testing

Definition (Conditional Sampling)

Given a distribution D on S ; allow one to specify a set T ⊆ S and draw samples from A
conditioned on T

Pr[σis generated] =

{
0 if σ /∈ T

D(σ)∑
σ∈T D(σ)

otherwise

Conditional sampling is at least as powerful as drawing normal samples but is it more
powerful?

Slide 6/ 20

The Power of Conditioning

P
ro
b
a
b
il
it
y

2
|S|

0
|S|

0
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

0
|S|

0
|S|

0
|S|

2
|S|

0
|S|

2
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

2
|S|

P
ro
b
a
b
il
it
y

• Draw σ1 uniformly at random from the domain and draw σ2 according to the
distribution A. Let T = {σ1, σ2}.

• In the case of the “far” distribution, with constant probability, σ1 will have “low”
probability and σ2 will have “high” probibility.

• We will be able to distinguish the far distribution from the uniform distribution using
constant number of samples from A|T .

• The constant depend on the farness parameter.

The above algorithm works for all cases

Slide 7/ 20

Constrained Sampling

• Input formula: F over variables X

• Challenge: Conditional Sampling over T = {σ1, σ2}.
• Construct G = F ∧ (X = σ1 ∨ X = σ2)

• Most of the samplers will just enumerate all the solutions when the number of solutions
is very small

• Need way to construct formulas whose solution space is large but every solution can be
mapped to either σ1 or σ2.

Slide 8/ 20

Kernel

Input: A Boolean formula φ, two assignments σ1 and σ2, and desired number of solutions τ
Output: Formula φ̂

• τ = |Sol(φ̂)|
• z ∈ Sol(φ̂) =⇒ z↓Supp(φ) ∈ {σ1, σ2}
• |{z ∈ Sol(φ̂) | z↓Supp(φ) = σ1}| = |{z ∈ Sol(φ̂) | z↓Supp(φ) = σ2}|
• φ and φ̂ has “similar” structure

Definition

The non-adversarial sampler assumption states that the distribution of the projection of
samples obtained from A(φ̂) to variables of φ is same as the conditional distribution of
A(φ) restricted to either σ1 or σ2

• If A is a uniform sampler for all the input formulas, it satisfies non-adversarial sampler
assumption

• If A is not a uniform sampler for all the input formulas, it may not necessarily satisfy
non-adversarial sampler assumption

Slide 9/ 20

Kernel

Input: A Boolean formula φ, two assignments σ1 and σ2, and desired number of solutions τ
Output: Formula φ̂

• τ = |Sol(φ̂)|
• z ∈ Sol(φ̂) =⇒ z↓Supp(φ) ∈ {σ1, σ2}
• |{z ∈ Sol(φ̂) | z↓Supp(φ) = σ1}| = |{z ∈ Sol(φ̂) | z↓Supp(φ) = σ2}|
• φ and φ̂ has “similar” structure

Definition

The non-adversarial sampler assumption states that the distribution of the projection of
samples obtained from A(φ̂) to variables of φ is same as the conditional distribution of
A(φ) restricted to either σ1 or σ2

• If A is a uniform sampler for all the input formulas, it satisfies non-adversarial sampler
assumption

• If A is not a uniform sampler for all the input formulas, it may not necessarily satisfy
non-adversarial sampler assumption

Slide 9/ 20

Barbarik

Input: A sampler under test A, a reference uniform sampler U , a tolerance parameter ε > 0,
an intolerance parmaeter η > ε, a guarantee parameter δ and a CNF formula φ
Output: ACCEPT or REJECT with the following guarantees:

• if the generator A is an ε-additive almost-uniform generator then Barbarik ACCEPTS
with probability at least (1− δ).

• if A(φ, .) is η-far from a uniform generator and if non-adversarial sampler assumption
holds then Barbarik REJECTS with probability at least 1− δ.

• Barbarik needs at most K = Õ(1
(η−ε)4

) samples.

Slide 10/ 20

Testing of Samplers

• Samplers without guarantees (Uniform-like Samplers):

• STS (Ermon, Gomes, Sabharwal, Selman,2012)

• QuickSampler (Dutra, Laeufer, Bachrach, Sen, 2018)

• Sampler with guarantees:

• UniGen3

QuickSampler STS UniGen3

ACCEPTs 0 14 50
REJECTs 50 36 0

To ACCEPT, we needed 106 samples but we could reject with just 250 samples

Slide 11/ 20

Beyond Simply Testing

How can we use the availability of Barbarik to design a good sampler? Is it even possible ?

Wishlist

• Sampler should be at least as fast as STS and QuickSampler.

• Sampler should pass the Barbarik test.

• Sampler should perform well on real world applications.

Slide 12/ 20

CMSGen

• Exploits the flexibility of CryptoMiniSat.

• Pick polarities and branch on variables at random.

• To explore the search space as evenly as possible.
• To have samples over all the solution space.

• Turn off all pre and inprocessing.

• Processing techniques: bounded variable elimination, local search, or symmetry
breaking, and many more.

• Can change solution space of instances.

• Restart at static intervals.

• Helps to generate samples which are very hard to find.

. / c r y p t om i n i s a t 5 −maxsol $1 −nobanso l −r e s t a r t f i x e d −maple 0 −−ve rb 0 −s c c 1 −n 1
−pres imp 0 −p o l a r rnd −f r e q 0 .9999 − f i x e d c o n f l $2 −random $3 −dumpresu l t $4 [CNFFILE]

• Parameters of CMSGen are decided iteratively with the help of Barbarik

• Lack of theoretical analysis.

Slide 13/ 20

CMSGen

• Exploits the flexibility of CryptoMiniSat.

• Pick polarities and branch on variables at random.

• To explore the search space as evenly as possible.
• To have samples over all the solution space.

• Turn off all pre and inprocessing.

• Processing techniques: bounded variable elimination, local search, or symmetry
breaking, and many more.

• Can change solution space of instances.

• Restart at static intervals.

• Helps to generate samples which are very hard to find.

. / c r y p t om i n i s a t 5 −maxsol $1 −nobanso l −r e s t a r t f i x e d −maple 0 −−ve rb 0 −s c c 1 −n 1
−pres imp 0 −p o l a r rnd −f r e q 0 .9999 − f i x e d c o n f l $2 −random $3 −dumpresu l t $4 [CNFFILE]

• Parameters of CMSGen are decided iteratively with the help of Barbarik

• Lack of theoretical analysis.

Slide 13/ 20

CMSGen vs. Other State-of-the-Art Samplers (I)

0 10 20 30 40 50 60 70
Benchmarks

0

1000

2000

3000

4000

5000

6000

7000

R
un

tim
e

CMSGen
STS
QuickSampler

QuickSampler STS CMSGen
33 37 52

Slide 14/ 20

Testing of Samplers

• Samplers without guarantees (Uniform-like Samplers):

• STS (Ermon, Gomes, Sabharwal, Selman,2012)

• QuickSampler (Dutra, Laeufer, Bachrach, Sen, 2018)

• Sampler with guarantees:

• UniGen3

QuickSampler STS UniGen3

ACCEPTs 0 14 50
REJECTs 50 36 0

Slide 15/ 20

Testing of Samplers

• Samplers without guarantees (Uniform-like Samplers):

• STS (Ermon, Gomes, Sabharwal, Selman,2012)

• QuickSampler (Dutra, Laeufer, Bachrach, Sen, 2018)

• CMSGen

• Sampler with guarantees:

• UniGen3

QuickSampler STS UniGen3 CMSGen

ACCEPTs 0 14 50 50
REJECTs 50 36 0 0

Slide 15/ 20

Wishlist

• Sampler should be at least as fast as STS and QuickSampler.✓

• Sampler should pass the Barbarik test. ✓

• Sampler should perform well on real world applications.

Slide 16/ 20

Combinatorial Testing

• A powerful paradigm for testing configurable system.

• Challenge: To generate test suites that maximizes t-wise coverage.

t-wise coverage: =
of t-sized combinations in test suite

all possible valid t-sized combinations

• To generate the test suites use constraint samplers.

• Uniform sampling to have high t-wise coverage (Plazar, Acher, Perrouin et al., 2019).

• Experimental Evaluations:

• Generate 1000 samples (test cases).
• 110 Benchmarks, Timeout: 3600 seconds
• 2-wise coverage t = 2.

Slide 17/ 20

Combinatorial Testing: The Power of CMSGen

Higher is better

QuickSampler STS CMSGen
Avg. Coverage 51.5% 80.15% ∼ 100%

Remark: UniGen3 could sample for only 6 benchmarks

Slide 18/ 20

Strategy Extraction in 2-QBF: Functional Synthesis

State of the art approach (Manthan): Sampling + Machine Learning + Counter-example
guided repair

0 50 100 150 200 250 300 350 400
Benchmarks

0

1000

2000

3000

4000

5000

6000

7000

R
un

tim
e

CMSGen
QuickSampler
CryptoMiniSAT
STS
UniGen3

Slide 19/ 20

Where do we go from here?

Summary Design of a practically efficient sampler via test-driven development that works
well in real-world applications

Practice A Virtuous cycle: Improve Barbarik so that it can reject CMSGen and then
improve CMSGen

• Trade-off between runtime performance and quality
• Frequent restarts degrade solution quality

Theory Explain why CMSGen works well

• Perhaps CDCL with randomization is all you need in practice?
• Perhaps, you don’t really need uniformity in most cases. What do we really need?

Theory and Practice And a testing methodology independent of non-adversarial assumption

Slide 20/ 20

