Graph Coloring Is Hard on Average for Polynomial Calculus and Nullstellensatz

Shuo Pang
University of Copenhagen, Lund University

Simons Institute for the Theory of Computing
April 18, 2023

Joint with Jonas Conneryd, Susanna F. de Rezende, Jakob Nordström, Kilian Risse

Joint with Jonas Conneryd, Susanna F. de Rezende, Jakob Nordström, Kilian Risse

k-Coloring Problem

Given an n-vertex graph G, is it k-colorable?
Karp's 21 problems, intensively studied. NP-complete when $k \geq 3$.

k-Coloring Problem

Given an n-vertex graph G, is it k-colorable?
Karp's 21 problems, intensively studied. NP-complete when $k \geq 3$.

Proof Complexity

Combinatorial reasoning
McDiarmid'84, Beame-Culberson-Mitchell-Moore'05 Resolution
Algebraic reasoning
Bayer'82, De Loera'95, De Loera-Lee-Malkin-Margulies'08 ... Polynomial Calculus

k-Coloring Problem

Given an n-vertex graph G, is it k-colorable?
Karp's 21 problems, intensively studied. NP-complete when $k \geq 3$.

Proof Complexity

Combinatorial reasoning
McDiarmid'84, Beame-Culberson-Mitchell-Moore'05 Resolution
Algebraic reasoning
Bayer'82, De Loera'95, De Loera-Lee-Malkin-Margulies'08 ... Polynomial Calculus

Random Graph-Non- k-Colorablility?

Random d-regular graph $G_{n, d}$
Erdös-Rényi-Gilbert $G\left(n, \frac{d}{n}\right)$

Are There Short Proofs of Non- k-Colorability?

For Resolution

$$
\exp \left(\Omega_{d}(n)\right) \text { on } G\left(n, \frac{d}{n}\right) \quad \text { Beame-Culberson-Mitchell-Moore'05 }
$$

For Polynomial Calculus, Nullstellensatz
$\exp \left(\Omega_{d}(n)\right)$ on special graph Lauria-Nordström'17, Atserias-Ochreimak'19 $\Omega(g / \chi)$ degree, g is girth, χ is chromatic number Romero-Tunçel'21 $\Omega(n)$ degree on random graphs: open \quad DLLMM'08, LN'17, Lauria'18, $^{\prime}$.

Are There Short Proofs of Non- k-Colorability?

For Resolution

$$
\exp \left(\Omega_{d}(n)\right) \text { on } G\left(n, \frac{d}{n}\right) \quad \text { Beame-Culberson-Mitchell-Moore'05 }
$$

For Polynomial Calculus, Nullstellensatz $\exp \left(\Omega_{d}(n)\right)$ on special graph Lauria-Nordström'17, Atserias-Ochreimak'19 $\Omega(g / \chi)$ degree, g is girth, χ is chromatic number Romero-Tunçel'21 $\Omega(n)$ degree on random graphs: open \quad DLLMM'08, LN'17, Lauria'18, \ldots

Our algorithm has good practical performance and numerical stability. ...our experiments demonstrate that often very low degrees suffice for systems of polynomials coming from graphs.

> -De Loera-Lee-Malkin-Margulies'08,

Hilbert's Nullstellensatz and an Algorithm for Proving Combinatorial Infeasibility

Our Result

With high probability, for $G \sim G_{n, d}$ or $G\left(n, \frac{d}{n}\right)$, polynomial calculus requires degree $\Omega_{d}(n)$ to refute that G is 3-colorable.

Corollary

$\exp \left(\Omega_{d}(n)\right)$ size lower bounds for Polynomial Calculus and Nullstellensatz.

Techniques

Extend [Romero-Tunçel'21] to random graphs.

Polynomial ring over field \mathbb{F}.
The k-Coloring Axioms on G
Vars: $x_{v, i}(v \in V(G), i \in[k]) \quad\left(x_{v, i}\right.$ is $1 \leftrightarrow v$ gets color $\left.i\right)$

$$
\begin{aligned}
x_{v, i}\left(x_{v, i}-1\right) & =0 \quad \text { (Boolean) } \\
\sum_{i \in[k]} x_{v, i} & =1 \\
x_{v, i} x_{v, j} & =0(i \neq j)(v \text { gets exactly one color) } \\
x_{u, i} x_{v, i} & =0 \quad \text { if }\{u, v\} \in E(G) \text { (no monochromatic edge) }
\end{aligned}
$$

Polynomial ring over field \mathbb{F}.

The k-Coloring Axioms on G

Vars: $x_{v, i}(v \in V(G), i \in[k]) \quad\left(x_{v, i}\right.$ is $1 \leftrightarrow v$ gets color $\left.i\right)$

$$
\begin{aligned}
x_{v, i}\left(x_{v, i}-1\right) & =0 \quad \text { (Boolean) } \\
\sum_{i \in[k]} x_{v, i} & =1 \\
x_{v, i} x_{v, j} & =0(i \neq j) \quad(v \text { gets exactly one color) } \\
x_{u, i} x_{v, i} & =0 \text { if }\{u, v\} \in E(G) \text { (no monochromatic edge) }
\end{aligned}
$$

Fourier encoding [Bayer'82]
$X_{v} \in\left\{1, \zeta, \ldots, \zeta^{k-1}\right\}$
Degree: equivalent

Polynomial Calculus (PC) Clegg-Edmonds-Impagliazzo'96

Axioms $p_{1}\left(x_{1}, \ldots, x_{n}\right)=0, \ldots, p_{m}\left(x_{1}, \ldots, x_{n}\right)=0$
Each step:

$$
\frac{p q}{\alpha \cdot p+\beta \cdot q}(a, b \in \mathbb{F}) \quad \frac{p}{x_{i} \cdot p}
$$

Proof/refutation: derive 1 .

Complexity Measure

Degree $=$ max deg among all monomials
Size $=\#($ monomials $)$ counted over all lines

Polynomial Calculus (PC) Clegg-Edmonds-Impagliazzo'96

Axioms $p_{1}\left(x_{1}, \ldots, x_{n}\right)=0, \ldots, p_{m}\left(x_{1}, \ldots, x_{n}\right)=0$
Each step:

$$
\frac{p q}{\alpha \cdot p+\beta \cdot q}(a, b \in \mathbb{F}) \quad \frac{p}{x_{i} \cdot p}
$$

Proof/refutation: derive 1 .

Complexity Measure

Degree $=\max$ deg among all monomials
Size $=\#($ monomials $)$ counted over all lines

Degree-Size Relation Impagliazzo-Pudlák-Sgall'99
Degree $\Omega(n)$ implies size $\exp (\Omega(n))$

Polynomial Calculus (PC) Clegg-Edmonds-Impagliazzo'96

Axioms $p_{1}\left(x_{1}, \ldots, x_{n}\right)=0, \ldots, p_{m}\left(x_{1}, \ldots, x_{n}\right)=0$
Each step:

$$
\frac{p q}{\alpha \cdot p+\beta \cdot q}(a, b \in \mathbb{F}) \quad \frac{p}{x_{i} \cdot p}
$$

Proof/refutation: derive 1 .

To Show Deg-D Lower Bounds

Find a linear map R so that:

- $R($ axiom $)=0$
- $\frac{R(p)=0 \quad R(q)=0}{R(\alpha \cdot p+\beta \cdot q)=0} \quad \frac{R(p)=0}{R\left(x_{i} \cdot p\right)=0}$ if $\operatorname{deg}(p)<D$
- $R(1) \neq 0$.

Algebraic Setting

Reduction Operator

$">"$: admissible total ordering on monomials.
Leading monomial of a polynomial (LM)
W a set of polynomials.
Say m is reducible by W if: $m=L M(p)$ for some $p \in W$.

Algebraic Setting

Reduction Operator

" $>$ ": admissible total ordering on monomials.
Leading monomial of a polynomial (LM)
W a set of polynomials.
Say m is reducible by W if: $m=L M(p)$ for some $p \in W$.
When W is a linear space

$$
\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]=W \oplus \operatorname{span}_{\mathbb{F}}\{m: \text { irred }\}
$$

Reduction operator, R_{W}
Projection to span of irreducibles

- $\operatorname{Ker}\left(R_{W}\right)=W$
- Decrease monomials.

In application: W is an ideal (linear and $p \in W \Rightarrow x p \in W$)

Degree Lower Bound: Local-Global Principle

Deg-D PC—locally powerful, globally not (we believe).
S : a small subset of axioms "Local set"

Degree Lower Bound: Local-Global Principle

Deg-D PC—locally powerful, globally not (we believe).
S: a small subset of axioms "Local set"

- Satisfiable
- We have local ideal I_{S} and local reduction R_{S}.
- Deg $\leq D$ part of I_{S} : local conclusions

Let's collect all local sets $\left\{S_{1}, S_{2}, \ldots\right\}$.

Degree Lower Bound: Local-Global Principle

Deg-D PC—locally powerful, globally not (we believe).
S : a small subset of axioms "Local set"

- Satisfiable
- We have local ideal I_{S} and local reduction R_{S}.
- Deg $\leq D$ part of I_{S} : local conclusions

Let's collect all local sets $\left\{S_{1}, S_{2}, \ldots\right\}$.

Key Question

Do local reductions reduce every line of a deg- D proof?

Degree Lower Bound: Local-Global Principle

Deg-D PC—locally powerful, globally not (we believe).
S: a small subset of axioms "Local set"

- Satisfiable
- We have local ideal I_{S} and local reduction R_{S}.
- Deg $\leq D$ part of I_{S} : local conclusions

Let's collect all local sets $\left\{S_{1}, S_{2}, \ldots\right\}$.

Key Question

Do local reductions reduce every line of a deg- D proof?
Meaning: express every line in a deg-D PC proof as

$$
p=p_{1}+\cdots+p_{t}, \quad \text { Call } p \text { "completely reducible" }
$$ each p_{i} in some I_{S} and $\max _{1 \leq i \leq t}\left(L M\left(p_{i}\right)\right)=L M(p)$. by collection $\left\{S_{1}, S_{2}, \ldots\right\}$.

If so, we're done. (Each line: LM is reducible by some I_{S}. 1 is not.)

Degree Lower Bound: Local-Global Principle

Deg-D PC—locally powerful, globally not (we believe).
S : a small subset of axioms "Local set"

- Satisfiable
- We have local ideal I_{S} and local reduction R_{S}.
- Deg $\leq D$ part of I_{S} : local conclusions

Let's collect all local sets $\left\{S_{1}, S_{2}, \ldots\right\}$.

Key Question

Do local reductions reduce every line of a deg- D proof?
Meaning: express every line in a deg-D PC proof as

$$
p=p_{1}+\cdots+p_{t}, \quad \text { Call } p \text { "completely reducible" }
$$ each p_{i} in some I_{S} and $\max _{1 \leq i \leq t}\left(L M\left(p_{i}\right)\right)=L M(p)$. by collection $\left\{S_{1}, S_{2}, \ldots\right\}$.

If so, we're done. (Each line: LM is reducible by some $I_{S} .1$ is not.)
Answer: yes... if we don't encounter Bad Cancellation.

Degree Lower Bound: Local-Global Principle

Key Question

Do local reductions reduce every line of a deg- D proof?

$$
\begin{array}{cl}
p+q & \text { BAD: } \\
\frac{p, q: \text { completely reducible }}{m+\text { smaller terms }} & m \text { irreducible by any local } I_{S} .
\end{array}
$$

Answer: yes... if we don't encounter Bad Cancellation.

No Bad if and only if A simple case of Buchberger's criterion

(*):

$$
\begin{aligned}
& \text { For all } i, j \text { and } p_{i} \in I_{S_{i}}, p_{j} \in I_{S_{j}}, \operatorname{deg} \leq D, \\
& \qquad p_{i}+p_{j} \text { is completely reducible by }\left\{S_{1}, S_{2}, \ldots\right\} .
\end{aligned}
$$

E.g. suffices to have $p_{i}+p_{j} \in I_{S_{k}}$ for some k.

No Bad if and only if A simple case of Buchberger's criterion

$$
(\star): \quad \begin{array}{r}
\text { For all } i, j \text { and } p_{i} \in I_{S_{i}}, p_{j} \in I_{S_{j}}, \operatorname{deg} \leq D, \\
p_{i}+p_{j} \text { is completely reducible by }\left\{S_{1}, S_{2}, \ldots\right\} .
\end{array}
$$

E.g. suffices to have $p_{i}+p_{j} \in I_{S_{k}}$ for some k.

A Sufficient Condition For Degree Lower Bounds

Find $\left\{S_{1}, S_{2}, \ldots\right\}$ so that

1. Covers all axioms;
2. Each is satisfiable;
3. Satisfy (\star).

No Bad if and only if A simple case of Buchberger's criterion

$$
(\star): \quad \begin{array}{r}
\text { For all } i, j \text { and } p_{i} \in I_{S_{i}}, p_{j} \in I_{S_{j}}, \operatorname{deg} \leq D, \\
p_{i}+p_{j} \text { is completely reducible by }\left\{S_{1}, S_{2}, \ldots\right\} .
\end{array}
$$

E.g. suffices to have $p_{i}+p_{j} \in I_{S_{k}}$ for some k.

A Sufficient Condition For Degree Lower Bounds

Find $\left\{S_{1}, S_{2}, \ldots\right\}$ so that

1. Covers all axioms;
2. Each is satisfiable;
3. Satisfy (\star).

Closed Sets

Closed Set for Coloring cf. [Romero-Tunçel'21]

Monomial order \sim Vertex order
Axiom set \sim Vertex set S

Closed Set for Coloring cf. [Romero-Tunçe|'21]

Monomial order \sim Vertex order
Axiom set \sim Vertex set S
Collection of "closed sets" $\left\{S_{i}\right\}$
-use a stronger requirement than (\star)
For all monom m with $\operatorname{Vert}(m) \subseteq S_{i}$:
m is reducible by $I_{T} \Rightarrow m$ is reducible by $I_{S_{i}}$
for any $|T| \leq 2 \max _{k}\left|S_{k}\right|$.

Closed Set for Coloring cf. [Romero-Tunçe|'21]

Monomial order \sim Vertex order
Axiom set \sim Vertex set S
Collection of "closed sets" $\left\{S_{i}\right\}$
-use a stronger requirement than (\star)
For all monom m with $\operatorname{Vert}(m) \subseteq S_{i}$:
m is reducible by $I_{T} \Rightarrow m$ is reducible by $I_{S_{i}}$ for any $|T| \leq 2 \max _{k}\left|S_{k}\right|$.

Graph-theoretic condition

1. Boundary is tree-like

- $\left\{v_{1}, v_{2}, \ldots\right\}$ is independent set

- v_{i} has unique neighbor in S

2. $v_{i}>$ its neighbor in S

Closed Set for Coloring cf. [Romero-Tunçel'21]

I.e. S is closed iff:

- S is downward-closed;
(If \exists directed path from S to v, then $v \in S$.)
- No 2-, 3-hops with respect to S in G.

Closed Set for Coloring cf. [Romero-Tunçe|'21]

I.e. S is closed iff:

- S is downward-closed;
(If \exists directed path from S to v, then $v \in S$.)
- No 2-, 3-hops with respect to S in G.

Lemma 1 [Local Reduction]

If $\operatorname{Vert}(m) \subseteq \operatorname{closed} S,|T| \leq C n$, then: m reducible by $I_{T} \Rightarrow m$ reducible by I_{S}.

Remark. Exlude more shapes for 3-coloring.
 (2,3,4,5- and degenerate 5,6-hops)

Closed Set containing given set

$$
\mathrm{Cl}(S)
$$

- Take downward-closure;
- Once see a short hop, include it;
- Repeat.

Closed Set containing given set

$\mathrm{Cl}(S)$

- Take downward-closure;
- Once see a short hop, include it;
- Repeat.

Collection of closed sets

$\{\mathrm{Cl}(S):|S| \leq \alpha n\}, \alpha$ small constant.

- Covers all axioms
- Satisfies (\star) (previous lemma)
- $\mathrm{Cl}(S)$ is small (\Rightarrow satisfiable).

Closure Is Small

Vertex Ordering [RT'21]
Induced by $\chi(G)$ colors.
Directed path has length $\leq \chi$.

$V_{1} \succ V_{2} \ldots \succ V_{\chi(G)}$

Closure Is Small

Vertex Ordering [RT'21]

Induced by $\chi(G)$ colors.
Directed path has length $\leq \chi$.

$V_{1} \succ V_{2} \ldots \succ V_{\chi(G)}$

Lemma 2 [Closure Size]

Suppose $\operatorname{deg}(G) \leq d$ and G is locally-sparse. Then:

$$
|S| \leq c n \Rightarrow|C l(S)| \leq 20 d^{\chi(G)+2} c n .
$$

Remark. $G\left(n, \frac{d}{n}\right)$ has large degree vertices. Need other pseudo-random properties.

Lemma 1 [Local Reduction]

If $\operatorname{Vert}(m) \subseteq \operatorname{closed} S,|T| \leq C n$, then: m reducible by $I_{T} \Rightarrow m$ reducible by I_{S}.

Proof. (4-coloring)
$m+($ lower terms $)=\sum_{S} p_{i} f_{i}+\sum_{S, N(S)} q_{i} g_{i}+\sum_{\text {others }} r_{i} h_{i}$

1. We can 3-color $T \backslash \mathrm{~S}$.

- Peeling Lemma

$\forall A|E[A]|<2|A| \Rightarrow$ graph is 3-colorable.
- Random graph is sparse $\forall|A|<c n \Rightarrow|E([A])|<(1+\epsilon)|A|$ [e.g. Razborov'17]

Lemma 1 [Local Reduction]

If $\operatorname{Vert}(m) \subseteq \operatorname{closed} S,|T| \leq C n$, then: m reducible by $I_{T} \Rightarrow m$ reducible by I_{S}.

Proof. (4-coloring)
$m+($ lower terms $)=\sum_{S} p_{i} f_{i}+\sum_{S, N(S)} q_{i} g_{i}+\sum_{\text {others }} r_{i} h_{i}$

1. We can 3-color $T \backslash \mathrm{~S}$.

- Peeling Lemma

$\forall A|E[A]|<2|A| \Rightarrow$ graph is 3-colorable.
- Random graph is sparse $\forall|A|<c n \Rightarrow|E([A])|<(1+\epsilon)|A|$ [e.g. Razborov'17]

2. Apply the restriction, do not assign $u_{i}^{*} \mathrm{~s}$.
3. u_{1}^{*} 's neighbors: use two colors. Say colors $1 \& 2$. Set $u_{1}^{*}(1)=u_{1}^{*}(2)=0$.
4. Kill axioms talking about $u_{1}^{*} \&\left(u_{1}, u_{1}^{*}\right)$ by deg-1 substitution.

$$
u_{1}^{*}(3) \leftarrow u_{1}(4), u_{1}^{*}(4) \leftarrow \sum_{i \neq 4} u_{1}(i)
$$

5. Do the same for $u_{2}^{*}, u_{3}^{*}, \ldots$

Lemma 1 [Local Reduction]

If Vert $(m) \subseteq$ closed $S,|T| \leq C n$, then: m reducible by $I_{T} \Rightarrow m$ reducible 1
Proof. (4-coloring)
$m+($ lower terms $)=\sum_{S} p_{i} f_{i}+\sum_{S, N(S)} q_{i} g_{i}$

1. We can 3-color $T \backslash \mathrm{~S}$.

- Peeling Lemma

$$
\forall A|E[A]|<2|A| \Rightarrow \text { graph is 3-c }
$$

- Random graph is sparse $\forall|A|<$

2. Apply the restriction, do not assign $u_{i}^{*} \mathrm{\cup}$.
3. u_{1}^{*} 's neighbors: use two colors. Say colors $1 \& 2$. Set $u_{1}^{*}(1)=u_{1}^{*}(2)=0$.
4. Kill axioms talking about $u_{1}^{*} \&\left(u_{1}, u_{1}^{*}\right)$ by deg-1 substitution.

$$
u_{1}^{*}(3) \leftarrow u_{1}(4), u_{1}^{*}(4) \leftarrow \sum_{i \neq 4} u_{1}(i)
$$

5. Do the same for $u_{2}^{*}, u_{3}^{*}, \ldots$

Lemma 2 [Closure Size]

If $\operatorname{deg}(G) \leq d$ and G is $(c n, 1+\epsilon)$-sparse. Then
$\left(D:=\frac{c}{20 \chi} n\right) \quad|S| \leq D \Rightarrow|C l(S)| \leq 20 d^{\chi+2} D$.
Proof. Recall $\mathrm{Cl}(S)$ is constructed in rounds.
Claim. There are $\leq 4 D$ many rounds.

Lemma 2 [Closure Size]

If $\operatorname{deg}(G) \leq d$ and G is $(c n, 1+\epsilon)$-sparse. Then $\left(D:=\frac{c}{20 \chi} n\right) \quad|S| \leq D \Rightarrow|C l(S)| \leq 20 d^{\chi+2} D$.

Proof. Recall $\mathrm{Cl}(S)$ is constructed in rounds.
Claim. There are $\leq 4 D$ many rounds.
Reason: inspect edge-density of a set T.
Initially $T_{0}:=S$.

Round i : add new hop P \& two decreasing paths from T_{i-1} to P.

$$
\frac{|\operatorname{added} E|}{|\operatorname{added} V|} \geq \frac{1+|\operatorname{added} V|}{|\operatorname{added} V|} \geq 1+\frac{1}{2 \chi+6}>1+2 \epsilon
$$

After $i>4 D$ rounds: edge-density $\left(T_{i}\right)>1+\epsilon$. Contradiction.
$\mathrm{Cl}(\mathrm{S})$ is downward-closure of T_{i}, so size $\leq \chi d^{\chi-1}\left|T_{i}\right| \leq 20 d^{\chi+2} D$.

Open Problems

1. Closure applied to other (graph-based, perhaps) problems?
2. Sum-of-Squares (SoS) and Sherali-Adams, for $d^{\frac{1}{2}+\epsilon}$-coloring? [Kothari-Manohar'21]: $G\left(n, \frac{1}{2}\right)$

Side Remark. [Krivelevich-Vu'O2, Coja-Oghalan'03]: ヨdeg-2 SoS refutation for \sqrt{d}-coloring. With our results \Rightarrow separation
3. Better dependence on d in $\Omega_{d}(n)$? Unclear what to expect...

Open Problems

1. Closure applied to other (graph-based, perhaps) problems?
2. Sum-of-Squares (SoS) and Sherali-Adams, for $d^{\frac{1}{2}+\epsilon}$-coloring? [Kothari-Manohar'21]: $G\left(n, \frac{1}{2}\right)$

Side Remark. [Krivelevich-Vu'O2, Coja-Oghalan'03]: ヨdeg-2 SoS refutation for \sqrt{d}-coloring. With our results \Rightarrow separation
3. Better dependence on d in $\Omega_{d}(n)$? Unclear what to expect...

