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𝑘-Coloring Problem

Given an 𝑛-vertex graph 𝐺, is it 𝑘-colorable?

Karp’s 21 problems, intensively studied. NP-complete when 𝑘 ≥ 3.
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Random Graph—Non-𝑘-Colorablility?

Random 𝑑-regular graph 𝐺𝑛,𝑑

Erdös-Rényi-Gilbert 𝐺 𝑛,
𝑑
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Are There Short Proofs of Non-𝑘-Colorability?

For Resolution 

exp Ω𝑑 𝑛 on 𝐺(𝑛,
𝑑

𝑛
) Beame-Culberson-Mitchell-Moore’05

For Polynomial Calculus, Nullstellensatz

exp Ω𝑑 𝑛 on special graph Lauria-Nordström’17, Atserias-Ochreimak’19

Ω(𝑔/𝜒) degree, 𝑔 is girth, 𝜒 is chromatic number Romero-Tunçel’21

Ω(𝑛) degree on random graphs: open DLLMM’08, LN’17, Lauria’18, …
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For Resolution 

exp Ω𝑑 𝑛 on 𝐺(𝑛,
𝑑

𝑛
) Beame-Culberson-Mitchell-Moore’05

For Polynomial Calculus, Nullstellensatz

exp Ω𝑑 𝑛 on special graph Lauria-Nordström’17, Atserias-Ochreimak’19

Ω(𝑔/𝜒) degree, 𝑔 is girth, 𝜒 is chromatic number Romero-Tunçel’21

Ω(𝑛) degree on random graphs: open DLLMM’08, LN’17, Lauria’18, …

Our algorithm has good practical performance and numerical stability. 

…our experiments demonstrate that often very low degrees suffice for 

systems of polynomials coming from graphs.

—De Loera-Lee-Malkin-Margulies’08, 
Hilbert’s Nullstellensatz and an Algorithm for Proving Combinatorial Infeasibility



Our Result

With high probability, for 𝐺 ∼ 𝐺𝑛,𝑑 or 𝐺 𝑛,
𝑑

𝑛
, polynomial 

calculus requires degree Ω𝑑 𝑛 to refute that 𝐺 is 3-colorable.

Corollary

exp Ω𝑑 𝑛 size lower bounds for Polynomial Calculus and    

Nullstellensatz.

Techniques

Extend [Romero-Tunçel’21] to random graphs.



The 𝑘-Coloring Axioms on 𝐺

Vars: 𝑥𝑣,𝑖 (𝑣 ∈ 𝑉 𝐺 , 𝑖 ∈ 𝑘 ) (𝑥𝑣,𝑖 is 1 ↔ 𝑣 gets color 𝑖)

𝑥𝑣,𝑖(𝑥𝑣,𝑖 − 1) = 0 (Boolean)

σ𝑖∈ 𝑘 𝑥𝑣,𝑖 = 1

𝑥𝑣,𝑖𝑥𝑣,𝑗 = 0 𝑖 ≠ 𝑗 (𝑣 gets exactly one color)

𝑥𝑢,𝑖𝑥𝑣,𝑖 = 0 if 𝑢, 𝑣 ∈ 𝐸 𝐺 (no monochromatic edge)

Polynomial ring over field 𝔽.
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𝑥𝑣,𝑖(𝑥𝑣,𝑖 − 1) = 0 (Boolean)

σ𝑖∈ 𝑘 𝑥𝑣,𝑖 = 1

𝑥𝑣,𝑖𝑥𝑣,𝑗 = 0 𝑖 ≠ 𝑗 (𝑣 gets exactly one color)

𝑥𝑢,𝑖𝑥𝑣,𝑖 = 0 if 𝑢, 𝑣 ∈ 𝐸 𝐺 (no monochromatic edge)

Fourier encoding [Bayer’82] 
𝑋𝑣 ∈ {1, 𝜁, … , 𝜁𝑘−1}

Degree: equivalent

Polynomial ring over field 𝔽.



Polynomial Calculus (PC)  Clegg-Edmonds-Impagliazzo’96

Axioms   𝑝1 𝑥1, … , 𝑥𝑛 = 0,… , 𝑝𝑚 𝑥1, … , 𝑥𝑛 = 0

Each step: 
𝑝 𝑞

𝛼⋅𝑝+𝛽⋅𝑞
(𝑎, 𝑏 ∈ 𝔽)

𝑝

𝑥𝑖⋅𝑝

Proof/refutation: derive 1.

Complexity Measure 
Degree = max deg among all monomials 

Size = #(monomials) counted over all lines
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Axioms   𝑝1 𝑥1, … , 𝑥𝑛 = 0,… , 𝑝𝑚 𝑥1, … , 𝑥𝑛 = 0
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𝛼⋅𝑝+𝛽⋅𝑞
(𝑎, 𝑏 ∈ 𝔽)

𝑝

𝑥𝑖⋅𝑝

Proof/refutation: derive 1.

Complexity Measure 
Degree = max deg among all monomials 

Size = #(monomials) counted over all lines

Degree-Size Relation Impagliazzo-Pudlák-Sgall’99

Degree Ω 𝑛 implies size exp(Ω(𝑛))



Polynomial Calculus (PC)  Clegg-Edmonds-Impagliazzo’96

To Show Deg-𝐷 Lower Bounds

Find a linear map 𝑅 so that:

• 𝑅 axiom = 0

•
𝑅 𝑝 =0 𝑅 𝑞 =0

𝑅 𝛼⋅𝑝+𝛽⋅𝑞 =0

𝑅 𝑝 =0

𝑅 𝑥𝑖⋅𝑝 =0
if deg 𝑝 < 𝐷

• 𝑅 1 ≠ 0.

Axioms   𝑝1 𝑥1, … , 𝑥𝑛 = 0,… , 𝑝𝑚 𝑥1, … , 𝑥𝑛 = 0

Each step: 
𝑝 𝑞

𝛼⋅𝑝+𝛽⋅𝑞
(𝑎, 𝑏 ∈ 𝔽)

𝑝

𝑥𝑖⋅𝑝

Proof/refutation: derive 1.



Algebraic Setting

Reduction Operator

“≻” : admissible total ordering on monomials.

Leading monomial of a polynomial (𝐿𝑀)

𝑊 a set of polynomials.

Say 𝑚 is reducible by 𝑊 if: 𝑚 = 𝐿𝑀 𝑝 for some 𝑝 ∈ 𝑊.



Algebraic Setting

Reduction Operator

“≻” : admissible total ordering on monomials.

Leading monomial of a polynomial (𝐿𝑀)

𝑊 a set of polynomials.

Say 𝑚 is reducible by 𝑊 if: 𝑚 = 𝐿𝑀 𝑝 for some 𝑝 ∈ 𝑊.

When 𝑊 is a linear space  

𝔽 𝑥1, … , 𝑥𝑛 = 𝑊⊕ span𝔽 𝑚: irred

Reduction operator, 𝑅𝑊

Projection to span of irreducibles

• Ker 𝑅𝑊 = 𝑊
• Decrease monomials.

In application: 𝑊 is an ideal (linear and 𝑝 ∈ 𝑊 ⇒ 𝑥𝑝 ∈ 𝑊)
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𝑆: a small subset of axioms “Local set”

: Local-Global Principle

—locally powerful, globally not (we believe).
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Call p “completely reducible” 
by collection 𝑆1, 𝑆2, … .



Degree Lower Bound

Deg-𝐷 PC

𝑆: a small subset of axioms 

• Satisfiable

• We have local ideal 𝐼𝑆 and local reduction 𝑅𝑆. 

• Deg ≤ 𝐷 part of 𝐼𝑆: local conclusions

Let’s collect all local sets 𝑆1, 𝑆2, … .
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each 𝑝𝑖 in some 𝐼𝑆 and max
1≤𝑖≤𝑡

𝐿𝑀 𝑝𝑖 = 𝐿𝑀(𝑝).

If so, we’re done. (Each line: LM is reducible by some 𝐼𝑆. 1 is not.) 

Answer: yes…

“Local set”

if we don’t encounter Bad Cancellation.

: Local-Global Principle

—locally powerful, globally not (we believe).

Call p “completely reducible” 
by collection 𝑆1, 𝑆2, … .



𝑝 + 𝑞

𝑚 + smaller terms

BAD:
𝑝, 𝑞: completely reducible

𝑚 irreducible by any local 𝐼𝑆.

Degree Lower Bound: Local-Global Principle

Key Question

Answer: yes… if we don’t encounter Bad Cancellation.

Do local reductions reduce every line of a deg-𝐷 proof?



No Bad if and only if A simple case of Buchberger’s criterion

For all 𝑖, 𝑗 and 𝑝𝑖 ∈ 𝐼𝑆𝑖 , 𝑝𝑗 ∈ 𝐼𝑆𝑗 , deg ≤ 𝐷, 

𝑝𝑖 + 𝑝𝑗 is completely reducible by {𝑆1, 𝑆2, … }.
⋆ :

E.g. suffices to have 𝑝𝑖 + 𝑝𝑗 ∈ 𝐼𝑆𝑘 for some 𝑘.



No Bad if and only if

A Sufficient Condition For Degree Lower Bounds
Find {𝑆1, 𝑆2, … } so that
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No Bad if and only if

A Sufficient Condition For Degree Lower Bounds
Find {𝑆1, 𝑆2, … } so that

1. Covers all axioms;

2. Each is satisfiable;

3. Satisfy (⋆).

Closed Sets
Buss-Grigoriev-Impagliazzo-Pitassi’99 (implicit), Alekhnovich-Razborov’03, Mikša-Nordström’15…

Pseudo reduction / 𝑅-operator  Razborov’98

For all 𝑖, 𝑗 and 𝑝𝑖 ∈ 𝐼𝑆𝑖 , 𝑝𝑗 ∈ 𝐼𝑆𝑗 , deg ≤ 𝐷, 
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E.g. suffices to have 𝑝𝑖 + 𝑝𝑗 ∈ 𝐼𝑆𝑘 for some 𝑘.

A simple case of Buchberger’s criterion



Monomial order ∼ Vertex order

Axiom set ∼ Vertex set 𝑆

Closed Set for Coloring cf. [Romero-Tunçel’21]



Monomial order ∼ Vertex order

Axiom set ∼ Vertex set 𝑆

Collection of “closed sets” {𝑆𝑖}
—use a stronger requirement than (⋆)

For all monom 𝑚 with Vert 𝑚 ⊆ 𝑆𝑖:

𝑚 is reducible by 𝐼𝑇 ⇒ 𝑚 is reducible by 𝐼𝑆𝑖
for any 𝑇 ≤ 2max

𝑘
|𝑆𝑘|.

Closed Set for Coloring cf. [Romero-Tunçel’21]



Monomial order ∼ Vertex order

Axiom set ∼ Vertex set 𝑆

Collection of “closed sets” {𝑆𝑖}
—use a stronger requirement than (⋆)

For all monom 𝑚 with Vert 𝑚 ⊆ 𝑆𝑖:

𝑚 is reducible by 𝐼𝑇 ⇒ 𝑚 is reducible by 𝐼𝑆𝑖
for any 𝑇 ≤ 2max

𝑘
|𝑆𝑘|.

Graph-theoretic condition

1.  Boundary is tree-like

• 𝑣1, 𝑣2, … is independent set

• 𝑣𝑖 has unique neighbor in 𝑆

2.   𝑣𝑖 ≻ its neighbor in 𝑆

Closed Set for Coloring cf. [Romero-Tunçel’21]

𝑣1, 𝑣2, … : neighbors of 𝑆 in 𝑇\𝑆



I.e. 𝑆 is closed iff:

• 𝑆 is downward-closed;

(If ∃directed path from 𝑆 to 𝑣, then 𝑣 ∈ 𝑆.)

• No 2-, 3-hops with respect to 𝑆 in 𝐺.

Closed Set for Coloring cf. [Romero-Tunçel’21]



I.e. 𝑆 is closed iff:

• 𝑆 is downward-closed;

(If ∃directed path from 𝑆 to 𝑣, then 𝑣 ∈ 𝑆.)

• No 2-, 3-hops with respect to 𝑆 in 𝐺.

Remark. Exlude more shapes for 3-coloring.

(2,3,4,5- and degenerate 5,6-hops) 

Lemma 1 [Local Reduction]
If Vert 𝑚 ⊆ closed 𝑆, 𝑇 ≤ 𝐶𝑛, then:

𝑚 reducible by 𝐼𝑇 ⇒ 𝑚 reducible by 𝐼𝑆.

Closed Set for Coloring cf. [Romero-Tunçel’21]



Closed Set containing given set

Cl(𝑆)

• Take downward-closure; 

• Once see a short hop, include it;

• Repeat.



Closed Set containing given set

Cl(𝑆)

• Take downward-closure; 

• Once see a short hop, include it;

• Repeat.

Collection of closed sets

{Cl 𝑆 : 𝑆 ≤ 𝛼𝑛}, 𝛼 small constant. 

• Covers all axioms

• Satisfies (⋆) (previous lemma)

• Cl(𝑆) is small (⇒ satisfiable).



Closure Is Small

Directed path has length ≤ 𝜒.

Vertex Ordering [RT’21]
Induced by 𝜒(𝐺) colors. 



Closure Is Small

Vertex Ordering [RT’21]
Induced by 𝜒(𝐺) colors. 

Directed path has length ≤ 𝜒.

Lemma 2 [Closure Size]

Suppose deg 𝐺 ≤ 𝑑 and 𝐺 is locally-sparse. Then:

𝑆 ≤ 𝑐𝑛 ⇒ Cl 𝑆 ≤ 20𝑑𝜒(𝐺)+2𝑐𝑛.

Remark. 𝐺 𝑛,
𝑑

𝑛
has large degree vertices. Need other pseudo-random properties.



Proof. (4-coloring)

1. We can 3-color 𝑇\S.  

• Peeling Lemma

∀𝐴 𝐸[𝐴] < 2 𝐴 ⇒ graph is 3-colorable.

• Random graph is sparse

𝑚+ lower terms =

𝑆

𝑝𝑖𝑓𝑖 + 

𝑆,𝑁(𝑆)

𝑞𝑖𝑔𝑖 + 

others

𝑟𝑖ℎ𝑖

∀ 𝐴 < 𝑐𝑛 ⇒ 𝐸 𝐴 < (1 + 𝜖) 𝐴 [e.g. Razborov’17]

Lemma 1 [Local Reduction]
If Vert 𝑚 ⊆ closed 𝑆, 𝑇 ≤ 𝐶𝑛, then:

𝑚 reducible by 𝐼𝑇 ⇒ 𝑚 reducible by 𝐼𝑆.
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∗s.  
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∀𝐴 𝐸[𝐴] < 2 𝐴 ⇒ graph is 3-colorable.
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∗ 3 ← 𝑢1 4 , 𝑢1

∗ 4 ← σ𝑖≠4𝑢1(𝑖)

5. Do the same for 𝑢2
∗ , 𝑢3

∗ , …

𝑚+ lower terms =

𝑆

𝑝𝑖𝑓𝑖 + 

𝑆,𝑁(𝑆)

𝑞𝑖𝑔𝑖 + 
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𝑟𝑖ℎ𝑖

∀ 𝐴 < 𝑐𝑛 ⇒ 𝐸 𝐴 < (1 + 𝜖) 𝐴 [e.g. Razborov’17]

Lemma 1 [Local Reduction]
If Vert 𝑚 ⊆ closed 𝑆, 𝑇 ≤ 𝐶𝑛, then:

𝑚 reducible by 𝐼𝑇 ⇒ 𝑚 reducible by 𝐼𝑆.

Improvement 
for 3-coloring



Recall Cl(𝑆) is constructed in rounds. 

Claim. There are ≤ 4𝐷 many rounds.

Lemma 2 [Closure Size]

If deg 𝐺 ≤ 𝑑 and 𝐺 is (𝑐𝑛, 1 + 𝜖)-sparse. Then

(𝐷 ≔
𝑐

20𝜒
𝑛)   𝑆 ≤ 𝐷 ⇒ Cl 𝑆 ≤ 20𝑑𝜒+2𝐷.

Proof.



Recall Cl(𝑆) is constructed in rounds. 

Claim. There are ≤ 4𝐷 many rounds.

Reason: inspect edge-density of a set 𝑇. 

Initially 𝑇0 ≔ 𝑆. 

Round 𝑖: add new hop 𝑃 & two decreasing paths from 𝑇𝑖−1 to 𝑃.

added 𝐸

|added 𝑉|
≥

1+ added 𝑉

|added 𝑉|
≥ 1 +

1

2𝜒+6
> 1 + 2𝜖.

After 𝑖 > 4𝐷 rounds: edge-density 𝑇𝑖 > 1 + 𝜖. Contradiction.

Cl S is downward-closure of 𝑇𝑖, so size ≤ 𝜒𝑑𝜒−1 𝑇𝑖 ≤ 20𝑑𝜒+2𝐷.

Lemma 2 [Closure Size]

If deg 𝐺 ≤ 𝑑 and 𝐺 is (𝑐𝑛, 1 + 𝜖)-sparse. Then

(𝐷 ≔
𝑐

20𝜒
𝑛)   𝑆 ≤ 𝐷 ⇒ Cl 𝑆 ≤ 20𝑑𝜒+2𝐷.

Proof.



Open Problems

1. Closure applied to other (graph-based, perhaps) problems?

2. Sum-of-Squares (SoS) and Sherali-Adams, for 𝑑
1

2
+𝜖

-coloring? 

[Kothari-Manohar’21]: 𝐺 𝑛,
1

2

Side Remark. [Krivelevich-Vu’02, Coja-Oghalan’03]: ∃deg-2 SoS 

refutation for 𝑑-coloring. With our results ⇒separation 

3. Better dependence on 𝑑 in Ω𝑑(𝑛)? Unclear what to expect…



Open Problems

1. Closure applied to other (graph-based, perhaps) problems?

2. Sum-of-Squares (SoS) and Sherali-Adams, for 𝑑
1
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+𝜖

-coloring? 

[Kothari-Manohar’21]: 𝐺 𝑛,
1

2

Side Remark. [Krivelevich-Vu’02, Coja-Oghalan’03]: ∃deg-2 SoS 

refutation for 𝑑-coloring. With our results ⇒separation 

3. Better dependence on 𝑑 in Ω𝑑(𝑛)? Unclear what to expect…

Thank you
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