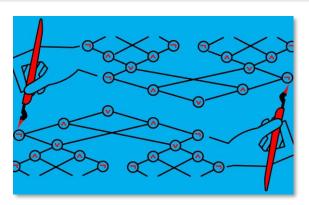
NP-Hardness of Approximating Meta-Complexity: A Cryptographic Approach

Yizhi Huang (Tsinghua)

Rahul Ilango (MIT)



Minimal Complexity Assumptions for Cryptography Meta-Complexity @ Simons

In this talk, you will see

(For complexity theorists)

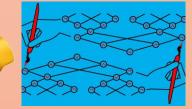
Minimum Oracle Circuit Size Problem (MOCSP)

NP-hardness of meta-complexity

approximating

with optimal inapprox gap

(For cryptographers)



Meta-complexity

Witness encryption (the one proposed in GGSW)

How we used crypto constructions to prove something interesting in complexity theory... Unconditionally!

YOU can make progress in meta-complexity!

Minimum Circuit Size Problem

- MCSP (Minimum Circuit Size Problem) Input length = $N = 2^n$
 - Given a truth table, compute its circuit complexity

• What's the complexity of MCSP?

The (meta-)complexity of circuit complexity!

MCSP is in NP.

MCSP is intractable under standard crypto assumptions.

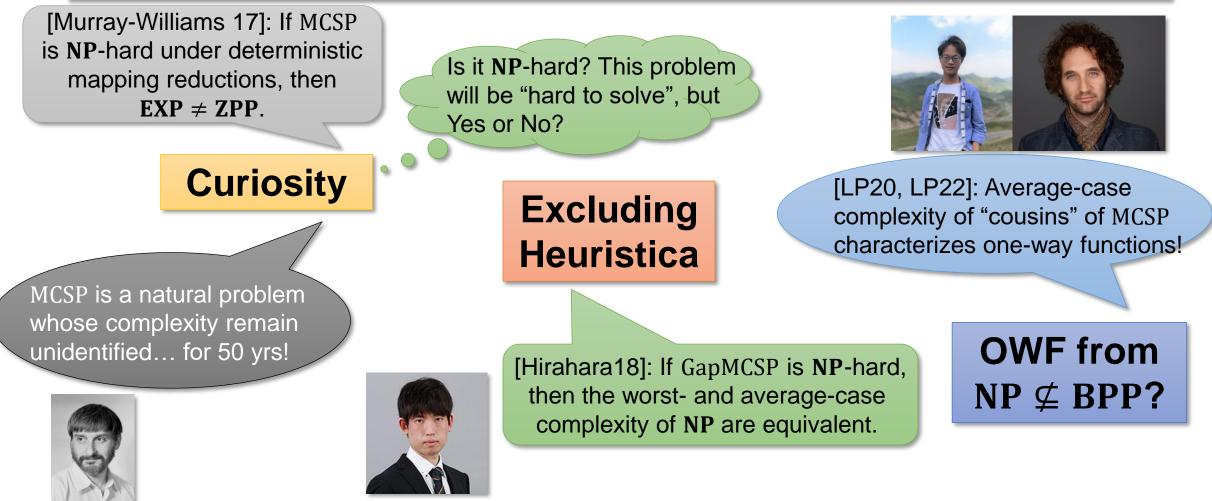
Is MCSP NP-complete?

[RR97, KC00]

Cryptography

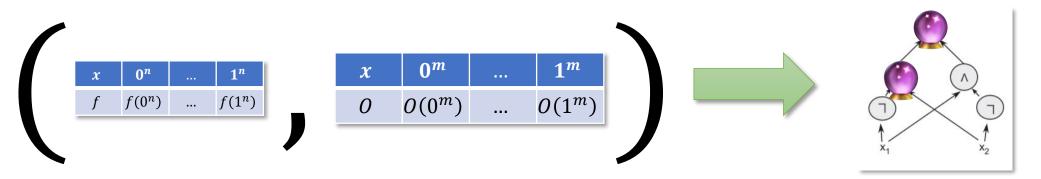
Meta-complexity

NP-completeness of MCSP: Why care about it?



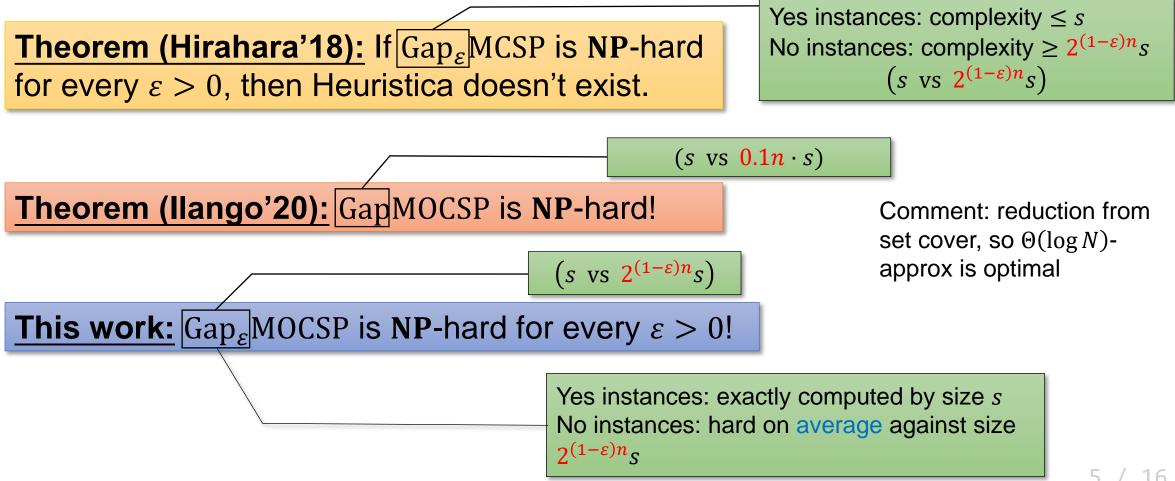
Minimum Oracle Circuit Size Problem

- "Approaching MCSP from above" [llango'20]
- Given a function f and an oracle 0, compute the 0-oracle
 circuit complexity of f



- A "testing ground" for MCSP?
 - NP-hardness of MOCSP under deterministic reductions $\Rightarrow EXP \neq ZPP$ (still!)
 - [llango'20]: NP-hard under randomized reductions!

Hardness of Approximation...?



Why Cryptography Helps

Intuition I: "Structured" Hardness

- If we "merely" assume circuit lower bounds, seems unclear how to use it and prove MCSP is **NP**-hard.
- What if we assume cryptographic hardness?

Intuition II: Arguments

- Argument systems = NP-hardness of "meta-complexity"
- More on the next slide ③

Warm-Up: Arguments = NP-Hardness of Meta-Complexity

 Arguments: proof systems sound against computationally bounded provers

An argument system for *L*

- L: some language in NP
- *x* ∈ *L*: ∃ a size-*s* prover (with a witness of *x*) that convinces the verifier
- *x* ∉ *L*: any size-s¹⁰ prover cannot convince the verifier (except with negl probability)

Remark 1: hardness of approximation! (Arbitrarily large inapprox, by adjusting the security parameter)

L reduces to "meta-complexity"

- "meta-complexity" problem: what's the complexity of convincing the verifier?
- $x \in L$: complexity $\leq s$
- $x \notin L$: complexity > s^{10}

Remark 2: the No instances are averagecase hard! Any size- s^{10} prover has only negl prob of convincing the verifier

Witness Encryption

• Encryption using a (public) SAT instance!

Intuition: encrypt a message, but anyone knowing the solution to a Sudoku puzzle / a proof of Riemann Hypothesis can decrypt!

- Encrypt(φ , msg; rand) $\rightarrow ct$
- $\text{Decrypt}(\varphi, \alpha, ct) \rightarrow msg$

Correctness: If $\varphi(\alpha) = 1$, then Decrypt outputs the correct *msg*.

Assumption: Encrypt is randomized, but Decrypt is not

Security: If φ is unsatisfiable, then Encrypt(φ , 0) \approx_c Encrypt(φ , 1).

Oracle Witness Encryption

- Everybody has access to a (specifically designed) oracle *O*
- Encrypt $^{\mathcal{O}}(\varphi, msg; rand) \rightarrow ct$
- $\operatorname{Decrypt}^{\mathcal{O}}(\varphi, \alpha, ct) \to msg$

Correctness: If $\varphi(\alpha) = 1$, then Decrypt⁰ outputs the correct *msg*.

<u>**Hope 1:**</u> if we design *O* carefully, then oracle witness encryption unconditionally exists...? Caveat: the oracle fan-in is only $O(\lambda)$ where $\lambda \sim \log |\varphi|$ is the security parameter

Oracle length = $2^{O(\lambda)} = \text{poly}(|\varphi|)$ Need exponential security $(2^{\Omega(\lambda)})!$

Security: If φ is unsatisfiable, then Encrypt⁰(φ , 0) \approx_c Encrypt⁰(φ , 1).

Hope 2: if oracle witness encryption exists, then MOCSP is NP-hard (with large approx gap)?

Oracle WE \Rightarrow NP-hardness of MOCSP

- Given an instance φ , want to produce an instance (f, 0)
 - φ is satisfiable if and only if f has small O-oracle circuit complexity!

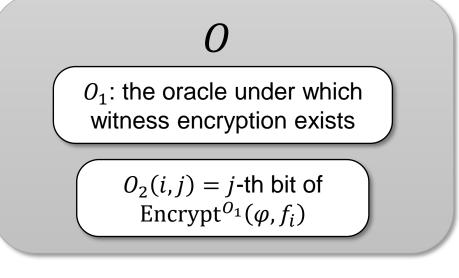
(random truth table)

If φ is satisfiable, then by correctness of witness encryption, *f* has a small *O*-oracle circuit:

f(i):

- Hardcode a witness α of φ
- Query O_2 to obtain $ct = \text{Encrypt}^{O_1}(\varphi, f(i))$
- Run Decrypt^{O_1}(φ, α, ct) and obtain f(i)

If φ is unsatisfiable, then any small O-oracle circuit for f violates the security of witness encryption! (Need a non-trivial proof)



How to construct oracle WE?

 Look at candidate witness encryptions in literature one by one, and find oracles that make them secure

Witness Encryption and its Applications

Sanjam Garg	Craig Gentry [*]	Amit Sahai ^{\dagger}	Brent Waters [‡]
UCLA	IBM Watson	UCLA	U.T. Austin

- GGSW works!
- GGSW uses multilinear maps, so our oracle implements the generic multilinear map model.
- Security proof highly non-trivial.

GGSW Witness Encryption

Starting point: Exact_Cover

- Input: universe [n] and "pieces" $X_1, X_2, \dots, X_m \subseteq [n]$
- Decide: Are there pieces $X_{i_1}, X_{i_2}, ..., X_{i_k}$ that exactly covers [n]?
 - (Their disjoint union is exactly [n])

Idea

- Assign a random number r_i to element $i \in [n]$
- $r(S) \coloneqq \sum_{i \in S} r_i$
- Announce r([n]) and each $r(X_i)$ to the public
- Decryption reduces to finding $i_1, i_2, ..., i_k$ such that $r([n]) = r(X_{i_1}) + r(X_{i_2}) + \cdots + r(X_{i_k})$

- $r_1, \dots, r_n, r_{n+1}, r_{n+2} \leftarrow random numbers$
- Wlog assume $msg \in \{n + 1, n + 2\}$
- Announce r_{n+1} , r_{n+2} , $r([n] \cup \{msg\})$, and each $r(X_i)$ to the public

Decryption:

- 1. Find $r([n]) = r(X_{i_1}) + \dots + r(X_{i_k})$
- 2. Compare $r([n] \cup \{n + 1\})$ and $r([n] \cup \{n + 2\})$ with $r([n] \cup \{msg\})$

Unconditional security? Use oracle to obfuscate the + operation!

Multilinear Map

- Groups $\mathbb{G}_1, \mathbb{G}_2, \dots, \mathbb{G}_{n+1}$, each \mathbb{G}_i is the cyclic group of order p
- Each group \mathbb{G}_i is paired with a random bijection $\sigma_i: \mathbb{G}_i \to [p]$
- For a set *S*, use the |S|-th group to obfuscate $r(S) = \sum_{i \in S} r_i$
- Multilinear map:

Intuition: $\sigma_i(j)$ is the label of *j*. Given $\sigma_i(j)$, it's hard to infer *j* back

"Obfuscation of
$$r(S)$$
" = $\sigma_{|S|}(r(S))$

Note: this enables us to compute $\sigma_{i_1+i_2+\cdots+i_k}(a_1+a_2+\cdots+a_k)$ from $\{\sigma_{i_j}(a_j)\}!$

GGSW, revisited

Secure Implementation

- $r_1, \ldots, r_n, r_{n+1}, r_{n+2} \leftarrow \mathbb{G}_1$
- Wlog assume $msg \in \{n + 1, n + 2\}$
- Announce $\sigma_1(r_{n+1})$, $\sigma_1(r_{n+2})$, $\sigma_{n+1}(r([n] \cup \{msg\}))$, and each $\sigma_{|X_i|}(r(X_i))$ to the public

"Obfuscation of r(S)" = $\sigma_{|S|}(r(S))$

Intuition: if \nexists exact cover, then $\sigma_n(r([n]))$ and $\sigma_{|X_i|}(r(X_i))$ are "independent"!

Note: this enables us to compute $\sigma_{i_1+i_2+\cdots+i_k}(a_1+a_2+\cdots+a_k)$ from $\{\sigma_{i_j}(a_j)\}!$

Wrap Up

Oracle Witness Encryption

- Encrypt^O(φ , msg; rand) \rightarrow ct
- Decrypt^O(φ, α, ct) $\rightarrow msg$

Oracle WE \Rightarrow NP-Hardness of MOCSP

 O_1 : the oracle under which witness encryption exists

$$O_2(i,j) = j$$
-th bit of
Encrypt $^{O_1}(\varphi, f_i)$

Reducing Exact_Cover to MOCSP:

- Exact_Cover instance: universe [n] and "pieces" $X_1, X_2, \dots, X_m \subseteq [n]$
- $f \leftarrow$ random truth table
- $O_1 \leftarrow$ generic multilinear map model

 $\left((i,j,\sigma_i(a),\sigma_j(b))\right) \longrightarrow \sigma_{i+j}(a+b)$

- $O_2 \leftarrow$ stores the ciphertexts
 - Obfuscations of r_{n+1} , r_{n+2} , $r([n] \cup \{f(i)\})$, and each $r(X_i)$

 $0 \leftarrow O_1 \cup O_2$

Summary

For complexity theorists: new techniques for NP-hardness of meta-complexity!

For cryptographers: YOU can make progress on central problems in meta-complexity!

"generic multilinear map"

GGSW

Oracle witness encryption (with unconditional security!)

(unconditional) NPhardness of GapMOCSP

Large inapprox gap

 Average-case hardness in the No case

Questions are welcome!

Discussion 1: PCP Theorems from Meta-Complexity?

Previous results

- Starts from inapprox results (using PCP theorem)
- Weak hardness of approx (s vs 0.1s log N)

Our results

- Strong hardness of approx (N^{0.0001} vs N^{0.9999})
- Direct reduction from Exact_Cover

GapMOCSP

- Yes instances: *f* admits size-*s 0*oracle circuits
- No instances: *f* is 0.9-avg hard against size-2*s 0*-oracle circuits

Randomly choose x and verify $C^{0}(x) = f(x)...$

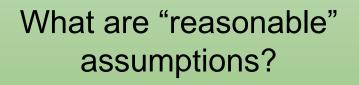
Wait, computing $C^{0}(x)$ takes too much time \mathfrak{S}

PCP Theorem from Meta-Complexity?

Discussion 2: MCSP?

Question: Is MCSP **NP**-complete under "reasonable" crypto assumptions?

Arguments? What type of arguments do we need?



Combinations of fancy cryptos?