Modern Constraint Programming ! Uan@rSltY
For People Who Know SAT

N
Ciaran McCreesh @ Royal Academy

of Glasgow

of Engineering




Modern CP
00000000000

The Classical View

m Variables, each of which has a finite domain.

m Constraints, each of which has a scope (the variables over which
it is defined), and a set of feasible tuples over its scope.

m Constraints form a network!

m Give each variable a value from its domain, such that each
constraint is satisfied.

Ciaran McCreesh

r People Who Know SAT



Modern CP
0e000000000

Modern Constraint Programming

m We have finite variables, integer variables, array variables, set
variables, graph variables, partition variables, ...

m Constraints are things like

x[i]+ylj] =z
alldifferent(a, b, c, d)
knapsack(w, p, n, W, P)
m Some kind of objective, like lexicographic optimisation, finding a

diverse set of solutions, or finding a Pareto front.
m Optimisation and satisfiable instances very common.

m Search hints.

Ciaran McCreesh

or People Who Know SAT



Modern CP
[e]e] lelelelelelele]e)

Terminology

When [ say... | mean...

Problem High-level description of what you’re trying to
do, with parameters

Model A description of how we encode a problem

Instance Applying a model to a set of parameter values
(e.g. to get CNF)

Solution A model

Propagation
Variable heuristic
Value heuristic

Nogood

Ciaran McCreesh

Propagation, but somehow more complicated
Something like VSIDS
Something like polarity

Negation of a learned clause

Modern CP For People Who Know SAT



Modern CP
[e]e]e] lelelelelele]e)

Modelling

m Various modelling languages (Essence, MiniZinc, XCSP).

m Fairly large gap between what the user specifies and what
solvers get.

m But often specific solvers are used directly as libraries.




Like This...

int: flour;

%no. grams of flour available

int: banana; %no. of bananas available

int: sugar;

%no. grams of sugar available

int: butter; %no. grams of butter available

int: cocoa;
constraint
constraint
constraint
constraint
constraint

var 0..100:
var 0..100:

constraint
constraint
constraint
constraint
constraint

%no. grams of cocoa available
assert(flour >= @, "flour should be non-negative");
assert(banana >= 0, "banana should be non-negative");
assert(sugar >= 0@, "sugar should be non-negative");
assert(butter >= @, "butter should be non-negative");
assert(cocoa >= @, "cocoa should be non-negative");

b; % no. of banana cakes
c; % no. of chocolate cakes

250*%b + 200xc <= flour;
2*xb <= banana;

75xb + 150xc <= sugar;
100*b + 150%c <= butter;
75%c <= cocoa;

solve maximize 400xb + 450%c; % profit

output ["no.

of banana cakes = \(b)\n",

"no. of chocolate cakes = \(c)\n"];




...Or This...

given buckets : int

letting Buckets be domain int(1..buckets)

given initialState : function int --> int

given finalState : function int --> int

given capacity : function int --> int

letting maxCapacity be max([capacity(i) | i : Buckets])
given HORIZON : int

find actions : sequence (maxSize HORIZON) of (Buckets, Buckets, int(1..maxCapacity))
find states : sequence (maxSize HORIZON) of function (total) Buckets --> int(@..maxCapacity)

$ action i transforms state i to state i+l

such that |actions| = |states| - 1
$ cannot pour from the a bucket to itself
such that forAll (i, (bFrom, bTo, amount)) in actions . bFrom != bTo

$ can only pour if there is enough water

such that forAll (i, (bFrom, bTo, amount)) in actions . amount <= states(i)(bFrom)

$ bucket capacity

such that forAll (i, f) in states . forAll b : Buckets . f(b) <= capacity(b)

$ preservation of water

such that forAll (i, (bFrom, bTo, amount)) in actions . states(i)(bFrom) - amount = states(i+
such that forAll (i, (bFrom, bTo, amount)) in actions . states(i)(bTo) + amount = states(i+1)
such that forAll (i, (bFrom, bTo, amount)) in actions . forAll b : Buckets . !(b in {bFrom,
$ after an action, either the source bucket is empty or the target bucket is full

such that forAll (i, (bFrom, bTo, amount)) in actions . states(i+1)(bFrom) = @ \/ states(i+1)
$ initial and final state

such that states(1) = initialState such that states(|states|) = finalState

$ minimise the number of actions

find nbActions : int(@..HORIZON)

such that nbActions = |actions]|

minimising nbActions




...Or Maybe This...

<instance format="XCSP3" type="CSP">
<variables>
<array id="x" size="[5]" note="x[i] is the ith value of the series
0..4
</array>
<array id="y" size="[4]" note="y[i] is the distance between x[i] a
1..4
</array>
</variables>
<constraints>
<allDifferent> x[] </allDifferent>
<allDifferent> y[] </allDifferent>
<group class="channeling">
<intension> eq(%0,dist(%1,%2)) </intension>
<args> y[0] x[@] x[1] </args>
<args> y[1] x[1]1 x[2] </args>
<args> y[2] x[2] x[3] </args>
<args> y[3] x[3] x[4] </args>
</group>
</constraints>
</instance>




...Or Possibly This...

class Money : public Script {
protected:
static const int nl = 8;
IntVarArray le;
public:
Money (const Options& opt) : Script(opt), le(xthis,nl,0,9) {
IntVar s(lel[@]), e(le[1]), n(lel[2]), d(le[31), m(le[4]), o(le[5]1), r(lel61), y(lel[71);

rel(xthis, s, IRT_NQ, 0);
rel(*this, m, IRT_NQ, 0);
distinct(xthis, le, opt.ipl());

IntVar c@(xthis,0,1), cl1(*xthis,0,1), c2(xthis,0,1), c3(xthis,0,1);

rel (xthis, d+e == y+10%c0, opt.ipl());
rel (*this, c@+n+r == e+10xcl, opt.ipl());
rel (*this, cl+e+o == n+10xc2, opt.ipl());
rel (*this, c2+s+m == o0+10*c3, opt.ipl());
rel (*this, c3 = m, opt.ipl());

branch (xthis, le, INT_VAR_SIZE_MIN(), INT_VAL_MIN());
3

virtual void print(std::ostream& os) const {
o0os << "\t" << le << std::endl;

3

Money (Money& s) : Script(s) { le.update(*this, s.le); }
virtual Spacex copy(void) { return new Money(*this); }

3




...Or Apparently The Cool Kids Use Python Now?

import numpy as np
from cpmpy import x

e = 0 # value for empty cells
given = np.array([

[e, e, e, 2, e, 5, e, e, el,
[e, 9, e, e, e, e, 7, 3, el,
[e, e, 2, e, e, 9, e, 6, el,
[2, e, e, e, e, e, 4, e, 9],
[e, e, e, e, 7, e, e, e, el,
[6, e, 9, e, e, e, e, e, 11,
[e, 8, e, 4, e, e, 1, e, el,
[e, 6, 3, e, e, e, e, 8, el,
[e, e, e, 6, e, 8, e, e, ell)
puzzle = intvar(1,9, shape=given.shape, name="puzzle")

model = Model(
[AllDifferent(row) for row in puzzle],
[AllDifferent(col) for col in puzzle.T])

for i in range(9,9, 3):
for j in range(0,9, 3):
model += AllDifferent(puzzle[i:i+3, j:j+3])

model += (puzzle[given!=e] == given[given!=e])

if model.solve():
print(puzzle.value())
else:
print("No solution found")




Modern CP
00000000080

Reformulation

m We care a lot about finding a good model for a problem.
m Or possibly multiple good models, with channeling constraints.

m Changing the model is totally legitimate and encouraged.

m Some of this is automated by some modelling languages.

Ciaran McCreesh

or People Who Know SAT



Modern CP
000000000 0e

When is CP Actually Good?

m When mixing several kinds of constraints, where they interact in
interesting ways.

m If it’s impractical to encode to something lower level.
m When you want a human-understandable model.

m Optimisation with hard constraints.

People Who Know SAT



How Solvers Work
00000000000

Variables

m Multiple representations are common:
m Small domains: bitsets.

m Large domains: just store lower and upper bounds, or possibly a
set of intervals.

m Lots of Boolean variables?

m Structured variables might have their own representations.

m No agreement on copying vs trailing.




How Solvers Work
0e000000000

Constraints

m A constraint defines one or more inference algorithms or
propagators.

m At a minimum, these have to be checking, but ideally they do
more.

m Traditionally, delete unsupported values from domains.

m Ideally, also give information on when they might infer
something.

m In newer solvers, give precise explanations for deletions.

m In future solvers, maybe even give likelihoods.

m Often stateful algorithms.

m Extensional representations are possible, but used sparingly.




How Solvers Work
00e00000000

Consistency

m Arc consistency, for constraints between two variables A and B:
m For each value v in A, there is a value w in B such that the
constraint is satisfied, and vice-versa.
m Generalised arc consistency (GAC), or domain consistency:
every value in every variable exists in at least one solution to the
constraint.

m Bounds consistency: the upper and lower bounds of every
variable exist in at least one solution to the constraint.




How Solvers Work
00080000000

Consistency Can Be Hard

2x7+ 2x) + 2x3 + 2x4 + 2x5 = 5

m GAC is NP-hard.

m Solvers might do it anyway for small numbers.

People Who Know SAT



How Solvers Work
00080000000

Consistency Can Be Hard

2x7+ 2x) + 2x3 + 2x4 + 2x5 = 5

GAC is NP-hard.

Solvers might do it anyway for small numbers.

2Xx1 4+ 2Xy + 2x3 + 2X4 + 2X5 > 5
2x1 4+ 2x) + 2x3 + 2Xx4 + 2x5 < 5

GAC on two inequalities is easy.

The same as bounds consistency.

Doesn’t give bounds consistency on the equality, though.

Ciaran McCreesh

or People Who Know SAT



How Solvers Work
0000e000000

Do We Care About Consistency?

m Possibly due to all-different, some people see GAC as being the
“right” thing for constraints to do.

m It’s the best thing we can do if we can only use one constraint at
a time.

m Solver authors tend to care more about “what can we do fast?”.
m Which potentially includes solving knapsack...
m GAC is rarely the best thing to do, but is often a quite good
starting point.

Ciaran McCreesh

or People Who Know SAT



How Solvers Work
00000800000

Propagation

Constraints can propagate more than once!
Run every constraint until we reach a fixed point.

Is this fixed point unique?

Lots of research and engineering: doing this efficiently.

m Events and clever queues...
m Watches...

m Determining a static ordering...




How Solvers Work
00000080000

Constraint Propagation is Slow

m Sometimes we run lots of expensive propagators many times.

m A full round of propagation can take seconds.




How Solvers Work
0000000e000

Constraint Propagation is Fast

m Can infer thousands or millions of facts per clock cycle.

m Even if a SAT encoding achieves the same level of consistency as
a CP solver, sometimes the CP solver gets there much faster.
m Better constant factors from propagators.
m CNF encoding size can kill SAT solver performance, even if it’s
only a linear factor difference.




How Solvers Work
00000000 e00

Search

Backtracking search, propagating at each node.

Specify variable and value ordering heuristics, and decision
variables.

Smallest domain first, most constrained.

Re-weight constraints over time.

If a modeller is good:
m Programmed search.
m Branching on expressions.
m Constraint-based local search.




How Solvers Work
00000000080

Restarts

m Much less frequent than in SAT.
m Mostly used to boost weighted variable-ordering heuristics.

m Can handle nogoods from restarts efficiently.

Ciaran

Aodern CP For People Who Know SAT



How Solvers Work
0000000000 e

Lazy Clause Generation

m Traditional propagation: based upon guessed assignments G we
know that X # 5.

m Lazy clause generation: create AG — X # 5 as a new constraint.
m Constraints can be much more specific about failures.

m In some ways: like having a really strong CNF encoding, but
creating it dynamically.

Ciaran McCreesh

or People Who Know SAT



All-Different in Detail
000000000000

Two-Colouring a Triangle

X1 € {O, 1}
X2€{O,1} @
X3 € {O, 1}

alldifferent(x,, x2, x3) alldifferent

Ciaran McCreesh

or People Who Know SAT



All-Different in Detail
0e0000000000

Decomposing “All Different”

X1 € {O, 1}
X2€{O,1} @
X3 € {O, 1}

X1 # X

o Con)—"Con)
Xy £ X3

Ciaran McCreesh

or People Who Know SAT



OO0@000000000
What Does Propagation Do?

m Let’s consider the constraint x; # x3.
m Remember arc consistency: for each value, check whether it is
supported by another value.
m If x; = 0, we can give x, = 1, so that’s OK.
m If x; = 1, we can give x; = 0, so that’s OK.
m If x, = 0, we can give x; = 1, so that’s OK.
m If x, = 1, we can give x; = 0, so that’s OK.
m Let’s consider the constraint x; # xs.
m etc
m Let’s consider the constraint x, # xs.
m etc
m So no values are deleted, and everything looks OK.
m Actually, there’s a more efficient algorithm: # won’t do anything
unless one of the variables only has one value. Some solvers
won’t trigger the constraint unless this happens.

For People Who Know SAT



All-Different in Detail
000800000000

What Would a Human Do?

“Duh, obviously there’s no solution! There
aren’t enough numbers to go around”

m Unfortunately “stare at it for a few seconds then write down the
answer” is not an algorithm.

m But if we don’t decompose the constraint, we can come up with
a propagator which can tell that there’s no solution.

People Who Know SAT



All-Different in Detail
0000e0000000

Matchings

Draw a vertex on the left for each variable, and
a vertex on the right for each value.

Draw edges from each variable to each of its
values.

A maximum cardinality matching is where you
pick as many edges as possible, but each vertex
can only be used at most once.

We can find this in polynomial time.

There is a matching which covers each variable
if and only if the constraint can be satisfied.

In fact, there is a one to one correspondence
between perfect matchings and solutions to the
constraint.

X1 0
X2 1
X3




All-Different in Detail
0000e0000000

Matchings

Draw a vertex on the left for each variable, and
a vertex on the right for each value.

Draw edges from each variable to each of its
values.

A maximum cardinality matching is where you
pick as many edges as possible, but each vertex
can only be used at most once.

We can find this in polynomial time.

There is a matching which covers each variable
if and only if the constraint can be satisfied.

In fact, there is a one to one correspondence
between perfect matchings and solutions to the
constraint.

X| —— 0

X ——— 1

X3




All-Different in Detail
0000e0000000

Matchings

Draw a vertex on the left for each variable, and
a vertex on the right for each value.

Draw edges from each variable to each of its
values.

A maximum cardinality matching is where you
pick as many edges as possible, but each vertex
can only be used at most once.

We can find this in polynomial time.

There is a matching which covers each variable
if and only if the constraint can be satisfied.

In fact, there is a one to one correspondence
between perfect matchings and solutions to the
constraint.

X1 0
X2 1
X3 2




All-Different in Detail
0000e0000000

Matchings

Draw a vertex on the left for each variable, and
a vertex on the right for each value.

Draw edges from each variable to each of its
values.

A maximum cardinality matching is where you
pick as many edges as possible, but each vertex
can only be used at most once.

We can find this in polynomial time.

There is a matching which covers each variable
if and only if the constraint can be satisfied.

In fact, there is a one to one correspondence
between perfect matchings and solutions to the
constraint.

X|

X2 1

X3 2




All-Different in Detail
00000e000000

How do Humans Solve Sudoku?

18 23 23 245 456 456 279 378 | 23589

Ciaran McCreesh

Modern CP For People Who Know SAT



All-Different in Detail
00000e000000

How do Humans Solve Sudoku?

18 23 23 245 456 456 279 378 | 23589

Ciaran McCreesh

Modern CP For People Who Know SAT



All-Different in Detail
00000e000000

How do Humans Solve Sudoku?

1 23 23 245 456 456 279 378 | 23589

Ciaran McCreesh

Modern CP For People Who Know SAT



All-Different in Detail
00000e000000

How do Humans Solve Sudoku?

1 23 23 245 456 456 279 378 | 23589

Ciaran McCreesh

Modern CP For People Who Know SAT



All-Different in Detail
00000e000000

How do Humans Solve Sudoku?

1 23 23 245 456 456 279 378 | 23589

Ciaran McCreesh

Modern CP For People Who Know SAT



All-Different in Detail
00000e000000

How do Humans Solve Sudoku?

1 23 23 245 456 456 279 378 | 23589

Ciaran McCreesh

Modern CP For People Who Know SAT



All-Different in Detail
00000e000000

How do Humans Solve Sudoku?

1 23 23 45 456 456 79 78 589

Ciaran McCreesh

or People Who Know SAT



All-Different in Detail
00000e000000

How do Humans Solve Sudoku?

1 23 23 45 456 456 79 78 589

Ciaran McCreesh

or People Who Know SAT



All-Different in Detail
00000e000000

How do Humans Solve Sudoku?

1 23 23 45 456 456 79 78 589

Ciaran McCreesh

or People Who Know SAT



All-Different in Detail
00000e000000

How do Humans Solve Sudoku?

1 23 23 45 456 456 79 78 89

Ciaran McCreesh

or People Who Know SAT



All-Different in Detail
00000000000

Hall Sets

m A Hall set of size n is a set of n variables from an “all different”
constraint, whose domains have n values between them.

m If we can find a Hall set, we can safely remove these values from
the domains of every other variable involved in the constraint.

m Hall’s Marriage Theorem: doing this is equivalent to deleting
every edge from the matching graph which cannot appear in
any perfect matching.

m So, if we delete every Hall set, we delete every value that cannot
appear in at least one way of satisfying the constraint. In other
words, we obtain GAC.

For People Who Know SAT



All-Different in Detail
000000080000

Finding Hall Sets?

m There are 2" potential Hall sets, so considering them all is
probably a bad idea...

m Similarly, enumerating every perfect matching is #P-hard.

m However, there is a polynomial algorithm!




All-Different in Detail
000000080000

Finding Hall Sets7 18 23 23 245 456 456 279 378 23589




All-Different in Detail
000000080000

Finding Hall Sets7 18 23 23 245 456 456 279 378 23589

Ciaran McCreesh
or People Who Know SAT




All-Different in Detail
000000080000

Finding Hall Sets7 18 23 23 245 456 456 279 378 23589

Ciaran McCreesh
or People Who Know SAT




All-Different in Detail
000000080000

Finding Hall Sets7 18 23 23 245 456 456 279 378 23589

Ciaran McCreesh
Modern CP For People Who Know SAT




All-Different in Detail
000000080000

Finding Hall Sets7 18 23 23 245 456 456 279 378 23589

Ciaran McCreesh
Modern CP For People Who Know SAT




All-Different in Detail
000000080000

Finding Hall Sets? 18 23 23 245 456 456 279 378 23589

Ciaran McCreesh
Modern CP For People Who Know SAT




All-Different in Detail
000000080000

Finding Hall Sets7 18 23 23 245 456 456 279 378 23589




All-Different in Detail
000000080000

Finding HaII Set57 18 23 23 245 456 456 279 378 23589

Who Know SAT



All-Different in Detail
000000080000

Finding HaII Sets7 18 23 23 245 456 456 279 378 23589

row|0| = 1

row|1
row|2

3

3
<

3
g

5

3
£

[0]
(1]
(2]
(3]
(4] 5
(5]
[6]
(7]
(8]

row|8

Ciaran McCreesh

or People Who Know SAT



All-Different in Detail
000000080000

Finding Hall Sets7 18 23 23 245 456 456 279 378 23589

Ciaran McCreesh
or People Who Know SAT




All-Different in Detail
000000080000

Finding Hall Sets7 18 23 23 245 456 456 279 378 23589

Ciaran McCreesh
or People Who Know SAT




All-Different in Detail
00000000 e000

Does GAC Matter?

?2?2312727?7297?
1?22?272367?77?
7?27?2968 217?
?2?228?27?27 177
6 ?2?547187?°7?
28?27?2295 77?
2?2671 27?7727
2?22?7272 72?776
21872957274
//

// Glasgow Herald 22nd Dec 2006
// easy

//




All-Different in Detail
00000000 e000

Does GAC Matter?

8 6 3127495
19254362387
754968213
931856742
6 25471839
487 239561
3467129538
579384126
2186 95374

1 solution found.
Model[Sudoku]

Solutions: 1

Building time : 0.037s
Resolution time : ©.013s
Nodes: 1 (75.1 n/s)
Backtracks: @

Fails: @

Restarts: @




All-Different in Detail
00000000 e000

Does GAC Matter?

86 3127495 86 3127495
1925436287 192543687
754968213 7549638213
931856742 931856742

6 254718329 6 254718309

4 87 2395¢61 4 87 2395¢61
3467129538 3467129538

57 9384126 57 9384126
218695374 218695374

1 solution found. 1 solution found.
Model[Sudoku] Model[Sudoku]
Solutions: 1 Solutions: 1

Building time : 0.037s Building time : 0.041s
Resolution time : ©.013s Resolution time : 0.017s
Nodes: 1 (75.1 n/s) Nodes: 1 (60.4 n/s)
Backtracks: @ Backtracks: @

Fails: @ Fails: @

Restarts: @ Restarts: @




All-Different in Detail
00000000 e000

Does GAC Matter?

?2?72637?2727?7271
9?2?2722 726 727
27?27?2277 57?
?2?2227?211?7?27?
3527?29727?7227?
?2?27?257?2727?777?
2487272727217
2627?2272 7?7727°
?2?217?7?263738
//

// Glasgow Herald 22nd Dec 2006
// hard

//

Ciaran

Aodern CP For People Who Know SAT



All-Different in Detail
00000000 e000

Does GAC Matter?

8 26 359741
935714682
17 4862953
6 89241537
357698124
412573869
748935216
263187495
5914263738

1 solution found.
Model[Sudoku]

Solutions: 1

Building time : 0.041s
Resolution time : ©0.024s
Nodes: 34 (1,414.5 n/s)
Backtracks: 59

Fails: 32

Restarts: @




All-Different in Detail
00000000 e000

Does GAC Matter?

826 359741 826 359741
9357146 82 93571462382

17 4862953 17 4862953

6 89241537 6 89241537
357698124 357698124
41257 3869 41257 3869

7 489352186 748935216

26 3187495 26 3187 4925
5914263738 5914263738

1 solution found. 1 solution found.
Model[Sudoku] Model[Sudoku]
Solutions: 1 Solutions: 1

Building time : 0.041s Building time : ©0.039s
Resolution time : ©0.024s Resolution time : 0.022s
Nodes: 34 (1,414.5 n/s) Nodes: 2 (90.2 n/s)
Backtracks: 59 Backtracks: 1

Fails: 32 Fails: 1

Restarts: @ Restarts: @




All-Different in Detail
00000000 e000

Does GAC Matter?

9?2?2725 7?21?774
?7?2?272617?°7
2?22?72 72837
7?7?2228 1 1727
2?27?257?23?27?8
2922772777
7?36?2212 7?7
??2237?27?21?77?
5?27?2?227?2?276

//

// Times 7/1/2007

// Superior (worse than ‘‘fiendish’’)
/7

Ciaran

Aodern CP For People Who Know SAT



All-Different in Detail
00000000 e000

Does GAC Matter?

9831527614
475836192
6 21947835
3546181927
2675934138
19827 46153
7364152289
842369571
519728346

1 solution found.
Model[Sudoku]

Solutions: 1

Building time : 0.038s
Resolution time : ©0.020s
Nodes: 14 (712.0 n/s)
Backtracks: 21

Fails: 11

Restarts: @




All-Different in Detail
00000000 e000

Does GAC Matter?

983152764 983152764
475836192 475836192

6 21947835 6 21947835
3546381927 354681927
2675934138 2675934138
19827 46153 19827 46053
736415289 736415289
8423695171 842369571
519728346 519728346

1 solution found. 1 solution found.
Model[Sudoku] Model[Sudoku]
Solutions: 1 Solutions: 1

Building time : 0.038s Building time : 0.040s
Resolution time : ©0.020s Resolution time : 0.022s
Nodes: 14 (712.0 n/s) Nodes: 2 (91.8 n/s)
Backtracks: 21 Backtracks: @

Fails: 11 Fails: @

Restarts: @ Restarts: @




All-Different in Detail
00000000 e000

Does GAC Matter?

The Telegraph

Travel Life Women Fashion Luxu

Earth | Weather | Health Lebi

Dinosaurs | Space | Night Sky | Evolution | Picture Galleries | Science Video

HOME » NEWS » SCIENCE » SCIENCE NEWS
‘World's hardest sudoku: can you crack it?

Readers who spend hours grappling in vain with the Telegraph's daily sudoku
puzzles should look away now.

8

3|6

1 68
8|5 1

9 4
o Fe e Fo Fe e FoFefe Ko He

The Everest of numerical games was devised by Arto Inkala, a Finnish mathematician, and is
specifically designed to be unsolvable to all but the sharpest minds.

By Nick Collins, Science Correspondent R Print s aricle
6:00AM BST 26 Jun 2012 e
Science News
i News » UK News »

Ciaran McCreesh

Modern CP For People Who Know SAT



All-Different in Detail
00000000 e000

Does GAC Matter?

8 127536 49
9436382175
6 75491283
1542372896
369845721
287169534
52197 43638
438526917
796 318452

1 solution found.
Model[Sudoku]

Solutions: 1

Building time : 0.037s
Resolution time : ©0.057s
Nodes: 855 (14,994.6 n/s)
Backtracks: 1,687

Fails: 847

Restarts: @




All-Different in Detail
00000000 e000

Does GAC Matter?

8127536409 812753649
943682175 943682175

6 754912283 6 75491283
1542371896 154237289€6
369845721 369845721

287 16 9534 287 16 9534
52197 43638 52197 43638
438526917 438526917
796318452 796318452

1 solution found. 1 solution found.
Model[Sudoku] Model[Sudoku]
Solutions: 1 Solutions: 1

Building time : 0.037s Building time : 0.041s
Resolution time : ©0.057s Resolution time : 0.049s
Nodes: 855 (14,994.6 n/s) Nodes: 83 (1,696.5 n/s)
Backtracks: 1,687 Backtracks: 151

Fails: 847 Fails: 80

Restarts: @ Restarts: @




All-Different in Detail
00000000 e000

Does GAC Matter?

? 07 157 7 342818212 7 7 277 36295 144 2 2 2 2 2 2 237 7 241026327 12192
237 6 2 2 7 7 20327 7 337 7 7 7 2613229 5 217 8 17297 7 361 15287 3531 2
? 267 2 147 27362 7 2 27 ? 2 2 2 6 287 ? 347 232 3 2 7 2 307 167 189 8 29
? 0329 287 167 7 112 247 7 337 2 2 217 7 1910142 2 8 2 7 127 7 27177 2572
? 4 31177 8 233510166 2 ? ? 1 2 307 20262 2 ? 2 9 ? 337 1472 7 7 13 36 34 2
5 7 332 72 7 7 7 132 7 7 7 8 32?2 7 2 153 ? 7 123634277 192 262 ? 237 1014
207 7 8 23267 212 1 19?7 7 32162 2 ? ? 12227 7 287 183010112 6 ? 152 2 2
35117 2 1325364 2 15?7 7 287 6 2 7 1 3123267 3 182 ? 9 202 2 7 17337 2 30
? 7 7 4 72 9 5 7 177 1124317 72 307 ? 7 358 291932237 34206 2 2 7 7 1 2 2
187 7 7 223329272 267 2 2 9 2 11147 2 2 2 17162 35192 2 1 2 2 122 2 2 31
3 167 36327 7 6 30108 345 18272217232 2 7 2 72 1 2 7 4 7 2 28?7 7 29247 2
212 7 312 2 33?2 2 142 2 7 7 29267 4 2 2 36? 7 2 32?7 ? 272 5 13197 1872 2
34172 2 9 7 2 7 7 213107 ? 2 187 ? 7 ? 2 2 7 226 7 327 152 197 7 7 4 2
247 7 7 25151 233 27 317 267 19147 2 21346 2 2 2 207 7 8 173033223672 2 10
11277 336 1 7 3425227 8 362 9 2 23247 19313 7 26217 7 2 4 27 291830 152 ?
? 7 7 147 7 7 327 7 4 267 157 2 7 209 ? 7 7 29307 ? 167 222 2 7 7 2 2 2
3227 182 2 2 7 5 2 2 36?7 ? ? 35217 127 16?2 202 272 ? 3 2 9 2 1 268 2 2 ?
3?7 2 2 167 7 7 182 7 217 ? 22?7 7 1735147 24252 292 ? 7 2 2 317 3 7 6 9
30297 122 5 ? 27 2 2 20177 11212 359 28? ? 182 2 1 ? 7 3472 23?7 362 ? 2 27
? 07 11133 277 167 247 7 177 7 2 337 5 ? 356 2 2 2 107 2 2527 2 7 7 302 21
? 2 7 72 28?2 ? 132 5 2 2 11 2 2 2 3 11?2 2 222 19212 7 2 2 2 1 9 2 2 2
? 07 172520237 3072 2 7 1 137 24162907 7 217 277 10147 359 28?2 114 2 ? 2612
9 7 7 34182 2512142 2 357 2 ? 6 19278 ? 1 1672 3 2 4 7 7 311117202472 2 22
? 247 2 7 35?7 152 6 2 111272 2 2 7 7 ? 25207 2 ? 3336292 2 277 237 ? 7 28
? 7 147 5 18247 342 2 7 7 7 7 23127 10?7 118 2 2 7 7 6 2 2 42 7 327 7 20
? 2 7 3 2 2 227 2 132 7 212 2 5 7 7 171825124 6 2 30 11352027 ? 8 167 24 34
257 2 72 4 7 7 8 72 7 33207 3 312 2 72 7 28297 5 2 16?7 7 2 182122137 ? 7 26
? 0?7 2 2 2 7 7 2616312 157 6 331 8 ? ? ? 142 7 9 28227 5 2 29127 112 3072
29232 15117 7 7 27257 7 22167 204 35267 ? 362 7 ? ? 137 3424212 ? 7 336
? 7 7 227 327 104 295 7 257 7 279 ? ? ? 2335302 ? 17267 337 3615287 27 7
16157 2 7 7 357 6 2 26139 24202 27112 2 2 1 312 2 7 213 2 2 2 7 2 5 2 17
? 01 34307 7 7 3372 9 27 167 72 2 2 216 7 15?2 227 2 2 1210145 312 7 27 2618 7
? 187 5 247 201 2 17237 7 348 33?2 ? 307? ? ? 132 ? 2527 222 2 107 31 28112
6 2125327 207 287 2 2 3 7 177 312 7 235 2 2 72 2 2 7 1 7 7 8 7 247 7 1672
? 9 1320102811222 2 254 162 14121 7 3 36?2 2 2 2 30?2 7 15272 ? 347 6 ? 33
? 31227 8 3 157 2 2 18?7 7 72 2 2 7 19346 17117 127 7 7 232936357 7 327 2

/7 http://uww.menneske . no/sudoku/6/eng/showpuzzle . html?number=230

Ciaran McCreesh

Aodern CP For People Who Know SAT



All-Different in Detail
00000000 e000

Does GAC Matter?

Limit reached.

Model[Sudoku]

Solutions: @

Building time : ©0.110s
Resolution time : 3,600.002s
Nodes: 9,037,226 (2,510.3 n/s)
Backtracks: 18,074,338

Fails: 9,037,183

Restarts: @




All-Different in Detail
00000000 e000

Does GAC Matter?

Limit reached.
Model[Sudoku]
Solutions: @
Building time
Resolution time

0.110s
3,600.002s

Nodes: 9,037,226 (2,510.3 n/s)
Backtracks: 18,074,338

Fails: 9,037,183

Restarts: @

1 solution found.
Model[Sudoku]

Solutions: 1

Building time 0.062s
Resolution time 0.203s
Nodes: 28 (137.6 n/s)
Backtracks: 48

Fails: 26

Restarts: @




All-Different in Detail

000000000800

Implementing AllDifferent

Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Generalised arc consistency for the AllDifferent constraint:
An empirical survey

lan P. Gent*, lan Miguel, Peter Nightingale

School of Computer Science, University of St Andrews, St Andrews, Fife KY16 95X, UK




All-Different in Detail
000000000800

Implementing AllDifferent

Ciaran McCreesh

ABSTRACT

The AllDifferent constraint is a crucial component of any constraint toolkit, language or
solver, since it is very widely used in a variety of constraint models. The literature contains
many different versions of this constraint, which trade strength of inference against
computational cost. In this paper, we focus on the highest strength of inference, enforcing a
property known as generalised arc consistency (GAC). This work is an analytical survey of
optimizations of the main algorithm for GAC for the AllDifferent constraint. We evaluate
empirically a number of key techniques from the literature. We also report important
implementation details of those techniques, which have often not been described in
published papers. We pay particular attention to improving incrementality by exploiting
the strongly-connected components discovered during the standard propagation process,
since this has not been detailed before. Our empirical work represents by far the most
extensive set of experiments on variants of GAC algorithms for AllDifferent. Overall, the
best combination of optimizations gives a mean speedup of 168 times over the same
implementation without the optimizations.

Modern CP For People Who Know SAT



All-Different in Detail
000000000080

Are You Smarter than a Constraint Solver?

45

34 35 345

Ciaran McCreesh

or People Who Know SAT



All-Different in Detail
000000000080

Are You Smarter than a Constraint Solver?

m Propagation only considers one constraint at a time, and the only
communication between constraints is by deleting values.

m There are various ways of automatically combining two
constraints.

m But getting “the best possible” filtering from two “all different”
constraints simultaneously is NP-hard...

People Who Know SAT



All-Different in Detail
00000000000 e

You Can’t Do This in CNF

Circuit Complexity and D positions of Global Constraints
Christian Bessiere” George Katsirelos’ Nina Narodytska® Toby Walsh®
LIRMM, CNRS NICTA NICTA and UNSW NICTA and UNSW
Montpellier Sydney Sydney Sydney
bessiere @lirmm.fr gkatsi @ gmail.com ninan@cse.unsw.edu.au  toby.walsh@nicta.com.au

esh

People Who Know SAT

Abstract

We show that tools from circuit complexity can be
used to study decompositions of global constraints.
In particular, we study decompositions of global
constraints into conjunctive normal form with the
property that unit propagation on the decomposi-
tion enforces the same level of consistency as a
specialized propagation algorithm. We prove that
a constraint propagator has a a polynomial size de-
composition if and only if it can be computed by a
polynomial size monotone Boolean circuit. Lower
bounds on the size of monotone Boolean circuits
thus translate to lower bounds on the size of de-
compositions of global constraints. For instance.
we prove that there is no polynomial sized decom-
position of the domain consistency propagator for
the ALLDIFFERENT constraint.



Other Exciting Things
000000

Proof Logging for CP

m CP needs this: solvers are a little bit buggy.
m Hard to do, though:

m Practical SAT encodings are buggy, and can’t tackle many
problems.

m Propagators do strong reasoning, can’t justify all-different
practically in DRAT.

m Need a proof format that’s simple to verify.

Ciaran McCreesh

or People Who Know SAT



Other Exciting Things
000000

Proof Logging for CP

m CP needs this: solvers are a little bit buggy.
m Hard to do, though:

m Practical SAT encodings are buggy, and can’t tackle many
problems.

m Propagators do strong reasoning, can’t justify all-different
practically in DRAT.

m Need a proof format that’s simple to verify.

m Amazing recent progress: pseudo-Boolean proof logging is
enough!

Ciaran McCreesh

or People Who Know SAT



Other Exciting Things

[e] leJe]e]e]e)

Constraint-Based Local Search

m Use constraints and high level structure to define
neighbourhoods.
m Good at coping with hard constraints.

m Does not satisfy Karam’s definition of local search.

Ciaran McCreesh

or People Who Know SAT



Other Exciting Things
[e]o] le]e]e]e)

Why Isn’t My Problem Satisfiable?

m Need human-understandable explanations of unsatisfiability.
m Use high-level constraints to describe cores?

m Minimal unsatisfiable subsets?

People Who Know SAT



Other Exciting Things
[e]e]e] Jeele]

Belief Propagation

x; € {1,2,3,4} alldifferent(x1, x2, x3)
X1+X+x3+x4=7 Xx3< X4

m Use weighted model counting on constraints to get rough
solution frequencies for each value.
m Update weights, iterate a few times.
m Needs high-level constraints, not decompositions.
1 2 3 4

x; .01 .52 .46 .01
x; .01 .52 .46 .01
x3 98 .02 .00 .00
xg .90 .10 .00 .00

Ciaran McCreesh

Modern CP For People Who Know SAT



Other Exciting Things

0O000@00

Decision Diagram Solvers

Figere 1: Eract BDD Figure 2: Relazcd BDD

m Turn the search tree into a DAG.
m Merge identical and dominating states.

m Merge non-identical states to get lower and upper bounds.




Other Exciting Things

[e]o]e]e]e] o)

Parallel Search

m Work stealing: scalability limits, erratic behaviour.

m Confidence-based work stealing: scalability limits, hard to
implement.

m Embarrassingly parallel search: easy to implement, works very
well for some problems.




Other Exciting Things

[e]o]e]e]e] o)

Parallel Search

m Work stealing: scalability limits, erratic behaviour.

m Confidence-based work stealing: scalability limits, hard to
implement.

m Embarrassingly parallel search: easy to implement, works very
well for some problems.

m Abusing restarts and value-ordering heuristics: easy to
implement, scales very well, respects search order.




Other Exciting Things
O00000e

Competitions

m Don’t cover many solver features.

m Not the primary driving force behind evaluating solvers.

m Many solvers don’t compete or aren’t eligible.
m This is both a Bad Thing and a Good Thing.




Engineering, and Science!
900000000

Subgraph Isomorphism

—O




Engineering, and Science!
900000000

Subgraph Isomorphism




Engineering, and Science!
O®0000000

The Maximum Clique Problem

12
11 1

10 2

Ciaran McCreesh

or People Who Know SAT



Engineering, and Science!
O®0000000

The Maximum Clique Problem

Ciaran McCreesh
or People Who Know SAT




Engineering, and Science!
00@000000

Colour Ordering
11 12 1 . .
M% Vertices in colour order
10 2 .
) 9 13724956108 1112
9 3 AN 0000 00 o0 0
1T 1122233344 14
8 4 M
— Number of colours used
7 6 5

Ciaran McCreesh

Modern CP For People Who Know SAT



Engineering, and Science!
00@000000

Colour Ordering

m Vertices in the rightmost colour class are “generally expected [to
have a] high probability of belonging to a maximum clique”
according to Tomita and Kameda, J. Global Optimization, 37(1)
2007.

Ciaran McCreesh

or People Who Know SAT



ineeri Science!
Engineering, and Science!

00@000000

Colour Ordering

m Vertices in the rightmost colour class are “generally expected [to
have a] high probability of belonging to a maximum clique”
according to Tomita and Kameda, J. Global Optimization, 37(1)

2007.

m It’s not true.

Ciaran McCreesh

or People Who Know SAT



Engineering, and Science!
00@000000

Colour Ordering

m Vertices in the rightmost colour class are “generally expected [to
have a] high probability of belonging to a maximum clique”
according to Tomita and Kameda, J. Global Optimization, 37(1)
2007.

m It’s not true.

m Right to left is still better even if the algorithm is only proving
optimality.

m Better clique algorithms have worse anytime behaviour and take
longer to find a strong incumbent.

Ciaran McCreesh

or People Who Know SAT



Engineering, and Science!
000e00000

A Hypothesis: Smallest Domain First?

m Branching on a colour class is like branching on a domain in CP,
where the values are the vertices in the colour class plus a null
value.

m Smallest domain first is a good heuristic.

m Greedy colourings tend to produce larger colour classes first.

m Right to left is smallest domain first.

People Who Know SAT



Engineering, and Science!
0O000@0000

We Can Measure This!

Shuffled

Sortedness

Number of colour classes

Ciaran McCreesh

Modern People Who Know SAT



Engineering, and Science!
0O000@0000

We Can Measure This!

Sorted
1 10°

1071

0.5 rrrmrm 102

g . 1073

£ 1074
o
wn




Engineering, and Science!
0O000@0000

We Can Measure This!

Default ordering

Sortedness

Number of colour classes

Ciaran McCreesh

Modern People Who Know SAT



Engineering, and Science!
0O0000e000

Increasing Sortedness Decreases Search Space Size

600000 /= - Default ——

2DF

500000

400000

300000

200000

Number of colourings

100000

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Edge probability




Engineering, and S

[e]e]e]ele]e] Jole]

However...

m Small impact on runtime.

m Hard to sell “understanding why this algorithm works”
compared to “this new algorithm is better”.

Ciaran

Aodern CP For People Who Know SAT



Engineering, and S

000000080

Cliques in Random Graphs

m Science on SAT solvers on industrial instances is like asking for
biochemistry when all we have is alchemy.

m Let’s aim for simple 1800s chemistry experiments.

m Simple solver, simple instances.

49 / 49



Engineering, and S

000000080

Cliques in Random Graphs

m Science on SAT solvers on industrial instances is like asking for
biochemistry when all we have is alchemy.

m Let’s aim for simple 1800s chemistry experiments.

m Simple solver, simple instances.

m Very accurate measurements, huge sample size.




Engineering, and Science!
000000080

Cliques in Random Graphs

107
10°
10°
10*
10°

102

Number of recursive calls

10!

o0 | | | | |
0 0.2 0.4 0.6 0.8 1
Edge probability

People Who Know SAT



Engineering, and Science!
000000080

Cliques in Random Graphs

Number of recursive calls

107

10°

10°

10*
103
102

10!

o0 | | | | |
0 0.2 0.4 0.6 0.8 1
Edge probability

People Who Know SAT



Engineering, and Science!

000000080

Cliques in Random Graphs

Does G(150, x) contain a clique of twenty vertices?
10°

1
-
s 10* 0.8
4 o
2 10° 0.6 S
j=] . o
S =
E g

10 0.4
: z
=) !
g 10! 0.2
Z.

10° 0

0 0.2 0.4 0.6 0.8 1
Edge probability

Modern People Who Know SAT



Engineering, and Science!
000000080

Cliques in Random Graphs

107
10°
10° <
: "Im""""“ i
: i
4 ; ; : l’,’" IM"; |
10 | | 50K %"&W’f fii

A
% ’f”f";"”f’f:""’f"f’o"w i
L
S
L
LU

Number of recursive calls

Edge probability




Engineering, and Science!
000000080

Cliques in Random Graphs

107
10°
10°
10*
10°

102

Number of recursive calls

10!

10°

Edge probability

People Who Know SAT



Engineering, and S
000000080

Cliques in Random Graphs

Number of recursive calls

107 N e < o :
10°

10°

103

102

w {7 SR F— A W

o0 | | | | |
0 0.2 0.4 0.6 0.8 1
Edge probability

reesh

r People Who Know SAT



Engineering, and Science!
000000080

Cliques in Random Graphs

Total search Solution count ~———
106 Frequency Search to find ~ ——

10°

10*

Count / Number of calls
S

10°
10!
10° i | i i
0.68 0.7 0.72 0.74 0.76 0.78 0.8
Edge probability

People Who Know SAT



Engineering, and Science!
000000080

Cliques in Random Graphs

Good Heuristic
., — 106

S[[ed Jo IaquInN

Incumbent




Engineering, and Science!
000000080

Cliques in Random Graphs

Anti Heuristic

Incumbent

10°
10°
10*
103
102
10!

10°

S[Ted Jo IaquInN




o1a| University
https://ciaranm.github.io/ ;éi qf(Elasgcnw

ciaran.mccreesh@glasgow.ac.uk

/§ Royal Academy
///’&ﬁ of Engineering



https://ciaranm.github.io/
mailto:ciaran.mccreesh@glasgow.ac.uk

	Modern CP
	How Solvers Work
	All-Different in Detail
	Other Exciting Things
	Engineering, and Science!

