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Scales to real-world verification tasks
including these for Linux+Windows drivers
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Polynomials over a finite fieldClauses
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Zero Knowledge Proof : Coke or Pepsi

I know a method to tell coke or pepsi!

Prover Verifier

show me how otherwise I won’t believe

I will prove that I know without showing how



Zero Knowledge Proof 

× +

×

x0 x1 x2

x5 x4

x6

A public circuit  C



Zero Knowledge Proof 

× +

×

x0 x1 x2

x5 x4

x6

A public circuit  C

• Prover knows  an input  such that  , and tries to

• Convince the verifier that  

• Keep information of  private

w C(w) = 1

C(w) = 1

w



Zero Knowledge Proof 

× +

×

x0 x1 x2

x5 x4

x6

A public circuit  C

• Prover knows  an input  such that  , and tries to

• Convince the verifier that  

• Keep information of  private

w C(w) = 1

C(w) = 1

w
• Verifier: 

• Validate  prover’s claim about  the circuit  C



Zero Knowledge Proof 

× +

×

x0 x1 x2

x5 x4

x6

A public circuit  C

• Prover knows  an input  such that  , and tries to

• Convince the verifier that  

• Keep information of  private

w C(w) = 1

C(w) = 1

w
• Verifier: 

• Validate  prover’s claim about  the circuit  C



Zero Knowledge Proof 

× +

×

x0 x1 x2

x5 x4

x6

A public circuit  C

• Prover knows  an input  such that  , and tries to

• Convince the verifier that  

• Keep information of  private

w C(w) = 1

C(w) = 1

w
• Verifier: 

• Validate  prover’s claim about  the circuit  C

Both of prover and verifier can be malicious.

• Prover might cheat 

• Verifier tries to learn  w
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Unsatisfiability in Zero Knowledge Proof

Both Prover and Verifier can be malicious.

•Prover might cheat about unsatisfiability of ϕ

•Verifier tries to learn information about   and Prf ϕ

Resolution Proof 
ϕ = c0 ∧ c1 ∧ c2 ∧ c3
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Clause

ℓ1 ∨ ⋯ ∨ ℓk

Resolution

Set 

{ℓ1, ⋯, ℓk}

Set operation

Polynomial

(x + ℓ1)⋯(x + ℓk)

Polynomial relation
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• ,   is a public constant 
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Check application of resolution rule
Polynomial-based approach

1

The sign of the literal Index of the literal

0       0       0       0       0       1       0       1 x5



Check application of resolution rule
Polynomial-based approach

• Clauses are encoded as polynomial over 

•  

• Example

 

 

F2k

c = (ℓ0 ∨ ℓ1 ∨ ⋯ ∨ ℓd) : pc(x) = (x + ϵ(ℓ0))⋯(x + ϵ(ℓd))

ca = (x1 ∨ x2) : pca
(x) = (x+2k−1+1)(x+2k−1+2)

cb = (x1 ∨ ¬x2) : pcb
(x) = (x+2k−1+1)(x + 2)
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Check application of resolution rule

• Checking one resolution proof step: 

• Prover prepares and inputs a pair of pivot polynomials: ,  (x + ϵ(ℓp)) (x + ϵ(¬ℓp))

• Pivot polynomials:  and (x + 2k−1 + 2) (x + 2)

•  Prover prepares and inputs polynomial of the resolvent 

• pcr
= (x + 2k−1 + 1)

ca = x1 ∨ x2, cb = x1 ∨ ¬x2

cr = x1

Polynomial-Based Approach

Pivot literal



Check application of resolution rule
Polynomial-Based Approach

•

• Proving  and 

• Prover prepares and inputs  and  

• Verifier checks

•   via    

•  via   

Ca ⊆ Cr ∪ {ℓp}, Cb ⊆ Cr ∪ {¬ℓp}

pca
|pcr

⋅ (x + ϵ(ℓp)) pcb
|pcr

⋅ (x + ϵ(¬ℓp))

wa wb

pca
|pcr

⋅ (x + ϵ(ℓp)) pca
⋅ wa = pcr

⋅ (x + ϵ(ℓp))

pcb
|pcr

⋅ (x + ϵ(¬ℓp)) pcb
⋅ wb = pcr

⋅ (x + ϵ(¬ℓp))

ca = x1 ∨ x2, cb = x1 ∨ ¬x2

cr = x1
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Check application of resolution rule

ca = x1 ∨ x2, cb = x1 ∨ ¬x2

cr = x1pivot literals:  

pca
= (x + 2k−1 + 1)(x + 2k−1 + 2)

pcb
= (x + 2k−1 + 1)(x + 2)

pcr
= (x + 2k−1 + 1)

px2
= (x + 2k−1 + 2), p¬x2

= (x + 2)



Check application of resolution rule

ca = x1 ∨ x2, cb = x1 ∨ ¬x2

cr = x1pivot literals:  

pca
= (x + 2k−1 + 1)(x + 2k−1 + 2)

pcb
= (x + 2k−1 + 1)(x + 2)

pcr
= (x + 2k−1 + 1)

px2
= (x + 2k−1 + 2), p¬x2

= (x + 2)

pcb
|pcr

⋅ p¬x2
: {x1, ¬x2} ⊆ {x1} ∪ {¬x2}

pca
|pcr

⋅ px2
: {x1, x2} ⊆ {x1} ∪ {x2}

           pivotca cr
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Zero Knowledge Proof
Read-Only Array in ZK [Franzese, 21]

• Each time fetch the clause   for resolvent ci j

• Prover sends  to the verifier when needed.i, ci

• Verifier checks that   i < j

• Record  (0,c0), (1,c1), (2,c2), (4,c4), (5,c5), (3,c3), (4,c4), (6,c6)
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 AWS instances of type r5b.2xlarge 

64 GB of memory, 16 vCPUs 

10 Gbps network connection between the prover and the verifier

Evaluation
Benchmark setting



Evaluation

• Time and memory requirements depend on the length and clausal width of the proof

• ZKUNSAT takes less than  min to verify proofs of large width ( ) and length ( )1 400 8000

c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x2 2, 3
c6 : ⊥ 4, 5

Length: the number of applications of resolution rule. 

Length = 3 in this example

Width:  the maximum number of literals a clause in the 
proof can have.  

Width =  2 in this example



Evaluation
Verification tasks for system drivers

• Unwind is a parameter for translating the verification tasks to Boolean formulae

• Width   and Length K

• ZKUNSAT can verify UNSAT of formulae from system drivers verification tasks within 5min

≤ 256 ≤ 65
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Intel(R) QuickAssist crypto poll 
mode driver

Simple USB Network Links driver

Window NT floppy disk driver

Window NT CD audio disk driver
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Evaluation
Other large instances

Further improvement via computing clusters: work to appear in CCS 2023



Contribution

• Privacy preserving program verification is in demand 

• Encoding resolution proof by polynomials

• UNSAT in ZK is practical 
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Future Work

• SAT : Privacy-preserving SAT solving (ppSAT)

 ϕ0 = (x0 ∨ x1) ∧ (x0 ∨ ¬x1)  ϕ1 = (¬x0 ∨ x1) ∧ (¬x0 ∨ ¬x1)

ppSAT

ppSAT: Towards Two-Party Private SAT Solving, USENIX Security 2022



Boolean SAT Solving: A DPLL Example
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• DLIS

• Select the most commonly appearing literal and the smallest index 

• Return the assignment that makes it true

• Deterministic

• Example: DLIS will guess  for ¬x0 (x3 ∨ x0) ∧ (¬x3 ∨ ¬x0) ∧ (¬x0 ∨ x3)

Future Work



• Rand

• Uniformly select a random undecided literal 

• Randomized 

• Example:   

Randomly guess one of  each with  probability

(x3 ∨ x0) ∧ (¬x3 ∨ ¬x0) ∧ (¬x0 ∨ x3)

{x0, ¬x0, x3, ¬x3}
1
4

Heuristics



• Weighted-Rand

• Select a random undecided literal according to its frequency

• Randomized 

• Example: 

guess  with  chance,   guess  with  chance,   etc.   

(x3 ∨ x0) ∧ (¬x3 ∨ ¬x0) ∧ (¬x0 ∨ x3)

x0
1
6

¬x0
2
6

Future Work
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 For 232 benchmarks KISSAT can solve 231 of the instances within 0.02s
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Future Work

Better heuristics when it comes to privacy preserving setting?



Thank you!

Ning Luo:  ning.luo@northwestern.edu
https://github.com/PP-FM

I am on job market

mailto:ning.luo@yale.edu
https://github.com/PP-FM
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• Multiplication gate:   verify if  holdsx, y, z xy = z

• With small probability  holdskx ⋅ ky − Δ ⋅ kz = Mx ⋅ My + (Mx ⋅ y + My ⋅ x − Mz) ⋅ Δ

• Batching for multiple multiplication gates 
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