
ZKUNSAT
Proving UNSAT in Zero Knowledge
SAT Reunion Workshop, Simons Institute, UC Berkeley

Ning Luo, Timos Antonopoulos, Bill Harris, Ruzica Piskac, Eran Tromer, Xiao Wang

Verifications can be required by outside entities

Centralized softwares verification and distribution：

Solution to a lot of problems, eg.supply-chain attacks

Both the developers and users should trust the centralized marketplace

Both the developers and users should trust the centralized marketplace

Both the developers and users should trust the centralized marketplace

 Centralized curation naturally produces a monopoly

Remove centralized verification and distribution

Privacy-Preserving
Formal Methods

PPFM

Privacy-Preserving
Formal Methods

PPFM

ZKUNSAT: The First Step towards PPFM

ZKUNSAT: The First Step towards PPFM

Program P

Program
Analysis

tool
Solver

Spec

UNSAT
certificate
checker

UNSAT
certificate

ZKUNSAT: The First Step towards PPFM

Program P

Program
Analysis

tool
Solver

Spec

UNSAT
certificate
checker

UNSAT
certificate

ψ : ∀x . x ≥ 0 ⇒ y = x!

ZKUNSAT: The First Step towards PPFM

Program P

Program
Analysis

tool
Solver

Spec

UNSAT
certificate
checker

UNSAT
certificate

ψ : ∀x . x ≥ 0 ⇒ y = x!

ρ ∧ ¬ψ

ZKUNSAT: The First Step towards PPFM

Program P

Program
Analysis

tool
Solver

Spec

UNSAT
certificate
checker

UNSAT
certificate

ψ : ∀x . x ≥ 0 ⇒ y = x!

ρ ∧ ¬ψ

Resolution
proof

ZKUNSAT: The First Step towards PPFM

Program P

Program
Analysis

tool
Solver

Spec

UNSAT
certificate
checker

UNSAT
certificate

ψ : ∀x . x ≥ 0 ⇒ y = x!

ρ ∧ ¬ψ

Resolution
proof

ZKUNSAT: The First Step towards PPFM

Program P

Program
Analysis

tool
Solver

Spec

ZK

UNSAT
certificate
checker

UNSAT
certificate

ψ : ∀x . x ≥ 0 ⇒ y = x!

ρ ∧ ¬ψ

Resolution
proof

ZK

UNSAT
certificate
checker

generic implementation of the certificate checker in ZK

The First Step towards Decentralized Verification

ZK

UNSAT
certificate
checker

The First Step towards Decentralized Verification

ZK

UNSAT
certificate
checker

Scales to real-world verification tasks
including these for Linux+Windows drivers

The First Step towards Decentralized Verification

The First Step towards Decentralized Verification

Polynomials over a finite fieldClauses

Polynomial relations checkingResolution proof checking

The First Step towards Decentralized Verification

Polynomials over a finite fieldClauses

Polynomial relations checkingResolution proof checking

The First Step towards Decentralized Verification

Polynomials over a finite fieldClauses

Polynomial relations checkingResolution proof checking

The First Step towards Decentralized Verification

Polynomials over a finite fieldClauses

Polynomial relations checkingResolution proof checking

UNSAT
certificate
checker

The First Step towards Decentralized Verification

Polynomials over a finite fieldClauses

Polynomial relations checkingResolution proof checking

Efficient library for checking relations between polynomials in zero knowledge

ZK

UNSAT
certificate
checker

Outline
• Background

• Resolution Proof

• Zero knowledge proof

• ZKUNSAT

• Clause encoding and validating resolvents

• Clause access and checking consistency

• Evaluation

• Future Work

Refutation Proof
Resolution Rule [Robinson, 65]

ca = x1 ∨ x2, cb = x3 ∨ ¬x2

cr = x1 ∨ x3

Refutation Proof
Resolution Rule [Robinson, 65]

ca = x1 ∨ x2, cb = x3 ∨ ¬x2

cr = x1 ∨ x3

Refutation Proof
Resolution Rule [Robinson, 65]

ca = x1 ∨ x2, cb = x3 ∨ ¬x2

cr = x1 ∨ x3

Refutation Proof
Resolution Proof in Propositional Logic

c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −

f = c0 ∧ c1 ∧ c2 ∧ c3

Refutation Proof
Resolution Proof in Propositional Logic

Theorem: first-order logic is refutationally complete.

• The proof of the theorem relies on the resolution
proof of unsatisfiability.

•If a formula is UNSAT, we can always derive using
resolution

⊥

c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −

f = c0 ∧ c1 ∧ c2 ∧ c3

Refutation Proof
Resolution Proof in Propositional Logic

c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x2 2, 3
c6 : ⊥ 4, 5

Refutation Proof
Resolution Proof in Propositional Logic

c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x2 2, 3
c6 : ⊥ 4, 5

Theorem: first-order logic is refutationally complete.

• The proof of the theorem relies on the resolution
proof of unsatisfiability.

•If a formula is UNSAT, we can always derive using
resolution

⊥

Refutation Proof
Resolution Proof in Propositional Logic

c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x2 2, 3
c6 : ⊥ 4, 5

Theorem: first-order logic is refutationally complete.

Refutation Proof
Resolution Proof in Propositional Logic

c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x2 2, 3
c6 : ⊥ 4, 5

Theorem: first-order logic is refutationally complete.

• A resolution proof consists of a list of

Refutation Proof
Resolution Proof in Propositional Logic

c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x2 2, 3
c6 : ⊥ 4, 5

Theorem: first-order logic is refutationally complete.

• A resolution proof consists of a list of

• Resolvents

Refutation Proof
Resolution Proof in Propositional Logic

c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x2 2, 3
c6 : ⊥ 4, 5

Theorem: first-order logic is refutationally complete.

• A resolution proof consists of a list of

• Resolvents

• How these resolvents could be obtained.

c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x2 2, 3
c6 : ⊥ 4, 5

Refutation Proof
Resolution Proof in Propositional Logic

x1 ∨ x2, ¬x1 ∨ x2

x2

c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x2 2, 3
c6 : ⊥ 4, 5

Refutation Proof
Resolution Proof in Propositional Logic

x1 ∨ x2, ¬x1 ∨ x2

x2

c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x2 2, 3
c6 : ⊥ 4, 5

Refutation Proof
Resolution Proof in Propositional Logic

x1 ∨ x2, ¬x1 ∨ x2

x2

c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x2 2, 3
c6 : ⊥ 4, 5

Refutation Proof
Resolution Proof in Propositional Logic

x1 ∨ x2, ¬x1 ∨ x2

x2

c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x2 2, 3
c6 : ⊥ 4, 5

Refutation Proof
Resolution Proof in Propositional Logic

x1 ∨ x2, ¬x1 ∨ x2

x2

c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x2 2, 3
c6 : ⊥ 4, 5

Refutation Proof
Resolution Proof in Propositional Logic

• Fetch two clauses used to derived the resolvent

x1 ∨ x2, ¬x1 ∨ x2

x2

c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x2 2, 3
c6 : ⊥ 4, 5

Refutation Proof
Resolution Proof in Propositional Logic

• Fetch two clauses used to derived the resolvent

x1 ∨ x2, ¬x1 ∨ x2

x2

c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x2 2, 3
c6 : ⊥ 4, 5

Refutation Proof
Resolution Proof in Propositional Logic

• Fetch two clauses used to derived the resolvent

x1 ∨ x2, ¬x1 ∨ x2

x2

c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x2 2, 3
c6 : ⊥ 4, 5

Refutation Proof
Resolution Proof in Propositional Logic

• Fetch two clauses used to derived the resolvent

• Check the application of resolution rule is correctly executed

x1 ∨ x2, ¬x1 ∨ x2

x2

Refutation Proof
Resolution Proof in Propositional Logic

c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x2 2, 3
c6 : ⊥ 4, 5

Repeat for each resolvent until meet a contradiction

Refutation Proof
Resolution Proof in Propositional Logic

c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x2 2, 3
c6 : ⊥ 4, 5

Repeat for each resolvent until meet a contradiction

Refutation Proof
Resolution Proof in Propositional Logic

c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x2 2, 3
c6 : ⊥ 4, 5

Repeat for each resolvent until meet a contradiction

Zero Knowledge Proof : Coke or Pepsi

I know a method to tell coke or pepsi!

Prover Verifier

show me how otherwise I won’t believe

I will prove that I know without showing how

Zero Knowledge Proof

× +

×

x0 x1 x2

x5 x4

x6

A public circuit C

Zero Knowledge Proof

× +

×

x0 x1 x2

x5 x4

x6

A public circuit C

• Prover knows an input such that , and tries to

• Convince the verifier that

• Keep information of private

w C(w) = 1

C(w) = 1

w

Zero Knowledge Proof

× +

×

x0 x1 x2

x5 x4

x6

A public circuit C

• Prover knows an input such that , and tries to

• Convince the verifier that

• Keep information of private

w C(w) = 1

C(w) = 1

w
• Verifier:

• Validate prover’s claim about the circuit C

Zero Knowledge Proof

× +

×

x0 x1 x2

x5 x4

x6

A public circuit C

• Prover knows an input such that , and tries to

• Convince the verifier that

• Keep information of private

w C(w) = 1

C(w) = 1

w
• Verifier:

• Validate prover’s claim about the circuit C

Zero Knowledge Proof

× +

×

x0 x1 x2

x5 x4

x6

A public circuit C

• Prover knows an input such that , and tries to

• Convince the verifier that

• Keep information of private

w C(w) = 1

C(w) = 1

w
• Verifier:

• Validate prover’s claim about the circuit C

Both of prover and verifier can be malicious.

• Prover might cheat

• Verifier tries to learn w

× +

 ×

x0 x1 x2

x5 x4

x6

Zero Knowledge Proof

× +

 ×

x0 x1 x2

x5 x4

x6

• Authenticated value: ciphertext that

Zero Knowledge Proof

× +

 ×

x0 x1 x2

x5 x4

x6

• Authenticated value: ciphertext that

• Hide underlying value

Zero Knowledge Proof

× +

 ×

x0 x1 x2

x5 x4

x6

• Authenticated value: ciphertext that

• Hide underlying value

Zero Knowledge Proof

x0 × x1 = = x5

× +

 ×

x0 x1 x2

x5 x4

x6

• Authenticated value: ciphertext that

• Hide underlying value

• Enable verifier to check the relations

Zero Knowledge Proof

x0 × x1 = = x5

× +

 ×

x0 x1 x2

x5 x4

x6

• Authenticated value: ciphertext that

• Hide underlying value

• Enable verifier to check the relations

Zero Knowledge Proof

× +

 ×

x0 x1 x2

x5 x4

x6

• Authenticated value: ciphertext that

• Hide underlying value

• Enable verifier to check the relations

• Prevent prover from cheating about the underlying value

Zero Knowledge Proof

• Gate-by-gate paradigm [Beaver et al. 90]:

• Prover authenticates the value over all wires

• Verifier checks if input and output of each gate is consistent over the ciphertext

• Prover reveals the value of output of the circuit

× +

 ×

x0 x1 x2

x5 x4

x6

• Authenticated value: ciphertext that

• Hide underlying value

• Enable verifier to check the relations

• Prevent prover from cheating about the underlying value

Zero Knowledge Proof

• Gate-by-gate paradigm [Beaver et al. 90]:

• Prover authenticates the value over all wires

• Verifier checks if input and output of each gate is consistent over the ciphertext

• Prover reveals the value of output of the circuit

× +

 ×

x0 x1 x2

x5 x4

x6

• Authenticated value: ciphertext that

• Hide underlying value

• Enable verifier to check the relations

• Prevent prover from cheating about the underlying value

Zero Knowledge Proof

• Gate-by-gate paradigm [Beaver et al. 90]:

• Prover authenticates the value over all wires

• Verifier checks if input and output of each gate is consistent over the ciphertext

• Prover reveals the value of output of the circuit

× +

 ×

x0 x1 x2

x5 x4

x6

• Authenticated value: ciphertext that

• Hide underlying value

• Enable verifier to check the relations

• Prevent prover from cheating about the underlying value

Zero Knowledge Proof

• Gate-by-gate paradigm [Beaver et al. 90]:

• Prover authenticates the value over all wires

• Verifier checks if input and output of each gate is consistent over the ciphertext

• Prover reveals the value of output of the circuit

× +

 ×

x0 x1 x2

x5 x4

x6

• Authenticated value: ciphertext that

• Hide underlying value

• Enable verifier to check the relations

• Prevent prover from cheating about the underlying value

Zero Knowledge Proof

• Gate-by-gate paradigm [Beaver et al. 90]:

• Prover authenticates the value over all wires

• Verifier checks if input and output of each gate is consistent over the ciphertext

• Prover reveals the value of output of the circuit

× +

 ×

x0 x1 x2

x5 x4

x6

• Authenticated value: ciphertext that

• Hide underlying value

• Enable verifier to check the relations

• Prevent prover from cheating about the underlying value

Zero Knowledge Proof

• Gate-by-gate paradigm [Beaver et al. 90]:

• Prover authenticates the value over all wires

• Verifier checks if input and output of each gate is consistent over the ciphertext

• Prover reveals the value of output of the circuit

× +

 ×

x0 x1 x2

x5 x4

x6

• Authenticated value: ciphertext that

• Hide underlying value

• Enable verifier to check the relations

• Prevent prover from cheating about the underlying value

Zero Knowledge Proof

• Gate-by-gate paradigm [Beaver et al. 90]:

• Prover authenticates the value over all wires

• Verifier checks if input and output of each gate is consistent over the ciphertext

• Prover reveals the value of output of the circuit

× +

 ×

x0 x1 x2

x5 x4

x6

• Authenticated value: ciphertext that

• Hide underlying value

• Enable verifier to check the relations

• Prevent prover from cheating about the underlying value

Zero Knowledge Proof

• Gate-by-gate paradigm [Beaver et al. 90]:

• Prover authenticates the value over all wires

• Verifier checks if input and output of each gate is consistent over the ciphertext

• Prover reveals the value of output of the circuit

× +

 ×

x0 x1 x2

x5 x4

x6

• Authenticated value: ciphertext that

• Hide underlying value

• Enable verifier to check the relations

• Prevent prover from cheating about the underlying value

Zero Knowledge Proof

• Gate-by-gate paradigm [Beaver et al. 90]:

• Prover authenticates the value over all wires

• Verifier checks if input and output of each gate is consistent over the ciphertext

• Prover reveals the value of output of the circuit

× +

 ×

x0 x1 x2

x5 x4

x6

• Authenticated value: ciphertext that

• Hide underlying value

• Enable verifier to check the relations

• Prevent prover from cheating about the underlying value

Zero Knowledge Proof

Knowledge for Polynomials[Yang et al. 21]

public random
value r

Multiplication Addition and
Scalar

 over finite field p0(x) = p1(x) F

Zero Knowledge Proof

Knowledge for Polynomials[Yang et al. 21]

public random
value r

Multiplication Addition and
Scalar

Private p0(x) over finite field p0(x) = p1(x) F

Zero Knowledge Proof

Knowledge for Polynomials[Yang et al. 21]

public random
value r

Multiplication Addition and
Scalar

Private p0(x)

Private p1(x)

 over finite field p0(x) = p1(x) F

Zero Knowledge Proof

Knowledge for Polynomials[Yang et al. 21]

public random
value r

Multiplication Addition and
Scalar

Private p0(x)

Private p1(x)

r

 over finite field p0(x) = p1(x) F

Zero Knowledge Proof

Knowledge for Polynomials[Yang et al. 21]

public random
value r

Multiplication Addition and
Scalar

Private p0(x)

Private p1(x)

p0(r)

p1(r)

r

 over finite field p0(x) = p1(x) F

Zero Knowledge Proof

Knowledge for Polynomials[Yang et al. 21]

public random
value r

Multiplication Addition and
Scalar

Private p0(x)

Private p1(x)

p0(r)

p1(r)

r

 with prob. p0(r) ≠ p1(r) 1 −
d

|F |

 over finite field p0(x) = p1(x) F

Zero Knowledge Proof

Knowledge for Polynomials[Yang et al. 21]

public random
value r

Multiplication Addition and
Scalar

Private p0(x)

Private p1(x)

p0(r)

p1(r)

r

 with prob. p0(r) ≠ p1(r) 1 −
d

|F |

 over finite field p0(x) = p1(x) F

Zero Knowledge Proof

• p1(x) = p2(x)

Knowledge for Polynomials[Yang et al. 21]

public random
value r

Multiplication Addition and
Scalar

Private p0(x)

Private p1(x)

p0(r)

p1(r)

r

 with prob. p0(r) ≠ p1(r) 1 −
d

|F |

 over finite field p0(x) = p1(x) F

Zero Knowledge Proof

• p1(x) = p2(x)

• p0(x) ⋅ p1(x) = p2(x)

Knowledge for Polynomials[Yang et al. 21]

public random
value r

Multiplication Addition and
Scalar

Private p0(x)

Private p1(x)

p0(r)

p1(r)

r

 with prob. p0(r) ≠ p1(r) 1 −
d

|F |

 over finite field p0(x) = p1(x) F

Zero Knowledge Proof

• p1(x) = p2(x)

• p0(x) ⋅ p1(x) = p2(x)

• p0(x) ⋅ p1(x) + p′ 0(x) ⋅ p′ 1(x) = p(x)

Knowledge for Polynomials[Yang et al. 21]

public random
value r

Multiplication Addition and
Scalar

Private p0(x)

Private p1(x)

p0(r)

p1(r)

r

 with prob. p0(r) ≠ p1(r) 1 −
d

|F |

 over finite field p0(x) = p1(x) F

Zero Knowledge Proof

• p1(x) = p2(x)

• p0(x) ⋅ p1(x) = p2(x)

• p0(x) ⋅ p1(x) + p′ 0(x) ⋅ p′ 1(x) = p(x)

• p1(x) = p0(c + x)

Zero Knowledge Proof：Take Away

Verifier can verify

the relations between

private values or polynomials

without learning the values themselves

a, b, c

pa, pb, pc

Prover Verifier

Zero Knowledge Proof：Take Away

Verifier can verify

the relations between

private values or polynomials

without learning the values themselves

a, b, c

pa, pb, pc

Prover Verifier

Zero Knowledge Proof：Take Away

Verifier can verify

the relations between

private values or polynomials

without learning the values themselves

a, b, c

pa, pb, pc

Prover Verifier

Unsatisfiability in Zero Knowledge Proof

Unsatisfiability in Zero Knowledge Proof

•Prover knows a resolution proof for a formula Prf ϕ

Unsatisfiability in Zero Knowledge Proof

•Prover knows a resolution proof for a formula Prf ϕ

Resolution Proof
ϕ = c0 ∧ c1 ∧ c2 ∧ c3

Unsatisfiability in Zero Knowledge Proof

•Prover knows a resolution proof for a formula Prf ϕ

•Convince the verifier that is unsatisfiable ϕ

Resolution Proof
ϕ = c0 ∧ c1 ∧ c2 ∧ c3

Unsatisfiability in Zero Knowledge Proof

•Prover knows a resolution proof for a formula Prf ϕ

•Convince the verifier that is unsatisfiable ϕ

•Keep information about and privatePrf ϕ

Resolution Proof
ϕ = c0 ∧ c1 ∧ c2 ∧ c3

Unsatisfiability in Zero Knowledge Proof

•Prover knows a resolution proof for a formula Prf ϕ

•Convince the verifier that is unsatisfiable ϕ

•Keep information about and privatePrf ϕ

Resolution Proof
ϕ = c0 ∧ c1 ∧ c2 ∧ c3

Unsatisfiability in Zero Knowledge Proof

•Prover knows a resolution proof for a formula Prf ϕ

•Convince the verifier that is unsatisfiable ϕ

•Keep information about and privatePrf ϕ

•Verifier:

Resolution Proof
ϕ = c0 ∧ c1 ∧ c2 ∧ c3

Unsatisfiability in Zero Knowledge Proof

•Prover knows a resolution proof for a formula Prf ϕ

•Convince the verifier that is unsatisfiable ϕ

•Keep information about and privatePrf ϕ

•Verifier:

•Validate prover’s claim about ϕ

Resolution Proof
ϕ = c0 ∧ c1 ∧ c2 ∧ c3

Unsatisfiability in Zero Knowledge Proof

Resolution Proof
ϕ = c0 ∧ c1 ∧ c2 ∧ c3

Unsatisfiability in Zero Knowledge Proof

Both Prover and Verifier can be malicious.

Resolution Proof
ϕ = c0 ∧ c1 ∧ c2 ∧ c3

Unsatisfiability in Zero Knowledge Proof

Both Prover and Verifier can be malicious.

•Prover might cheat about unsatisfiability of ϕ

Resolution Proof
ϕ = c0 ∧ c1 ∧ c2 ∧ c3

Unsatisfiability in Zero Knowledge Proof

Both Prover and Verifier can be malicious.

•Prover might cheat about unsatisfiability of ϕ

Resolution Proof
ϕ = c0 ∧ c1 ∧ c2 ∧ c3
Fake Resolution Proof

ϕ = x1 ∧ x2

Unsatisfiability in Zero Knowledge Proof

Both Prover and Verifier can be malicious.

•Prover might cheat about unsatisfiability of ϕ

Resolution Proof
ϕ = c0 ∧ c1 ∧ c2 ∧ c3

Unsatisfiability in Zero Knowledge Proof

Both Prover and Verifier can be malicious.

•Prover might cheat about unsatisfiability of ϕ

Resolution Proof
ϕ = c0 ∧ c1 ∧ c2 ∧ c3

Unsatisfiability in Zero Knowledge Proof

Both Prover and Verifier can be malicious.

•Prover might cheat about unsatisfiability of ϕ

•Verifier tries to learn information about and Prf ϕ

Resolution Proof
ϕ = c0 ∧ c1 ∧ c2 ∧ c3

Technique challenges and design overview

ZKUNSAT
c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x2 2, 3
c6 : ⊥ 4, 5

Unsatisfiability in Zero Knowledge Proof

Technique challenges and design overview

Fetch clauses

ZKUNSAT
c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x2 2, 3
c6 : ⊥ 4, 5

Unsatisfiability in Zero Knowledge Proof

Technique challenges and design overview

Check application of resolution ruleFetch clauses

ZKUNSAT
c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x2 2, 3
c6 : ⊥ 4, 5

Unsatisfiability in Zero Knowledge Proof

Technique challenges and design overview

ZK for integer comparison

Check application of resolution ruleFetch clauses

ZKUNSAT
c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x2 2, 3
c6 : ⊥ 4, 5

Unsatisfiability in Zero Knowledge Proof

Technique challenges and design overview

ZK for checking polynomial relationsZK for integer comparison

Check application of resolution ruleFetch clauses

ZKUNSAT
c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x2 2, 3
c6 : ⊥ 4, 5

Unsatisfiability in Zero Knowledge Proof

Check application of resolution rule
Polynomial-based approach

Clause

ℓ1 ∨ ⋯ ∨ ℓk

Resolution

Check application of resolution rule
Polynomial-based approach

Clause

ℓ1 ∨ ⋯ ∨ ℓk

Resolution

Set

{ℓ1, ⋯, ℓk}

Set operation

Check application of resolution rule
Polynomial-based approach

Clause

ℓ1 ∨ ⋯ ∨ ℓk

Resolution

Set

{ℓ1, ⋯, ℓk}

Set operation

Polynomial

(x + ℓ1)⋯(x + ℓk)

Polynomial relation

• An Encoding scheme from literals to finite field

• Any Encoding scheme that satisfies

• Injective

• , is a public constant

ϵ ℒ F2k\0

ϵ(ℓ) + ϵ(¬ℓ) = c c

Check application of resolution rule
Polynomial-based approach

1 0 0 0 0 0 1 0 1 x5

• An Encoding scheme from literals to finite field

• Any Encoding scheme that satisfies

• Injective

• , is a public constant

ϵ ℒ F2k\0

ϵ(ℓ) + ϵ(¬ℓ) = c c

Check application of resolution rule
Polynomial-based approach

1 0 0 0 0 0 1 0 1 x5

• An Encoding scheme from literals to finite field

• Any Encoding scheme that satisfies

• Injective

• , is a public constant

ϵ ℒ F2k\0

ϵ(ℓ) + ϵ(¬ℓ) = c c

Check application of resolution rule
Polynomial-based approach

1

The sign of the literal

0 0 0 0 0 1 0 1 x5

• An Encoding scheme from literals to finite field

• Any Encoding scheme that satisfies

• Injective

• , is a public constant

ϵ ℒ F2k\0

ϵ(ℓ) + ϵ(¬ℓ) = c c

Check application of resolution rule
Polynomial-based approach

1

The sign of the literal

0 0 0 0 0 1 0 1 x5

• An Encoding scheme from literals to finite field

• Any Encoding scheme that satisfies

• Injective

• , is a public constant

ϵ ℒ F2k\0

ϵ(ℓ) + ϵ(¬ℓ) = c c

Check application of resolution rule
Polynomial-based approach

1

The sign of the literal Index of the literal

0 0 0 0 0 1 0 1 x5

Check application of resolution rule
Polynomial-based approach

• Clauses are encoded as polynomial over

•

• Example

F2k

c = (ℓ0 ∨ ℓ1 ∨ ⋯ ∨ ℓd) : pc(x) = (x + ϵ(ℓ0))⋯(x + ϵ(ℓd))

ca = (x1 ∨ x2) : pca
(x) = (x+2k−1+1)(x+2k−1+2)

cb = (x1 ∨ ¬x2) : pcb
(x) = (x+2k−1+1)(x + 2)

Check application of resolution rule

ca = x1 ∨ x2, cb = x1 ∨ ¬x2

cr = x1

Polynomial-Based Approach

Pivot literal

Check application of resolution rule

• Checking one resolution proof step:

ca = x1 ∨ x2, cb = x1 ∨ ¬x2

cr = x1

Polynomial-Based Approach

Pivot literal

Check application of resolution rule

• Checking one resolution proof step:

• Prover prepares and inputs a pair of pivot polynomials: , (x + ϵ(ℓp)) (x + ϵ(¬ℓp))

ca = x1 ∨ x2, cb = x1 ∨ ¬x2

cr = x1

Polynomial-Based Approach

Pivot literal

Check application of resolution rule

• Checking one resolution proof step:

• Prover prepares and inputs a pair of pivot polynomials: , (x + ϵ(ℓp)) (x + ϵ(¬ℓp))

• Pivot polynomials: and (x + 2k−1 + 2) (x + 2)

ca = x1 ∨ x2, cb = x1 ∨ ¬x2

cr = x1

Polynomial-Based Approach

Pivot literal

Check application of resolution rule

• Checking one resolution proof step:

• Prover prepares and inputs a pair of pivot polynomials: , (x + ϵ(ℓp)) (x + ϵ(¬ℓp))

• Pivot polynomials: and (x + 2k−1 + 2) (x + 2)

• Prover prepares and inputs polynomial of the resolvent

ca = x1 ∨ x2, cb = x1 ∨ ¬x2

cr = x1

Polynomial-Based Approach

Pivot literal

Check application of resolution rule

• Checking one resolution proof step:

• Prover prepares and inputs a pair of pivot polynomials: , (x + ϵ(ℓp)) (x + ϵ(¬ℓp))

• Pivot polynomials: and (x + 2k−1 + 2) (x + 2)

• Prover prepares and inputs polynomial of the resolvent

• pcr
= (x + 2k−1 + 1)

ca = x1 ∨ x2, cb = x1 ∨ ¬x2

cr = x1

Polynomial-Based Approach

Pivot literal

Check application of resolution rule
Polynomial-Based Approach

•

• Proving and

• Prover prepares and inputs and

• Verifier checks

• via

• via

Ca ⊆ Cr ∪ {ℓp}, Cb ⊆ Cr ∪ {¬ℓp}

pca
|pcr

⋅ (x + ϵ(ℓp)) pcb
|pcr

⋅ (x + ϵ(¬ℓp))

wa wb

pca
|pcr

⋅ (x + ϵ(ℓp)) pca
⋅ wa = pcr

⋅ (x + ϵ(ℓp))

pcb
|pcr

⋅ (x + ϵ(¬ℓp)) pcb
⋅ wb = pcr

⋅ (x + ϵ(¬ℓp))

ca = x1 ∨ x2, cb = x1 ∨ ¬x2

cr = x1

Check application of resolution rule

Check application of resolution rule

ca = x1 ∨ x2, cb = x1 ∨ ¬x2

cr = x1

Check application of resolution rule

ca = x1 ∨ x2, cb = x1 ∨ ¬x2

cr = x1pivot literals:

pca
= (x + 2k−1 + 1)(x + 2k−1 + 2)

pcb
= (x + 2k−1 + 1)(x + 2)

pcr
= (x + 2k−1 + 1)

px2
= (x + 2k−1 + 2), p¬x2

= (x + 2)

Check application of resolution rule

ca = x1 ∨ x2, cb = x1 ∨ ¬x2

cr = x1pivot literals:

pca
= (x + 2k−1 + 1)(x + 2k−1 + 2)

pcb
= (x + 2k−1 + 1)(x + 2)

pcr
= (x + 2k−1 + 1)

px2
= (x + 2k−1 + 2), p¬x2

= (x + 2)

pcb
|pcr

⋅ p¬x2
: {x1, ¬x2} ⊆ {x1} ∪ {¬x2}

pca
|pcr

⋅ px2
: {x1, x2} ⊆ {x1} ∪ {x2}

 pivotca cr

Unsatisfiability in Zero Knowledge Proof

ZK for polynomial relationsZK for integer comparison

Check application of resolution ruleFetch Clauses

ZKUNSAT
c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x2 2, 3
c6 : ⊥ 4, 5

Unsatisfiability in Zero Knowledge Proof

ZK for polynomial relationsZK for integer comparison

Check application of resolution ruleFetch Clauses

ZKUNSAT
c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x2 2, 3
c6 : ⊥ 4, 5

Unsatisfiability in Zero Knowledge Proof

ZK for polynomial relationsZK for integer comparison

Check application of resolution ruleFetch Clauses

ZKUNSAT

Given clauses , we now can check

But how we fetch and without revealing the access?

ca, cb, cr ca, cb ⊢res cr

ca cb

c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x2 2, 3
c6 : ⊥ 4, 5

Unsatisfiability in Zero Knowledge Proof

ZK for polynomial relationsZK for integer comparison

Check application of resolution ruleFetch Clauses

ZKUNSAT

Given clauses , we now can check

But how we fetch and without revealing the access?

ca, cb, cr ca, cb ⊢res cr

ca cb

c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x2 2, 3
c6 : ⊥ 4, 5

Zero Knowledge Proof
Read-Only Array in ZK [Franzese, 21]

c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x1 2, 4
c6 : ¬x2 5, 3
c7 : ⊥ 4, 6

Zero Knowledge Proof
Read-Only Array in ZK [Franzese, 21]

• Each time fetch the clause for resolvent ci j

c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x1 2, 4
c6 : ¬x2 5, 3
c7 : ⊥ 4, 6

Zero Knowledge Proof
Read-Only Array in ZK [Franzese, 21]

• Each time fetch the clause for resolvent ci j

• Prover sends to the verifier when needed.i, ci

c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x1 2, 4
c6 : ¬x2 5, 3
c7 : ⊥ 4, 6

Zero Knowledge Proof
Read-Only Array in ZK [Franzese, 21]

• Each time fetch the clause for resolvent ci j

• Prover sends to the verifier when needed.i, ci

• Verifier checks that i < j

c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x1 2, 4
c6 : ¬x2 5, 3
c7 : ⊥ 4, 6

Zero Knowledge Proof
Read-Only Array in ZK [Franzese, 21]

• Each time fetch the clause for resolvent ci j

• Prover sends to the verifier when needed.i, ci

• Verifier checks that i < j

• Record (0,c0), (1,c1), (2,c2), (4,c4), (5,c5), (3,c3), (4,c4), (6,c6)

c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x1 2, 4
c6 : ¬x2 5, 3
c7 : ⊥ 4, 6

Zero Knowledge Proof
Read-Only Array in ZK (example)

Zero Knowledge Proof
Read-Only Array in ZK (example)

• Check if all records are consistent periodically

Zero Knowledge Proof
Read-Only Array in ZK (example)

• Check if all records are consistent periodically

• L = [(0,c0), (1,c1), (2,c2), (4,c4), (5,c5), (3,c3), (4,c4), (6,c6)]

Zero Knowledge Proof
Read-Only Array in ZK (example)

• Check if all records are consistent periodically

• L = [(0,c0), (1,c1), (2,c2), (4,c4), (5,c5), (3,c3), (4,c4), (6,c6)]

• Prover sorts the list of records and gets
L′ = [(0,c0), (1,c1), (2,c2), (3,c3), (4,c4), (4,c4), (5,c5), (6,c6)]

Zero Knowledge Proof
Read-Only Array in ZK (example)

• Check if all records are consistent periodically

• L = [(0,c0), (1,c1), (2,c2), (4,c4), (5,c5), (3,c3), (4,c4), (6,c6)]

• Prover sorts the list of records and gets
L′ = [(0,c0), (1,c1), (2,c2), (3,c3), (4,c4), (4,c4), (5,c5), (6,c6)]

• in the sense of set (using polynomial equivalence)L = L′

Zero Knowledge Proof
Read-Only Array in ZK (example)

• Check if all records are consistent periodically

• L = [(0,c0), (1,c1), (2,c2), (4,c4), (5,c5), (3,c3), (4,c4), (6,c6)]

• Prover sorts the list of records and gets
L′ = [(0,c0), (1,c1), (2,c2), (3,c3), (4,c4), (4,c4), (5,c5), (6,c6)]

• in the sense of set (using polynomial equivalence)L = L′

• In , either or when holdsL′ i′ t+1 > i′ t ci′ t
= ci′ t+1

i′ t = i′ t+1

Zero Knowledge Proof
Read-Only Array in ZK (example)

• Check if all records are consistent periodically

• L = [(0,c0), (1,c1), (2,c2), (4,c4), (5,c5), (3,c3), (4,c4), (6,c6)]

• Prover sorts the list of records and gets
L′ = [(0,c0), (1,c1), (2,c2), (3,c3), (4,c4), (4,c4), (5,c5), (6,c6)]

• in the sense of set (using polynomial equivalence)L = L′

• In , either or when holdsL′ i′ t+1 > i′ t ci′ t
= ci′ t+1

i′ t = i′ t+1

Zero Knowledge Proof
Read-Only Array in ZK (example)

• Check if all records are consistent periodically

• L = [(0,c0), (1,c1), (2,c2), (4,c4), (5,c5), (3,c3), (4,c4), (6,c6)]

• Prover sorts the list of records and gets
L′ = [(0,c0), (1,c1), (2,c2), (3,c3), (4,c4), (4,c4), (5,c5), (6,c6)]

• in the sense of set (using polynomial equivalence)L = L′

• In , either or when holdsL′ i′ t+1 > i′ t ci′ t
= ci′ t+1

i′ t = i′ t+1

Unsatisfiability in Zero Knowledge Proof

ZK for polynomial relationsZK for integer comparison

Check application of resolution ruleFetch Clauses

ZKUNSAT
c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x2 2, 3
c6 : ⊥ 4, 5

Unsatisfiability in Zero Knowledge Proof

ZK for polynomial relationsZK for integer comparison

Check application of resolution ruleFetch Clauses

ZKUNSAT

Put them together:

•Fetch input clauses for each resolution using ROARRAY in ZK

•Check application of the resolution rule using polynomial relations in ZK

c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x2 2, 3
c6 : ⊥ 4, 5

Unsatisfiability in Zero Knowledge Proof

ZK for polynomial relationsZK for integer comparison

Check application of resolution ruleFetch Clauses

ZKUNSAT

Put them together:

•Fetch input clauses for each resolution using ROARRAY in ZK

•Check application of the resolution rule using polynomial relations in ZK

c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x2 2, 3
c6 : ⊥ 4, 5

 AWS instances of type r5b.2xlarge

64 GB of memory, 16 vCPUs

10 Gbps network connection between the prover and the verifier

Evaluation
Benchmark setting

Evaluation

• Time and memory requirements depend on the length and clausal width of the proof

• ZKUNSAT takes less than min to verify proofs of large width () and length ()1 400 8000

c0 : (x1 ∨ x2) −, −
c1 : (¬x1 ∨ x2) −, −
c2 : (¬x1 ∨ ¬x2) −, −
c3 : (x1 ∨ ¬x2) −, −
c4 : x2 0, 1
c5 : ¬x2 2, 3
c6 : ⊥ 4, 5

Length: the number of applications of resolution rule.

Length = 3 in this example

Width: the maximum number of literals a clause in the
proof can have.

Width = 2 in this example

Evaluation
Verification tasks for system drivers

• Unwind is a parameter for translating the verification tasks to Boolean formulae

• Width and Length K

• ZKUNSAT can verify UNSAT of formulae from system drivers verification tasks within 5min

≤ 256 ≤ 65

5 10 15 20 25
Unwind

212

214

Le
ng

th
(l

)

5 10 15 20 25
Unwind

25

26

27

28

W
id

th
(w

)

5 10 15 20 25
Unwind

23

25

27

Ti
m

e
(s

)

ldv-crypto-qat ldv-net-usb-cdc-subset ntdrivers-floppy ntdrivers-cdaudio

5 10 15 20 25
Unwind

212

214

Le
ng

th
(l

)

5 10 15 20 25
Unwind

25

26

27

28

W
id

th
(w

)

5 10 15 20 25
Unwind

23

25

27

Ti
m

e
(s

)

ldv-crypto-qat ldv-net-usb-cdc-subset ntdrivers-floppy ntdrivers-cdaudio

5 10 15 20 25
Unwind

212

214

Le
ng

th
(l

)
5 10 15 20 25

Unwind

25

26

27

28

W
id

th
(w

)

5 10 15 20 25
Unwind

23

25

27

Ti
m

e
(s

)

ldv-crypto-qat ldv-net-usb-cdc-subset ntdrivers-floppy ntdrivers-cdaudio

5 10 15 20 25
Unwind

212

214

Le
ng

th
(l

)

5 10 15 20 25
Unwind

25

26

27

28

W
id

th
(w

)

5 10 15 20 25
Unwind

23

25

27

Ti
m

e
(s

)

ldv-crypto-qat ldv-net-usb-cdc-subset ntdrivers-floppy ntdrivers-cdaudio

5 10 15 20 25
Unwind

212

214

Le
ng

th
(l

)

5 10 15 20 25
Unwind

25

26

27

28

W
id

th
(w

)

5 10 15 20 25
Unwind

23

25

27

Ti
m

e
(s

)

ldv-crypto-qat ldv-net-usb-cdc-subset ntdrivers-floppy ntdrivers-cdaudio

Intel(R) QuickAssist crypto poll
mode driver

Simple USB Network Links driver

Window NT floppy disk driver

Window NT CD audio disk driver

Evaluation
Other large instances

Evaluation
Other large instances

Evaluation
Other large instances

Further improvement via computing clusters: work to appear in CCS 2023

Contribution

• Privacy preserving program verification is in demand

• Encoding resolution proof by polynomials

• UNSAT in ZK is practical

Future Work

Future Work

• SAT : Privacy-preserving SAT solving (ppSAT)

 ϕ0 = (x0 ∨ x1) ∧ (x0 ∨ ¬x1) ϕ1 = (¬x0 ∨ x1) ∧ (¬x0 ∨ ¬x1)

ppSAT

Future Work

• SAT : Privacy-preserving SAT solving (ppSAT)

 ϕ0 = (x0 ∨ x1) ∧ (x0 ∨ ¬x1) ϕ1 = (¬x0 ∨ x1) ∧ (¬x0 ∨ ¬x1)

ppSAT

Future Work

• SAT : Privacy-preserving SAT solving (ppSAT)

 ϕ0 = (x0 ∨ x1) ∧ (x0 ∨ ¬x1) ϕ1 = (¬x0 ∨ x1) ∧ (¬x0 ∨ ¬x1)

ppSAT

Future Work

• SAT : Privacy-preserving SAT solving (ppSAT)

 ϕ0 = (x0 ∨ x1) ∧ (x0 ∨ ¬x1) ϕ1 = (¬x0 ∨ x1) ∧ (¬x0 ∨ ¬x1)

ppSAT

ppSAT: Towards Two-Party Private SAT Solving, USENIX Security 2022

Boolean SAT Solving: A DPLL Example

ϕ(x0, x1, x2, x3) = (x3 ∨ x0 ∨ x1) ∧ (¬x0 ∨ x2) ∧ (x1 ∨ x2) ∧ ¬x1 ∧ (¬x3 ∨ ¬x0) ∧ (¬x0 ∨ x3)

Falsex1 =

(x3 ∨ x0) ∧ (¬x0 ∨ x2) ∧ x2 ∧ (¬x3 ∨ ¬x0) ∧ (¬x0 ∨ x3)

Truex2 =

(x3 ∨ x0) ∧ (¬x3 ∨ ¬x0) ∧ (¬x0 ∨ x3)

Falsex3 =

x0 ∧ ¬x0

Truex3 =

¬x0

Falsex0 =
Backtrack

Boolean SAT Solving: A DPLL Example

ϕ(x0, x1, x2, x3) = (x3 ∨ x0 ∨ x1) ∧ (¬x0 ∨ x2) ∧ (x1 ∨ x2) ∧ ¬x1 ∧ (¬x3 ∨ ¬x0) ∧ (¬x0 ∨ x3)

Falsex1 =

(x3 ∨ x0) ∧ (¬x0 ∨ x2) ∧ x2 ∧ (¬x3 ∨ ¬x0) ∧ (¬x0 ∨ x3)

Truex2 =

(x3 ∨ x0) ∧ (¬x3 ∨ ¬x0) ∧ (¬x0 ∨ x3)

Falsex3 =

x0 ∧ ¬x0

Truex3 =

¬x0

Falsex0 =
Backtrack

Boolean SAT Solving: A DPLL Example

ϕ(x0, x1, x2, x3) = (x3 ∨ x0 ∨ x1) ∧ (¬x0 ∨ x2) ∧ (x1 ∨ x2) ∧ ¬x1 ∧ (¬x3 ∨ ¬x0) ∧ (¬x0 ∨ x3)

Falsex1 =

(x3 ∨ x0) ∧ (¬x0 ∨ x2) ∧ x2 ∧ (¬x3 ∨ ¬x0) ∧ (¬x0 ∨ x3)

Truex2 =

(x3 ∨ x0) ∧ (¬x3 ∨ ¬x0) ∧ (¬x0 ∨ x3)

Falsex3 =

x0 ∧ ¬x0

Truex3 =

¬x0

Falsex0 =
Backtrack

Boolean SAT Solving: A DPLL Example

ϕ(x0, x1, x2, x3) = (x3 ∨ x0 ∨ x1) ∧ (¬x0 ∨ x2) ∧ (x1 ∨ x2) ∧ ¬x1 ∧ (¬x3 ∨ ¬x0) ∧ (¬x0 ∨ x3)

Falsex1 =

(x3 ∨ x0) ∧ (¬x0 ∨ x2) ∧ x2 ∧ (¬x3 ∨ ¬x0) ∧ (¬x0 ∨ x3)

Truex2 =

(x3 ∨ x0) ∧ (¬x3 ∨ ¬x0) ∧ (¬x0 ∨ x3)

Falsex3 =

x0 ∧ ¬x0

Truex3 =

¬x0

Falsex0 =
Backtrack

Boolean SAT Solving: A DPLL Example

ϕ(x0, x1, x2, x3) = (x3 ∨ x0 ∨ x1) ∧ (¬x0 ∨ x2) ∧ (x1 ∨ x2) ∧ ¬x1 ∧ (¬x3 ∨ ¬x0) ∧ (¬x0 ∨ x3)

Falsex1 =

(x3 ∨ x0) ∧ (¬x0 ∨ x2) ∧ x2 ∧ (¬x3 ∨ ¬x0) ∧ (¬x0 ∨ x3)

Truex2 =

(x3 ∨ x0) ∧ (¬x3 ∨ ¬x0) ∧ (¬x0 ∨ x3)

Falsex3 =

x0 ∧ ¬x0

Truex3 =

¬x0

Falsex0 =
Backtrack

Unit literal search

Propagation

Check

Boolean SAT Solving: A DPLL Example

ϕ(x0, x1, x2, x3) = (x3 ∨ x0 ∨ x1) ∧ (¬x0 ∨ x2) ∧ (x1 ∨ x2) ∧ ¬x1 ∧ (¬x3 ∨ ¬x0) ∧ (¬x0 ∨ x3)

Falsex1 =

(x3 ∨ x0) ∧ (¬x0 ∨ x2) ∧ x2 ∧ (¬x3 ∨ ¬x0) ∧ (¬x0 ∨ x3)

Truex2 =

(x3 ∨ x0) ∧ (¬x3 ∨ ¬x0) ∧ (¬x0 ∨ x3)

Falsex3 =

x0 ∧ ¬x0

Truex3 =

¬x0

Falsex0 =
Backtrack

Unit literal search

Propagation

Check

Linear Scans

• DLIS

• Select the most commonly appearing literal and the smallest index

• Return the assignment that makes it true

• Deterministic

• Example: DLIS will guess for ¬x0 (x3 ∨ x0) ∧ (¬x3 ∨ ¬x0) ∧ (¬x0 ∨ x3)

Future Work

• Rand

• Uniformly select a random undecided literal

• Randomized

• Example:

Randomly guess one of each with probability

(x3 ∨ x0) ∧ (¬x3 ∨ ¬x0) ∧ (¬x0 ∨ x3)

{x0, ¬x0, x3, ¬x3}
1
4

Heuristics

• Weighted-Rand

• Select a random undecided literal according to its frequency

• Randomized

• Example:

guess with chance, guess with chance, etc.

(x3 ∨ x0) ∧ (¬x3 ∨ ¬x0) ∧ (¬x0 ∨ x3)

x0
1
6

¬x0
2
6

Future Work

Future Work

Future Work

100 101 102 103 104 105

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

in
st

an
ce

s
so

lv
ed

D: DLIS heuristic R: RAND heuristic W: Weighted-RAND heuristic
|G| =1, W
|G| =1, R
|G| =1, D
|G| =2, W
|G| =2, R
|G| =2, D
|G| =3, W
|G| =3, R
|G| =3, D
|G| =4, W
|G| =4, R
|G| =4, D

|G| =5, W
|G| =5, R
|G| =5, D
|G| =6, W
|G| =6, R
|G| =6, D
|G| =7, W
|G| =7, R
|G| =7, D
|G| =8, W
|G| =8, R
|G| =8, D

ppSAT: Towards Two-Party Private SAT Solving, USENIX Security 2022

Future Work

100 101 102 103 104 105

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

in
st

an
ce

s
so

lv
ed

D: DLIS heuristic R: RAND heuristic W: Weighted-RAND heuristic
|G| =1, W
|G| =1, R
|G| =1, D
|G| =2, W
|G| =2, R
|G| =2, D
|G| =3, W
|G| =3, R
|G| =3, D
|G| =4, W
|G| =4, R
|G| =4, D

|G| =5, W
|G| =5, R
|G| =5, D
|G| =6, W
|G| =6, R
|G| =6, D
|G| =7, W
|G| =7, R
|G| =7, D
|G| =8, W
|G| =8, R
|G| =8, D

ppSAT: Towards Two-Party Private SAT Solving, USENIX Security 2022

 For 232 benchmarks KISSAT can solve 231 of the instances within 0.02s

Future Work

Future Work

Better heuristics when it comes to privacy preserving setting?

Thank you!

Ning Luo: ning.luo@northwestern.edu
https://github.com/PP-FM

I am on job market

mailto:ning.luo@yale.edu
https://github.com/PP-FM

Reference
Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols (extended abstract). In 22nd ACM STOC, pages 503–
513, Baltimore, MD, USA, May 14–16, 1990. ACM Press.

Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. Quicksilver: Efficient and affordable zero-knowledge proofs for circuits and polynomials
over any field. In ACM Conf. on Computer and Communications Security (CCS) 2021. ACM Press, 2021.

J. A. Robinson. 1965. A Machine-Oriented Logic Based on the Resolution Principle. J. ACM 12, 1 (Jan. 1965), 23–41. DOI:https://doi.org/
10.1145/321250.321253

Nicholas Franzese, Jonathan Katz, Steve Lu, Rafail Ostrovsky, Xiao Wang, and Chenkai Weng. 2021. Constant-Overhead Zero-Knowledge for RAM
Programs. In <i>Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security</i> (<i>CCS '21</i>). Association
for Computing Machinery, New York, NY, USA, 178–191. DOI:https://doi.org/10.1145/3460120.3484800

https://doi.org/10.1145/321250.321253
https://doi.org/10.1145/321250.321253
https://doi.org/10.1145/3460120.3484800

Zero Knowledge Proof
ZKP based on information theoretic MAC

× +

 ×

x0 x1 x2

x5 x4

x6

Zero Knowledge Proof
ZKP based on information theoretic MAC

• Information-Theoretic MAC : kx = Mx + x ⋅ Δ × +

 ×

x0 x1 x2

x5 x4

x6

Zero Knowledge Proof
ZKP based on information theoretic MAC

• Information-Theoretic MAC : kx = Mx + x ⋅ Δ × +

 ×

x0 x1 x2

x5 x4

x6

Zero Knowledge Proof
ZKP based on information theoretic MAC

• Information-Theoretic MAC : kx = Mx + x ⋅ Δ

• if is shared in such a way x x

× +

 ×

x0 x1 x2

x5 x4

x6

Zero Knowledge Proof
ZKP based on information theoretic MAC

• Information-Theoretic MAC : kx = Mx + x ⋅ Δ

• if is shared in such a way x x

• Addition gate: MAC for p(x, y) = a ⋅ x + b ⋅ y

× +

 ×

x0 x1 x2

x5 x4

x6

Zero Knowledge Proof
ZKP based on information theoretic MAC

• Information-Theoretic MAC : kx = Mx + x ⋅ Δ

• if is shared in such a way x x

• Addition gate: MAC for p(x, y) = a ⋅ x + b ⋅ y

• Prover locally computes Mp(x,y) = a ⋅ Mx + b ⋅ My

× +

 ×

x0 x1 x2

x5 x4

x6

Zero Knowledge Proof
ZKP based on information theoretic MAC

• Information-Theoretic MAC : kx = Mx + x ⋅ Δ

• if is shared in such a way x x

• Addition gate: MAC for p(x, y) = a ⋅ x + b ⋅ y

• Prover locally computes Mp(x,y) = a ⋅ Mx + b ⋅ My

• Verifier locally computes kp(x,y) = a ⋅ kx + b ⋅ ky

× +

 ×

x0 x1 x2

x5 x4

x6

Zero Knowledge Proof
ZKP based on information theoretic MAC

• Information-Theoretic MAC : kx = Mx + x ⋅ Δ

• if is shared in such a way x x

• Addition gate: MAC for p(x, y) = a ⋅ x + b ⋅ y

• Prover locally computes Mp(x,y) = a ⋅ Mx + b ⋅ My

• Verifier locally computes kp(x,y) = a ⋅ kx + b ⋅ ky

• Multiplication gate: verify if holdsx, y, z xy = z

× +

 ×

x0 x1 x2

x5 x4

x6

Zero Knowledge Proof
ZKP based on information theoretic MAC

• Information-Theoretic MAC : kx = Mx + x ⋅ Δ

• if is shared in such a way x x

• Addition gate: MAC for p(x, y) = a ⋅ x + b ⋅ y

• Prover locally computes Mp(x,y) = a ⋅ Mx + b ⋅ My

• Verifier locally computes kp(x,y) = a ⋅ kx + b ⋅ ky

• Multiplication gate: verify if holdsx, y, z xy = z

• With small probability holdskx ⋅ ky − Δ ⋅ kz = Mx ⋅ My + (Mx ⋅ y + My ⋅ x − Mz) ⋅ Δ

× +

 ×

x0 x1 x2

x5 x4

x6

Zero Knowledge Proof
ZKP based on information theoretic MAC

• Information-Theoretic MAC : kx = Mx + x ⋅ Δ

• if is shared in such a way x x

• Addition gate: MAC for p(x, y) = a ⋅ x + b ⋅ y

• Prover locally computes Mp(x,y) = a ⋅ Mx + b ⋅ My

• Verifier locally computes kp(x,y) = a ⋅ kx + b ⋅ ky

• Multiplication gate: verify if holdsx, y, z xy = z

• With small probability holdskx ⋅ ky − Δ ⋅ kz = Mx ⋅ My + (Mx ⋅ y + My ⋅ x − Mz) ⋅ Δ

• Batching for multiple multiplication gates

× +

 ×

x0 x1 x2

x5 x4

x6

