Towards $P \neq N P$ from Extended Frege lower bounds

JÁn Pich
UNIVERSITY OF OXFORD

joint work with Rahul Santhanam

Proof complexity

$\neg \exists$ p-bounded pps $\Leftrightarrow N P \neq$ coNP

Proof complexity

Proof complexity

Proof complexity

Cook-Reckhow program

Cook-Reckhow program

Cook-Reckhow program

Impagliazzo's worlds shortly before collision

Impasliazzo's worlds shortly before collision

Self-provability of $\mathrm{P}=\mathrm{NP}$

Self-provability of $\mathrm{P}=\mathrm{NP}$

$$
\mathrm{SAT}_{n}(x, y) \equiv \text { "formula } x \text { satisfied by assignment } y \text { " }
$$

Witnessing $P \neq N P$

$$
\mathrm{SAT}_{n} \notin \operatorname{Circuit}\left[n^{10 k}\right] \stackrel{?}{\Rightarrow} \quad \underset{ }{\exists} \underset{\mathrm{p} \text { p-time } f \text { s.t. } \forall C \in \operatorname{Circuit}\left[n^{k}\right]}{\operatorname{SAT}_{n}\left(f_{1}(C), f_{2}(C)\right) \wedge \neg \operatorname{SAT}_{n}\left(f_{1}(C), C\left(f_{1}(C)\right)\right)}
$$

Self-provability of $\mathrm{P}=\mathrm{NP}$

$$
\mathrm{SAT}_{n}(x, y) \equiv \text { "formula } x \text { satisfied by assignment } y \text { " }
$$

Witnessing $P \neq N P$

$$
\mathrm{SAT}_{n} \notin \operatorname{Circuit}\left[n^{10 k}\right] \stackrel{\boldsymbol{?}}{\Rightarrow} \quad \underset{ }{\exists} \underset{ }{\operatorname{SAT}} \mathrm{SA}_{n}\left(f_{1}(C), f_{2}(C)\right) \wedge \neg \operatorname{SAT}_{n}\left(f_{1}(C), C\left(f_{1}(C)\right)\right)
$$

random

\square
h is one-way \Rightarrow " $h(x)=h(a)$ " is a hard SAT-instance

Self-provability of $P=N P$

$\mathrm{SAT}_{n}(x, y) \equiv$ "formula x satisfied by assignment y "

Self-provability of $P=N P$

$\mathrm{SAT}_{n}(x, y) \equiv$ "formula x satisfied by assignment y "

[Gutfreund Shaltiel Ta-Shma]-style constructions in uniform setting

Self-provability of $P=N P$

$$
\operatorname{SAT}_{n}(x, y) \equiv \text { "formula } x \text { satisfied by assignment } y \text { " }
$$

Witnessing $P \neq N P$

$$
\mathrm{SAT}_{n} \notin \operatorname{Circuit}\left[n^{10 k}\right] \stackrel{?}{\Rightarrow} \quad \exists \mathrm{p} \text {-time } f \text { s.t. } \forall C \in \operatorname{Circuit}\left[n^{k}\right] ~=\operatorname{SAT}_{n}\left(f_{1}(C), f_{2}(C)\right) \wedge \neg \operatorname{SAT}_{n}\left(f_{1}(C), C\left(f_{1}(C)\right)\right)
$$

$$
\begin{aligned}
& \exists \mathrm{p} \text {-time } f \text { s.t. } w_{n}^{k}(f) \in \operatorname{TAUT} ? \\
& w_{n}^{k}(f):=\left[\mathrm{SAT}_{n}(x, y) \rightarrow \mathrm{SAT}_{n}(x, C(x))\right] \vee\left[\mathrm{SAT}_{n}\left(f_{1}(C), f_{2}(C)\right) \wedge \neg \mathrm{SAT}_{n}\left(f_{1}(C), C\left(f_{1}(C)\right)\right)\right]
\end{aligned}
$$

variables: x, y, C

Self-provability of $P=N P$

$$
\operatorname{SAT}_{n}(x, y) \equiv \text { "formula } x \text { satisfied by assignment } y \text { " }
$$

Witnessing $P \neq N P$

$$
\begin{aligned}
& \mathrm{SAT}_{n} \notin \operatorname{Circuit}\left[n^{10 k}\right] \stackrel{?}{\Rightarrow} \quad \begin{array}{l}
\exists \text { p-time } f \text { s.t. } \forall C \in \operatorname{Circuit}\left[n^{k}\right] \\
\mathrm{SAT}_{n}\left(f_{1}(C), f_{2}(C)\right) \wedge \neg \operatorname{SAT}_{n}\left(f_{1}(C), C\left(f_{1}(C)\right)\right)
\end{array} \\
& \exists \text { p-time } f \text { s.t. } w_{n}^{k}(f) \in \operatorname{TAUT} ? \\
& w_{n}^{k}(f):=\left[\operatorname{SAT}_{n}(x, y) \rightarrow \operatorname{SAT}_{n}(x, C(x))\right] \vee\left[\operatorname{SAT}_{n}\left(f_{1}(C), f_{2}(C)\right) \wedge \neg \mathrm{SAT}_{n}\left(f_{1}(C), C\left(f_{1}(C)\right)\right)\right] \\
& \text { variables: } x, y, C \\
& \text { encodes } n^{k} \text {-size circuits }
\end{aligned}
$$

Self-provability of $\mathrm{P}=\mathrm{NP}$

$$
\operatorname{SAT}_{n}(x, y) \equiv \text { "formula } x \text { satisfied by assignment } y \text { " }
$$

Witnessing $P \neq N P$

Self-provability of $P=N P$

$$
\operatorname{SAT}_{n}(x, y) \equiv \text { "formula } x \text { satisfied by assignment } y \text { " }
$$

Witnessing $P \neq N P$

$\mathrm{SAT}_{n} \notin \operatorname{Circuit}\left[n^{10 k}\right] \stackrel{\boldsymbol{?}}{\Rightarrow} \quad \exists$ p-time f s.t. $\forall C \in \operatorname{Circuit}\left[n^{k}\right]$

$$
\operatorname{SAT}_{n}\left(f_{1}(C), f_{2}(C)\right) \wedge \neg \operatorname{SAT}_{n}\left(f_{1}(C), C\left(f_{1}(C)\right)\right)
$$

\exists p-time f s.t. $w_{n}^{k}(f) \in$ TAUT?
$w_{n}^{k}(f):=\left[\operatorname{SAT}_{n}(x, y) \rightarrow \operatorname{SAT}_{n}(x, C(x))\right] \vee\left[\operatorname{SAT}_{n}\left(f_{1}(C), f_{2}(C)\right) \wedge \neg \mathrm{SAT}_{n}\left(f_{1}(C), C\left(f_{1}(C)\right)\right)\right]$
variables: x, y, C
encodes n^{k}-size circuits

$$
\begin{gathered}
w_{n}^{k}(f) \in \mathrm{TAUT} \\
\vdots \\
\mathrm{EF}+w^{k}(f)
\end{gathered}
$$

```
1. \(\vdash A \rightarrow(B \rightarrow A)\)
2. \(\vdash(A \rightarrow(B \rightarrow C)) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C))\)
3. \(\vdash(\neg B \rightarrow \neg A) \rightarrow(A \rightarrow B)\)
```


Self-provability of $P=N P$

$$
\operatorname{SAT}_{n}(x, y) \equiv \text { formula } x \text { satisfied by assignment } y "
$$

$$
\text { Witnessing } P \neq N P
$$

$\mathrm{SAT}_{n} \notin \operatorname{Circuit}\left[n^{10 k}\right] \quad \stackrel{?}{\Rightarrow} \quad \exists \mathrm{p}$-time f s.t. $\forall C \in \operatorname{Circuit}\left[n^{k}\right]$

$$
\operatorname{SAT}_{n}\left(f_{1}(C), f_{2}(C)\right) \wedge \neg \operatorname{SAT}_{n}\left(f_{1}(C), C\left(f_{1}(C)\right)\right)
$$

$$
\exists \text { p-time } f \text { s.t. } w_{n}^{k}(f) \in \text { TAUT? }
$$

$$
w_{n}^{k}(f):=\left[\operatorname{SAT}_{n}(x, y) \rightarrow \operatorname{SAT}_{n}(x, C(x))\right] \vee\left[\operatorname{SAT}_{n}\left(f_{1}(C), f_{2}(C)\right) \wedge \neg \mathrm{SAT}_{n}\left(f_{1}(C), C\left(f_{1}(C)\right)\right)\right]
$$

variables: x, y, C
encodes n^{k}-size circuits
$\mathrm{SAT}_{n} \in \operatorname{Circuit}\left[n^{k / 10}\right] \quad \Rightarrow \quad \mathrm{EF}+w^{k}(f) \vdash " \mathrm{SAT}_{n} \in \operatorname{Circuit}\left[n^{k}\right] "$

Self-provability of $P=N P$

$$
\operatorname{SAT}_{n}(x, y) \equiv \text { "formula } x \text { satisfied by assignment } y \text { " }
$$

$$
\text { Witnessing } P \neq N P
$$

$\mathrm{SAT}_{n} \notin \operatorname{Circuit}\left[n^{10 k}\right] \stackrel{?}{\Rightarrow} \quad \exists \mathrm{p}$-time f s.t. $\forall C \in \operatorname{Circuit}\left[n^{k}\right]$

$$
\operatorname{SAT}_{n}\left(f_{1}(C), f_{2}(C)\right) \wedge \neg \operatorname{SAT}_{n}\left(f_{1}(C), C\left(f_{1}(C)\right)\right)
$$

$$
\exists \text { p-time } f \text { s.t. } w_{n}^{k}(f) \in \text { TAUT? }
$$

$$
w_{n}^{k}(f):=\left[\operatorname{SAT}_{n}(x, y) \rightarrow \operatorname{SAT}_{n}(x, C(x))\right] \vee\left[\operatorname{SAT}_{n}\left(f_{1}(C), f_{2}(C)\right) \wedge \neg \mathrm{SAT}_{n}\left(f_{1}(C), C\left(f_{1}(C)\right)\right)\right]
$$

variables: x, y, C
encodes n^{k}-size circuits

$$
\begin{gathered}
w_{n}^{k}(f) \in \text { TAUT } \\
\longmapsto
\end{gathered}
$$

$\mathrm{SAT}_{n} \in \operatorname{Circuit}\left[n^{k / 10}\right] \quad \Rightarrow \quad \mathrm{EF}+w^{k}(f) \vdash " \mathrm{SAT}_{n} \in \operatorname{Circuit}\left[n^{k}\right] "$

$$
\Rightarrow \quad \mathrm{EF}+w^{k}(f) \text { is p-bounded }
$$

Self-provability of $P=N P$

$$
\mathrm{SAT}_{n}(x, y) \equiv \text { "formula } x \text { satisfied by assignment } y \text { " }
$$

Witnessing $P \neq N P$

$\mathrm{SAT}_{n} \notin \operatorname{Circuit}\left[n^{10 k}\right] \stackrel{?}{\Rightarrow} \quad \exists \mathrm{p}$-time f s.t. $\forall C \in \operatorname{Circuit}\left[n^{k}\right]$

$$
\operatorname{SAT}_{n}\left(f_{1}(C), f_{2}(C)\right) \wedge \neg \operatorname{SAT}_{n}\left(f_{1}(C), C\left(f_{1}(C)\right)\right)
$$

\exists p-time f s.t. $w_{n}^{k}(f) \in$ TAUT?
$w_{n}^{k}(f):=\left[\operatorname{SAT}_{n}(x, y) \rightarrow \operatorname{SAT}_{n}(x, C(x))\right] \vee\left[\operatorname{SAT}_{n}\left(f_{1}(C), f_{2}(C)\right) \wedge \neg \mathrm{SAT}_{n}\left(f_{1}(C), C\left(f_{1}(C)\right)\right)\right]$
variables: x, y, C
encodes n^{k}-size circuits

$$
\begin{gathered}
w_{n}^{k}(f) \in \text { TAUT } \\
\longmapsto
\end{gathered}
$$

$\mathrm{SAT}_{n} \in \operatorname{Circuit}\left[n^{k / 10}\right] \quad \Rightarrow \quad \mathrm{EF}+w^{k}(f) \vdash " \mathrm{SAT}_{n} \in \operatorname{Circuit}\left[n^{k}\right] "$

$$
\Rightarrow \quad \mathrm{EF}+w^{k}(f) \text { is p-bounded }
$$

$$
\left(\phi \in \mathrm{TAUT} \Rightarrow \mathrm{EF} \vdash \neg \mathrm{SAT}(\neg \phi, C(\neg \phi)) \Rightarrow \mathrm{EF}+w^{k}(f) \vdash \neg \mathrm{SAT}(\neg \phi, y) \Rightarrow \mathrm{EF}+w^{k}(f) \vdash \phi\right)
$$

Circuit complexity \Leftarrow proof complexity \& witnessing of $\mathbf{P} \neq \mathbf{N P}$

Circuit complexity \Leftarrow proof complexity \& witnessing of $\mathbf{P} \neq \mathbf{N P}$

Theorem 1

Let $k \geq 1$ be a constant.

1. Suppose that there is a p-time function f such that for each big enough $n, w_{n}^{k}(f)$ is a tautology.

In Items 1 and 2, $\epsilon>0$ is a universal constant (independent of k).

Circuit complexity \Leftarrow proof complexity \& witnessing of $\mathbf{P} \neq \mathbf{N P}$

Theorem 1

Let $k \geq 1$ be a constant.

1. Suppose that there is a p-time function f such that for each big enough $n, w_{n}^{k}(f)$ is a tautology. If $\mathrm{EF}+w^{k}(f)$ is not p-bounded, then $\mathrm{SAT}_{n} \notin$ Circuit $\left[n^{\epsilon k}\right]$ for infinitely many n.

In Items 1 and 2, $\epsilon>0$ is a universal constant (independent of k).

Circuit complexity \Leftarrow proof complexity \& witnessing of $\mathbf{P} \neq \mathbf{N P}$

Theorem 1

Let $k \geq 1$ be a constant.

1. Suppose that there is a p-time function f such that for each big enough $n, w_{n}^{k}(f)$ is a tautology. If $\mathrm{EF}+w^{k}(f)$ is not p-bounded, then $\mathrm{SAT}_{n} \notin$ Circuit $\left[n^{\epsilon k}\right]$ for infinitely many n.
2. Suppose that there is a p-time function f such that for some $n_{0}, \mathrm{~S}_{2}^{1} \vdash W_{n_{0}}^{k}(f)$. If EF is not p-bounded, then SAT $_{n} \notin$ Circuit $\left[n^{\epsilon k}\right]$ for infinitely many n.

In Items 1 and 2, $\epsilon>0$ is a universal constant (independent of k).

Circuit complexity \Leftarrow proof complexity \& witnessing of $\mathbf{P} \neq \mathbf{N P}$

Theorem 1

Let $k \geq 1$ be a constant.

1. Suppose that there is a p-time function f such that for each big enough $n, w_{n}^{k}(f)$ is a tautology. If $\mathrm{EF}+w^{k}(f)$ is not p-bounded, then $\mathrm{SAT}_{n} \notin$ Circuit $\left[n^{\epsilon k}\right]$ for infinitely many n.
2. Suppose that there is a p-time function f such that for some $n_{0}, \mathrm{~S}_{2}^{1} \vdash W_{n_{0}}^{k}(f)$. If EF is not p-bounded, then $\mathrm{SAT}_{n} \notin$ Circuit $\left[n^{\epsilon k}\right]$ for infinitely many n.

In Items 1 and 2, $\epsilon>0$ is a universal constant (independent of k).

- Generalizes to stronger systems

Circuit complexity \Leftarrow proof complexity \& witnessing of $\mathbf{P} \neq \mathbf{N P}$

Theorem 1

Let $k \geq 1$ be a constant.

1. Suppose that there is a p-time function f such that for each big enough $n, w_{n}^{k}(f)$ is a tautology. If $\mathrm{EF}+w^{k}(f)$ is not p-bounded, then $\mathrm{SAT}_{n} \notin$ Circuit $\left[n^{\epsilon k}\right]$ for infinitely many n.
2. Suppose that there is a p-time function f such that for some $n_{0}, \mathrm{~S}_{2}^{1} \vdash W_{n_{0}}^{k}(f)$. If EF is not p-bounded, then $\mathrm{SAT}_{n} \notin$ Circuit $\left[n^{\epsilon k}\right]$ for infinitely many n.

In Items 1 and 2, $\epsilon>0$ is a universal constant (independent of k).

Open problem: $\quad w_{n}^{k}(f) \in$ TAUT ?

Circuit complexity \Leftarrow proof complexity \& witnessing of $\mathbf{P} \neq \mathbf{N P}$

Theorem 1

Let $k \geq 1$ be a constant.

1. Suppose that there is a p-time function f such that for each big enough $n, w_{n}^{k}(f)$ is a tautology. If $\mathrm{EF}+w^{k}(f)$ is not p-bounded, then $\mathrm{SAT}_{n} \notin$ Circuit $\left[n^{\epsilon k}\right]$ for infinitely many n.
2. Suppose that there is a p-time function f such that for some $n_{0}, \mathrm{~S}_{2}^{1} \vdash W_{n_{0}}^{k}(f)$. If EF is not p-bounded, then $\mathrm{SAT}_{n} \notin$ Circuit $\left[n^{\epsilon k}\right]$ for infinitely many n.

In Items 1 and 2, $\epsilon>0$ is a universal constant (independent of k).

Open problem: $w_{n}^{k}(f) \in$ TAUT ?

For each p-time f some circuit looks like it solves SAT?

Circuit complexity \Leftarrow proof complexity \& witnessing of $\mathbf{P} \neq \mathbf{N P}$

Theorem 1

Let $k \geq 1$ be a constant.

1. Suppose that there is a p-time function f such that for each big enough $n, w_{n}^{k}(f)$ is a tautology. If $\mathrm{EF}+w^{k}(f)$ is not p-bounded, then $\mathrm{SAT}_{n} \notin$ Circuit $\left[n^{\epsilon k}\right]$ for infinitely many n.
2. Suppose that there is a p-time function f such that for some $n_{0}, \mathrm{~S}_{2}^{1} \vdash W_{n_{0}}^{k}(f)$. If EF is not p-bounded, then $\mathrm{SAT}_{n} \notin$ Circuit $\left[n^{\epsilon k}\right]$ for infinitely many n.

In Items 1 and 2, $\epsilon>0$ is a universal constant (independent of k).

Open problem: $w_{n}^{k}(f) \in$ TAUT ?

$$
\forall k \exists f, w_{n}^{k}(f) \in \text { TAUT } \Rightarrow \mathrm{NEXP} \nsubseteq \mathrm{P} / \text { poly }
$$

Nonuniform witnessing

$$
\alpha_{n}^{s}:=\left(\operatorname{SAT}_{n}(x, y) \rightarrow \operatorname{SAT}_{n}(x, B(x))\right) \vee\left(\bigvee_{z \in A} C(z) \neq \operatorname{SAT}_{n}(z)\right)
$$

Nonuniform witnessing

fixed p -size circuit

$$
\alpha_{n}^{s}:=\left(\operatorname{SAT}_{n}(x, y) \rightarrow \operatorname{SAT}_{n}(x, B(x))\right) \vee\left(\bigvee_{z \in A}^{\bigvee} C(z) \neq \operatorname{SAT}_{n}(z)\right)
$$

Nonuniform witnessing

fixed p-size circuit

$$
\alpha_{n}^{s}:=\left(\operatorname{SAT}_{n}(x, y) \rightarrow \operatorname{SAT}_{n}(x, B(x))\right) \vee\left(\bigvee_{z \in A} C(z) \neq \operatorname{SAT}_{n}(z)\right)
$$

$\exists \operatorname{poly}(s)$-size $A \quad \mathrm{SAT}_{n} \notin \operatorname{Circuit}\left[s^{3}\right] \quad \Rightarrow \quad \forall s$-size $C, \bigvee_{x \in A} C(x) \neq \mathrm{SAT}_{n}(x) \quad$ anti-checkers

Nonuniform witnessing

fixed p-size circuit

$$
\alpha_{n}^{s}:=\left(\operatorname{SAT}_{n}(x, y) \rightarrow \operatorname{SAT}_{n}(x, B(x))\right) \vee\left(\bigvee_{z \in A}^{\bigvee} C(z) \neq \operatorname{SAT}_{n}(z)\right)
$$

$\exists s^{3}$-size B^{\prime}
$\exists \operatorname{poly}(s)$-size A

$$
\mathrm{SAT}_{n} \in \operatorname{Circuit}\left[s^{3}\right] \Leftrightarrow \forall x \in\{0,1\}^{n}, B^{\prime}(x)=\operatorname{SAT}_{n}(x)
$$

$$
\mathrm{SAT}_{n} \notin \operatorname{Circuit}\left[s^{3}\right] \quad \Rightarrow \quad \forall s \text {-size } C, \bigvee_{x \in A} C(x) \neq \mathrm{SAT}_{n}(x)
$$

Nonuniform witnessing

fixed p-size circuit

$$
\alpha_{n}^{s}:=\left(\operatorname{SAT}_{n}(x, y) \rightarrow \operatorname{SAT}_{n}(x, B(x))\right) \vee\left(\bigvee_{z \in A}^{\bigvee} C(z) \neq \operatorname{SAT}_{n}(z)\right)
$$

$\exists s^{3}$-size B^{\prime}
$\exists \operatorname{poly}(s)$-size A

$$
\mathrm{SAT}_{n} \in \operatorname{Circuit}\left[s^{3}\right] \Leftrightarrow \forall x \in\{0,1\}^{n}, B^{\prime}(x)=\operatorname{SAT}_{n}(x)
$$

$$
\mathrm{SAT}_{n} \notin \operatorname{Circuit}\left[s^{3}\right] \quad \Rightarrow \quad \forall s \text {-size } C, \bigvee_{x \in A} C(x) \neq \mathrm{SAT}_{n}(x)
$$

Theorem 2 (Circuit complexity from nonuniform proof complexity).
Let $k \geq 3$ be a constant. If there are tautologies without p-size EF-derivations from substitutional instances of tautologies $\alpha_{n}^{n^{k}}$, then $\mathrm{SAT}_{n} \notin \operatorname{Circuit}\left[n^{k}\right]$ for infinitely many n.

Nonuniform witnessing

fixed p-size circuit

$$
\alpha_{n}^{s}:=\left(\operatorname{SAT}_{n}(x, y) \rightarrow \operatorname{SAT}_{n}(x, B(x))\right) \vee\left(\bigvee_{z \in A}^{\bigvee} C(z) \neq \operatorname{SAT}_{n}(z)\right)
$$

Open problem:
 Feasible MinMax?

Theorem 2 (Circuit complexity from nonuniform proof complexity).
Let $k \geq 3$ be a constant. If there are tautologies without p-size EF-derivations from substitutional instances of tautologies $\alpha_{n}^{n^{k}}$, then $\mathrm{SAT}_{n} \notin \operatorname{Circuit}\left[n^{k}\right]$ for infinitely many n.

Collapsing Impagliazzo’s worlds

$\mathrm{OWF} \Leftarrow \mathrm{P} \neq \mathrm{NP}$

Proof complexity collapse from "OWF $\Leftarrow \mathrm{P} \neq \mathrm{NP}$ " \& hardness of E

Theorem

$\mathrm{S}_{2}^{1} \vdash \mathbf{E}$ hard on average for subexponential-size circuits

$$
\begin{gathered}
\& \\
\mathrm{~S}_{2}^{1} \vdash \mathrm{OWF} \Leftarrow \mathrm{P} \neq \mathrm{NP}
\end{gathered}
$$

$$
\text { EF not p-bounded } \Rightarrow P \neq N P
$$

Proof complexity collapse from "OWF $\Leftarrow \mathbf{P} \neq \mathbf{N P}$ " \& hardness of E

Theorem

$\mathrm{S}_{2}^{1} \vdash \mathbf{E}$ hard on average for subexponential-size circuits

$$
\begin{gathered}
\& \\
\mathrm{~S}_{2}^{1} \vdash \mathrm{OWF} \Leftarrow \mathrm{P} \neq \mathrm{NP}
\end{gathered}
$$

EF not p-bounded $\Rightarrow P \neq N P$

- No need for the provability of "E is hard" if EF replaced by EF+"E is hard"

Proof complexity collapse from "OWF $\Leftarrow \mathbf{P} \neq \mathbf{N P}$ " \& hardness of E

Theorem

$\mathrm{S}_{2}^{1} \vdash \mathbf{E}$ hard on average for subexponential-size circuits

$$
\begin{gathered}
\& \\
\mathrm{~S}_{2}^{1} \vdash \mathrm{OWF} \Leftarrow \mathrm{P} \neq \mathrm{NP}
\end{gathered}
$$

EF not p-bounded $\Rightarrow P \neq N P$

- No need for the provability of "E is hard" if EF replaced by EF+"E is hard"
- Generalizes to stronger systems, e.g. ZFC

Proof complexity collapse from "OWF $\Leftarrow \mathbf{P} \neq \mathbf{N P}$ " \& hardness of E

Theorem

$\mathrm{S}_{2}^{1} \vdash \mathbf{E}$ hard on average for subexponential-size circuits

$$
\begin{gathered}
\& \\
\mathrm{~S}_{2}^{1} \vdash \mathrm{OWF} \Leftarrow \mathrm{P} \neq \mathrm{NP}
\end{gathered}
$$

EF not p-bounded $\Rightarrow P \neq N P$

- No need for the provability of "E is hard" if EF replaced by EF+"E is hard"
- Generalizes to stronger systems, e.g. ZFC
- Requires p-time reductions witnessing that $\mathrm{OWF} \Leftarrow \mathrm{P} \neq \mathrm{NP}$

Proof

random
h is one-way $\Rightarrow " h(x)=h(a) "$ is a hard SAT-instance E hard on average for subexponential-size circuits

$$
\begin{gathered}
\stackrel{\rightharpoonup}{\exists} \text { p-time } f \text { s.t. } \forall C \in \operatorname{Circuit}\left[n^{k}\right] \\
\operatorname{SAT}_{n}\left(f_{1}(C), f_{2}(C)\right) \wedge \neg \operatorname{SAT}_{n}\left(f_{1}(C), C\left(f_{1}(C)\right)\right)
\end{gathered}
$$

Proof

random
h is one-way $\Rightarrow " h(x)=h(a) "$ is a hard SAT-instance E hard on average for subexponential-size circuits

$$
\begin{gathered}
\stackrel{\rightharpoonup}{\square} \\
\exists \text { p-time } f \text { s.t. } \forall C \in \operatorname{Circuit}\left[n^{k}\right] \\
\operatorname{SAT}_{n}\left(f_{1}(C), f_{2}(C)\right) \wedge \neg \operatorname{SAT}_{n}\left(f_{1}(C), C\left(f_{1}(C)\right)\right)
\end{gathered}
$$

Proof

Proof

Proof

Learning or Crypto

Theorem

$\mathrm{S}_{2}^{1} \vdash \mathbf{E}$ hard on average for subexponential-size circuits

$$
\begin{aligned}
\stackrel{\&}{\mathrm{~S}_{2}^{1} \vdash \mathrm{OWF}} \stackrel{\mathrm{P} \neq \mathrm{NP}}{\Longleftrightarrow}
\end{aligned}
$$

EF not p-bounded $\Rightarrow P \neq N P$

- Can replace "OWF $\Leftarrow \mathrm{P} \neq \mathrm{NP}$ " by "Learning or Crypto" if EF lower bounds replaced by EF lower bounds for tautologies expressing circuit lower bounds

Learning or Crypto

Theorem

$\mathrm{S}_{2}^{1} \vdash \mathbf{E}$ hard on average for subexponential-size circuits

$$
\begin{gathered}
\& \\
\mathrm{~S}_{2}^{1} \vdash \text { OWF or Learning P/poly }
\end{gathered}
$$

EF \forall circuit lower bound $\Rightarrow P \neq N P$

- Can replace "OWF $\Leftarrow \mathrm{P} \neq \mathrm{NP}$ " by "Learning or Crypto" if EF lower bounds replaced by EF lower bounds for tautologies expressing circuit lower bounds

Automatability or OWF

Theorem

$\mathrm{S}_{2}^{1} \vdash \mathbf{E}$ hard on average for subexponential-size circuits

$$
\begin{gathered}
\stackrel{1}{S_{2}^{1}} \vdash \text { OWF or EF automatable }
\end{gathered}
$$

$$
\text { EF } \forall \text { circuit lower bound } \Rightarrow P \neq N P
$$

- Can replace "OWF $\Leftarrow \mathrm{P} \neq \mathrm{NP}$ " by "Automatability or OWF" if EF lower bounds replaced by EF lower bounds for tautologies expressing circuit lower bounds

Concluding remarks

Concluding remarks

fundamental connection between logic
crypto \& learning

Concluding remarks

fundamental connection between
logic
crypto \& learning

Thank You

