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Natural proofs

Definition (Razborov & Rudich)
A property P of Boolean functions is natural if it has the following
properties:

Usefulness: If f : {0, 1}n → {0, 1} has poly(n)-sized circuits, then
f ∈ P .

Constructivity: Given f by a truthtable of size N = 2n, we can
decide f ∈ P in time poly(N).

Largeness: A random function is not in P with probability at least
1/ poly(N) = 2−O(n).



The Razborov–Rudich barrier

▶ A function f : {0, 1}n × {0, 1}ℓ → {0, 1} is pseudorandom if when
sampling the key k ∈ {0, 1}ℓ uniformly at random, the resulting
distribution f( . , k) is computationally indistinguishable from
a truly random function.

▶ If oneway functions exists, so do pseudorandom functions.

Theorem (Razborov & Rudich)
A natural property P distinguishes a pseudorandom function having
poly(n)-size circuits from a truly random function in time 2O(n).

Conclusion
If you believe in private key cryptography, then no natural proof will
show superpolynomial circuit lower bounds.



Algebraic natural proofs

Definition (Forbes, Shpilka & Volk,
Grochow, Kumar, Saks & Saraf)
Let M ⊆ K[X] be a set of monomials.
Let C ⊆ ⟨M⟩ and let D ⊆ K[Tm : m ∈ M].
A polynomial D ∈ D is an algebraic D-natural proof against C, if

1. D is a nonzero polynomial and
2. for all f ∈ C, D(f) = 0, that is, D vanishes on the coefficient

vectors of all polynomials in C.

Remark:
▶ D defines a hypersurface.
▶ How hard is it to check D(f) = 0?
▶ Largeness comes for free.



Succinct hitting sets

Definition
A hitting set for P ⊆ K[X1, . . . , Xµ] is a set H ⊆ Kµ such that for all
p ∈ P , there is an h ∈ H such that p(h) ̸= 0.

Definition (Succinct hitting sets)

Let M ⊆ K[X] be a set of monomials.
Let C ⊆ ⟨M⟩ and let D ⊆ K[Tm : m ∈ M].
H is a C-succinct hitting set for D if
▶ H ⊆ C and
▶ H viewed as a set of vectors of coefficients of length |M| is a

hitting set for D.



The succinct hitting set barrier

Theorem
Let M ⊆ K[X] be a set of monomials.
Let C ⊆ ⟨M⟩ and let D ⊆ K[Tm : m ∈ M].
There are algebraic D-natural proofs against C iff
there are no C-succinct hitting set for D.

Corollary

Let C ⊆ K[X1, . . . , Xn] with degree ≤ d and computable by
poly(n, d)-size circuits.
Then there is an algebraic poly(Nn,d)-natural proof against C iff
there is no poly(n, d)-succinct hitting set for poly(Nn,d)-size circuits
in Nn,d variables.

Nn,d =
(
n+d
d

)



The succinct hitting set barrier (2)

Typical regime:
▶ Nn,d =

(
n+d
d

)
▶ d = poly(n)−→ poly(n) = poly log(Nn,d)

Conjecture/Wish/Fear

There are poly log(N)-succinct hitting sets for poly(N)-size circuits.

Remark:
▶ Forbes, Shpilka, and Volk show that most known proof

methods are natural.



Tensor rank

Definition

1. A tensor t ∈ Kk×m×n has rank-one if
t = u⊗ v⊗w := (uhviwj) for u ∈ Kk, v ∈ Km, and w ∈ Kn.

2. The rank R(t) of a tensor t ∈ Kk×m×n is the smallest number r
of rank-one tensors s1, . . . , sr such that t = s1 + · · ·+ sr.

3. Sr denotes the set of all tensors of rank ≤ r.

Definition
D ∈ K[X1, . . . , Xkmn] is a poly(k,m,n)-natural proof against Sr if
▶ D is nonzero,
▶ D vanishes on Sr, and
▶ D is computed by circuits of size poly(k,m,n).



Tensor rank (2)

Good news:

Theorem (Håstad)
Tensor rank is NP-hard.

Theorem (Shitov, Schaefer & Stefankovic)
Tensor rank is as hard as the existential theory over K.

Bad news:
▶ Sr is not the zero set of a set of polynomials.
▶ When D vanishes on Sr, it also vanishes on its closure Sr.
▶ Xr := Sr is the set of tensors of border rank ≤ r.
▶ Xr contains tensors of rank > r.
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Variety membership problem

Variety membership problem

▶ “Given” a variety V and
▶ given a point x in the ambient space

▶ decide whether x ∈ V!

What is the complexity of this problem?

−→ depends on the encoding of V



Varieties given by circuits

Theorem
If V is given by a list of arithmetic circuits, then the membership
problem is in coRP.

Proof:
▶ Let C1, . . . , Ct computing f1, . . . , ft such that

V = V(f1, . . . , ft).
▶ Test whether f1(x) = · · · = ft(x) = 0 by evaluating Cτ at x.

(Polynomial Identity Testing)

Remark
Can be realized as a many-one reduction to PIT.



PIT reduces to PIT for constant polynomials

Lemma
There is a many-one reduction from general PIT to PIT for constant
polynomials.

Proof:
▶ Let C be a circuit of size s computing f(X1, . . . , Xn).
▶ The degree and the bit size of the coefficients are

exponentially bounded in s.

▶ f is not identically zero iff f(22
s2

, . . . , 22
ns2

) ̸= 0.

Remark
The proof yields a many-one reduction from PIT to hypersurface
membership testing when the surface is given as a circuit.



Further ways to specify varieties

▶ Explicitly in the problem:
Let V = (Vn) and consider V-membership

▶ As an orbit closure:
Let G = (Gn) be a sequence of groups acting on an
n-dimensional ambient space.
Given (x, v) decide whether x ∈ Gnv!
(Orbit containment problem)

▶ By a dense subset:
Given circuits computing a polynomial map, decide whether x
lies in the closure of the image.



Restrictions

Definition
Let A : U → U ′, B : V → V ′, C : W → W ′ be homomorphism.
▶ (A⊗ B⊗ C)(u⊗ v⊗w) = A(u)⊗ B(v)⊗ C(w)

▶ (A⊗ B⊗ C)t =
∑r

i=1A(ui)⊗ B(vi)⊗ C(wi) for
t =

∑r
i=1 ui ⊗ vi ⊗wi.

▶ t ′ ≤ t if there are A,B,C such that t ′ = (A⊗ B⊗ C)t.
(“restriction”).

Lemma
▶ If t ′ ≤ t, then R(t ′) ≤ R(t)

▶ R(t) ≤ r iff t ≤ ⟨r⟩.
(⟨r⟩ “diagonal” of size r.)



Orbit problems

Let (A,B,C) ∈ End(U)×End(V)×End(W) act on U⊗V ⊗W by

(A,B,C)u⊗ v⊗w = A(u)⊗ B(v)⊗ C(w).

and linearity.

We can interpret t ∈ U ′ ⊗ V ′ ⊗W ′ as an element of U⊗ V ⊗W by
embedding U ′ into U, V ′ into V , and W ′ into W.

Lemma
R(t) ≤ r iff t ∈ (End(U)× End(U)× End(U))⟨r⟩.



Border rank and orbit problems

▶ Sr be the set of all tensors of rank r.
▶ Xr := Sr is the set of tensors of border rank ≤ r.

Lemma
R(t) ≤ r iff t ∈ (GLr ×GLr ×GLr)⟨r⟩.



Identity testing

Lemma (Valiant)
If a polynomial f ∈ k[X1, . . . , Xn] can be computed by a formula of
size s, then there is a matrix pencil of size m×m

A := A0 + X1A1 + · · ·+ XnAn

such that f = det(A). We have m = O(s).

Observation
f is identically zero iff A does not have full rank.

SLm × SLm acts on (A0, . . . , An) by

(S, T)(A0, . . . , An) := (SA0T, . . . , SAnT).



Noncommutative identity testing

Definition
Let G act on V . The null cone are all vectors v such that 0 ∈ Gv.

One can define a noncommutative version of the rank of a matrix
pencil.

Theorem
A does not have full noncommutative rank iff A is in the null cone of
the left-right-SL-action.

Theorem (Garg–Gurvits–Oliviera–Wigderson)

This null-cone problem can be solved deterministically in polynomial
time.



Projections as orbit problems

Definition

1. f ∈ K[X] is a projection of g ∈ K[X] if there is a substitution
r : X → X ∪ K such that f = r(g). “f ≤ g”

2. A p-family (fn) is a p-projection of another p-family (gn) if
there is a p-bounded q such that fn ≤ gq(n). “(fn) ≤p (gn) ”

▶ Endn acts on k[X1, . . . , Xn] by (gh)(x) = h(gtx) for g ∈ Endn,
h ∈ k[X1, . . . , Xn], x ∈ kn.

▶ If f ∈ Endn h and h is homogeneous of degree d, then f is
homogeneous of degree d

▶ If f ≤ h, then deg f can be smaller than degh.
▶ Padding: Replace f by Xdeg h−deg f

1 f.
▶ If f ≤ h, then X

deg h−deg f
1 f ∈ Endn h

▶ VP and VPws are closed under Endn.



Valiant’s conjecture

Conjecture (Valiant)

VP ̸= VNP

▶ the weaker conjecture VPws ̸= VNP is equivalent to per ̸≤p det.

Conjecture (Mulmuley & Sohoni)

VNP ̸⊆ VPws

▶ equivalent to Xn−m
11 perm /∈ GLn2 detn for any n = poly(m).

−→ geometric complexity theory (GCT)



Orbit closure containment problem

▶ We want to understand the complexity of deciding

x ∈ Gv?

▶ Here we will focus on tensors.
▶ Tensor rank is NP-hard. (Border rank is unknown.)
▶ Border minrank is NP-hard.
▶ We are just beginning to understand closures.
▶ In particular, we do not know any hardness results for border

rank.
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How to prove lower bounds?

The generic GCT approach to proving lower bounds:
▶ Given a sequence of points xn and
▶ a sequence of varieties Vn

▶ we want to prove that xn /∈ Vn

▶ by exhibiting a sequence fn of polynomials such that
▶ fn(xn) ̸= 0 and fn vanishes on Vn.

What is the complexity of fn?

Superpolynomial, if membership testing is hard!
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Properties of varieties

Definition
A p-family of varieties (Vn) is polynomially definable, if for each n,
there are polynomials f1, . . . , fm such that Vn is the common zero
set of these polynomials and L(fi) is polynomially bounded in n for
all 1 ≤ i ≤ m.

Definition
A p-family of varieties (Vn) with Vn ⊆ Fp(n) is uniformly generated if
for all n, there are polynomials g1, . . . , gp(n) over K such that

1. the image of (g1, . . . , gp(n)) is dense in Vn,
2. each gi has polynomial circuit complexity, and
3. there is a polynomial time bounded Turing machine M that

given n in unary, outputs for each gi an arithmetic circuit.



Barriers

Theorem
Let F be a field and K be an effective subfield. Let V = (Vn) be a
p-family of varieties such that V is polynomially definable over K and
uniformly generated and the V-membership problem is NP-hard.
Then coNP ⊆ ∃BPP.

1. Guess a circuit C of size polynomial in n.
2. Generate the circuits D1, . . . , Dp(n) computing polynomials

g1, . . . , gp(n) generating a dense subset.
3. Use polynomial identity testing to check whether

C(g1, . . . , gp(n)) is identically zero. If not, reject.
4. Otherwise, use polynomial identity testing to check whether

C(x1, . . . , xp(n)) is identically zero. If yes, reject. Otherwise
accept.



Ingredients

▶ polynomially definability:
assumption
lower bound

▶ uniformly generated:
hitting set generator
typically easy to achieve for tensors
e.g. for tensor rank r: sum of r generic rank-1-tensors

▶ hardness of membership problem:
needs individual proof
minimum circuit size problem



Minrank

▶ There is a variant of rank called minrank.
▶ Border minrank can be defined as an orbit closure.
▶ Deciding border minrank is NP-hard.

Corollary

Let S be an effective subfield of F. For infinitely many n, there is an m,
a tensor t ∈ Sm×n×n and a value r such that there is no algebraic
poly(n)-natural proof for the fact that the border minrank of t is
greater than r unless coNP ⊆ ∃BPP.



Is this the end?

▶ We can construct various equations for the minrank varieties
using GCT methods, even “in the regime” where the
membership problem is NP-hard.

▶ They have polynomial size descriptions in other models, for
instance, they are given by:
▶ succinctly represented exponential size determinants,
▶ succinctly represented exponential sums, or
▶ succinct representation-theoretic objects.

▶ Proving that these equations do not vanish on our points of
interest becomes the hard problem.
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