Testing membership in varieties, algebraic natural proofs, and geometric complexity theory

Markus Bläser

Saarland University

with Christian Ikenmeyer, Gorav Jindal, Vladimir Lysikov, Anurag Pandey, and Frank-Olaf Schreyer

(ロ) (同) (三) (三) (三) (○) (○)

# Algebraic natural proofs

## Natural proofs

Orbit closure containment problems

Variety membership and natural proofs



# Natural proofs

### Definition (Razborov & Rudich)

A property  $\mathcal{P}$  of Boolean functions is *natural* if it has the following properties:

Usefulness: If  $f:\{0,1\}^n \to \{0,1\}$  has  $\mathrm{poly}(n)\text{-sized circuits},$  then  $f\in\mathcal{P}.$ 

 $\begin{array}{ll} \mbox{Constructivity:} & \mbox{Given } f \mbox{ by a truthtable of size } N = 2^n, \mbox{we can} \\ & \mbox{decide } f \in \mathcal{P} \mbox{ in time } \mathrm{poly}(N). \end{array}$ 

Largeness: A random function is not in  ${\cal P}$  with probability at least  $1/\operatorname{poly}(N)=2^{-O(n)}.$ 

(ロ) (同) (三) (三) (三) (○) (○)

## The Razborov–Rudich barrier

- A function f: {0, 1}<sup>n</sup> × {0, 1}<sup>ℓ</sup> → {0, 1} is *pseudorandom* if when sampling the key k ∈ {0, 1}<sup>ℓ</sup> uniformly at random, the resulting distribution f(., k) is computationally indistinguishable from a truly random function.
- If oneway functions exists, so do pseudorandom functions.

### Theorem (Razborov & Rudich)

A natural property  $\mathcal{P}$  distinguishes a pseudorandom function having  $\operatorname{poly}(\mathfrak{n})$ -size circuits from a truly random function in time  $2^{O(\mathfrak{n})}$ .

#### Conclusion

If you believe in private key cryptography, then no natural proof will show superpolynomial circuit lower bounds.

# Algebraic natural proofs

Definition (Forbes, Shpilka & Volk, Grochow, Kumar, Saks & Saraf)

Let  $M \subseteq K[X]$  be a set of monomials. Let  $C \subseteq \langle M \rangle$  and let  $\mathcal{D} \subseteq K[T_m : m \in M]$ .

A polynomial  $D \in \mathcal{D}$  is an algebraic  $\mathcal{D}$ -natural proof against  $\mathcal{C}$ , if

- 1. D is a nonzero polynomial and
- 2. for all  $f \in C$ , D(f) = 0, that is, D vanishes on the coefficient vectors of all polynomials in C.

#### **Remark:**

- D defines a hypersurface.
- How hard is it to check D(f) = 0?
- Largeness comes for free.

# Succinct hitting sets

### Definition

A hitting set for  $\mathcal{P} \subseteq K[X_1, \dots, X_{\mu}]$  is a set  $\mathcal{H} \subseteq K^{\mu}$  such that for all  $p \in \mathcal{P}$ , there is an  $h \in \mathcal{H}$  such that  $p(h) \neq 0$ .

## Definition (Succinct hitting sets)

Let  $M \subseteq K[X]$  be a set of monomials. Let  $C \subseteq \langle M \rangle$  and let  $\mathcal{D} \subseteq K[T_m : m \in M]$ .

H is a C-succinct hitting set for  $\mathcal{D}$  if

- ►  $H \subseteq C$  and
- H viewed as a set of vectors of coefficients of length |M| is a hitting set for D.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

# The succinct hitting set barrier

### Theorem

 $\begin{array}{l} \mbox{Let } M \subseteq K[X] \mbox{ be a set of monomials.} \\ \mbox{Let } \mathcal{C} \subseteq \langle M \rangle \mbox{ and let } \mathcal{D} \subseteq K[T_m:m \in M]. \\ \mbox{There are algebraic } \mathcal{D}\mbox{-natural proofs against } \mathcal{C} \mbox{ iff} \\ \end{array}$ 

there are no C-succinct hitting set for D.

## Corollary

Let  $C \subseteq K[X_1, \ldots, X_n]$  with degree  $\leq d$  and computable by poly(n, d)-size circuits. Then there is an algebraic  $poly(N_{n,d})$ -natural proof against C iff there is no poly(n, d)-succinct hitting set for  $poly(N_{n,d})$ -size circuits in  $N_{n,d}$  variables.

 $N_{n,d} = \binom{n+d}{d}$ 

# The succinct hitting set barrier (2)

Typical regime:

### Conjecture/Wish/Fear

There are  $\operatorname{poly}\log(N)\text{-succinct}$  hitting sets for  $\operatorname{poly}(N)\text{-size}$  circuits.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

#### **Remark:**

 Forbes, Shpilka, and Volk show that most known proof methods are natural.

## **Tensor** rank

## Definition

1. A tensor  $t \in K^{k \times \mathfrak{m} \times \mathfrak{n}}$  has rank-one if

 $t = u \otimes \nu \otimes w := (u_h \nu_i w_j) \text{ for } u \in K^k, \nu \in K^m \text{, and } w \in K^n.$ 

- 2. The rank R(t) of a tensor  $t \in K^{k \times m \times n}$  is the smallest number r of rank-one tensors  $s_1, \ldots, s_r$  such that  $t = s_1 + \cdots + s_r$ .
- 3.  $S_r$  denotes the set of all tensors of rank  $\leq r$ .

## Definition

 $D \in \mathsf{K}[X_1, \dots, X_{k\mathfrak{m}\mathfrak{n}}]$  is a  $\mathrm{poly}(k, \mathfrak{m}, \mathfrak{n})\text{-natural proof against }S_r$  if

- D is nonzero,
- D vanishes on S<sub>r</sub>, and

D is computed by circuits of size poly(k, m, n).

# Tensor rank (2)

#### **Good news:**

Theorem (Håstad)

Tensor rank is NP-hard.

Theorem (Shitov, Schaefer & Stefankovic)

Tensor rank is as hard as the existential theory over K.

#### **Bad news:**

- S<sub>r</sub> is not the zero set of a set of polynomials.
- When D vanishes on  $S_r$ , it also vanishes on its closure  $\overline{S_r}$ .

(ロ) (同) (三) (三) (三) (○) (○)

- $X_r := \overline{S_r}$  is the set of tensors of *border rank*  $\leq r$ .
- $X_r$  contains tensors of rank > r.

# Algebraic natural proofs

Natural proofs

### Orbit closure containment problems

Variety membership and natural proofs



# Variety membership problem

## Variety membership problem

- "Given" a variety V and
- given a point x in the ambient space
- decide whether  $x \in V!$

What is the complexity of this problem?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 $\longrightarrow$  depends on the encoding of V

# Varieties given by circuits

#### Theorem

If V is given by a list of arithmetic circuits, then the membership problem is in coRP.

### **Proof:**

- Let  $C_1, \ldots, C_t$  computing  $f_1, \ldots, f_t$  such that  $V = V(f_1, \ldots, f_t)$ .
- Test whether f<sub>1</sub>(x) = ··· = f<sub>t</sub>(x) = 0 by evaluating C<sub>τ</sub> at x. (Polynomial Identity Testing)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

#### Remark

Can be realized as a many-one reduction to PIT.

# PIT reduces to PIT for constant polynomials

#### Lemma

There is a many-one reduction from general PIT to PIT for constant polynomials.

#### **Proof:**

- Let C be a circuit of size s computing  $f(X_1, \ldots, X_n)$ .
- The degree and the bit size of the coefficients are exponentially bounded in s.
- f is not identically zero iff  $f(2^{2^{s^2}}, \ldots, 2^{2^{ns^2}}) \neq 0$ .

#### Remark

The proof yields a many-one reduction from PIT to hypersurface membership testing when the surface is given as a circuit.

## Further ways to specify varieties

Explicitly in the problem:

Let  $V = \left( V_n \right)$  and consider V-membership

 As an orbit closure: Let G = (G<sub>n</sub>) be a sequence of groups acting on an n-dimensional ambient space. Given (x, v) decide whether x ∈ G<sub>n</sub>v! (Orbit containment problem)

By a dense subset:

Given circuits computing a polynomial map, decide whether  $\boldsymbol{\mathrm{x}}$  lies in the closure of the image.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

## Restrictions

## Definition

Let  $A : U \to U', B : V \to V', C : W \to W'$  be homomorphism.

- $\blacktriangleright (A \otimes B \otimes C)(u \otimes v \otimes w) = A(u) \otimes B(v) \otimes C(w)$
- $\begin{array}{l} \blacktriangleright \quad (A\otimes B\otimes C)t = \sum_{i=1}^r A(u_i)\otimes B(\nu_i)\otimes C(w_i) \text{ for} \\ t = \sum_{i=1}^r u_i\otimes \nu_i\otimes w_i. \end{array}$
- ► t' ≤ t if there are A, B, C such that t' = (A ⊗ B ⊗ C)t. ("restriction").

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

#### Lemma

• If  $t' \leq t$ , then  $R(t') \leq R(t)$ 

$$R(t) \le r iff t \le \langle r \rangle. \\ (\langle r \rangle "diagonal" of size r.)$$

## **Orbit problems**

Let  $(A,B,C)\in \mathrm{End}(U)\times \mathrm{End}(V)\times \mathrm{End}(W)$  act on  $U\otimes V\otimes W$  by

$$(A, B, C)u \otimes v \otimes w = A(u) \otimes B(v) \otimes C(w).$$

and linearity.

We can interpret  $t \in U' \otimes V' \otimes W'$  as an element of  $U \otimes V \otimes W$  by embedding U' into U, V' into V, and W' into W.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Lemma

 $R(t) \leq r \, \textit{iff} \, t \in (\mathrm{End}(U) \times \mathrm{End}(U) \times \mathrm{End}(U)) \langle r \rangle.$ 

# Border rank and orbit problems

### ► S<sub>r</sub> be the set of all tensors of rank r.

•  $X_r := \overline{S_r}$  is the set of tensors of *border rank*  $\leq r$ .

#### Lemma

## $\underline{R}(t) \leq r \textit{ iff } t \in \overline{(\operatorname{GL}_r \times \operatorname{GL}_r \times \operatorname{GL}_r) \langle r \rangle}.$

# **Identity testing**

### Lemma (Valiant)

If a polynomial  $f \in k[X_1, ..., X_n]$  can be computed by a formula of size s, then there is a matrix pencil of size  $m \times m$ 

$$A := A_0 + X_1 A_1 + \dots + X_n A_n$$

such that  $f = \det(A)$ . We have m = O(s).

#### Observation

f is identically zero iff A does not have full rank.

 $\operatorname{SL}_m\times\operatorname{SL}_m$  acts on  $(A_0,\ldots,A_n)$  by

$$(S,T)(A_0,\ldots,A_n) := (SA_0T,\ldots,SA_nT).$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

## Noncommutative identity testing

### Definition

Let G act on V. The *null cone* are all vectors v such that  $0 \in \overline{Gv}$ .

One can define a noncommutative version of the rank of a matrix pencil.

#### Theorem

A does not have full noncommutative rank iff A is in the null cone of the left-right-SL-action.

Theorem (Garg-Gurvits-Oliviera-Wigderson)

*This null-cone problem can be solved deterministically in polynomial time.* 

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

# Projections as orbit problems

## Definition

- 1.  $f \in K[X]$  is a projection of  $g \in K[X]$  if there is a substitution  $r: X \to X \cup K$  such that f = r(g). " $f \le g$ "
- 2. A p-family  $(f_n)$  is a *p*-projection of another p-family  $(g_n)$  if there is a p-bounded q such that  $f_n \leq g_{q(n)}$ . " $(f_n) \leq_p (g_n)$  "
- ▶ End<sub>n</sub> acts on  $k[X_1, ..., X_n]$  by  $(gh)(x) = h(g^t x)$  for  $g \in End_n$ ,  $h \in k[X_1, ..., X_n]$ ,  $x \in k^n$ .
- $\blacktriangleright \ \mbox{ If } f \in End_n \ h \ \mbox{and} \ h \ \mbox{is homogeneous of degree } d,$  then f is homogeneous of degree d
- If  $f \le h$ , then  $\deg f$  can be smaller than  $\deg h$ .
- Padding: Replace f by  $X_1^{\text{deg }h-\text{deg }f}$ f.
- ▶ If  $f \le h$ , then  $X_1^{\deg h \deg f} f \in End_n h$
- VP and VP<sub>ws</sub> are closed under  $\operatorname{End}_n$ .

# Valiant's conjecture

Conjecture (Valiant)

 $\mathsf{VP} \neq \mathsf{VNP}$ 

▶ the weaker conjecture  $VP_{ws} \neq VNP$  is equivalent to  $per \not\leq_p det$ .

Conjecture (Mulmuley & Sohoni)

 $\mathsf{VNP} \not\subseteq \overline{\mathsf{VP}_{\mathrm{ws}}}$ 

• equivalent to  $X_{11}^{n-m} \operatorname{per}_m \notin \overline{\operatorname{GL}_{n^2} \operatorname{det}_n}$  for any  $n = \operatorname{poly}(m)$ .

#### $\longrightarrow$ geometric complexity theory (GCT)

# Orbit closure containment problem

We want to understand the complexity of deciding

$$x \in \overline{Gv}?$$

- Here we will focus on tensors.
- Tensor rank is NP-hard. (Border rank is unknown.)
- Border minrank is NP-hard.
- We are just beginning to understand closures.
- In particular, we do not know any hardness results for border rank.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

# Algebraic natural proofs

Natural proofs

Orbit closure containment problems

Variety membership and natural proofs



## How to prove lower bounds?

The generic GCT approach to proving lower bounds:

- Given a sequence of points  $x_n$  and
- a sequence of varieties V<sub>n</sub>
- we want to prove that  $x_n \notin V_n$
- by exhibiting a sequence f<sub>n</sub> of polynomials such that

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

•  $f_n(x_n) \neq 0$  and  $f_n$  vanishes on  $V_n$ .

## How to prove lower bounds?

The generic GCT approach to proving lower bounds:

- Given a sequence of points  $x_n$  and
- a sequence of varieties V<sub>n</sub>
- we want to prove that  $x_n \notin V_n$
- by exhibiting a sequence f<sub>n</sub> of polynomials such that

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

•  $f_n(x_n) \neq 0$  and  $f_n$  vanishes on  $V_n$ .

What is the complexity of f<sub>n</sub>?

## How to prove lower bounds?

The generic GCT approach to proving lower bounds:

- Given a sequence of points x<sub>n</sub> and
- a sequence of varieties V<sub>n</sub>
- we want to prove that  $x_n \notin V_n$
- by exhibiting a sequence f<sub>n</sub> of polynomials such that

•  $f_n(x_n) \neq 0$  and  $f_n$  vanishes on  $V_n$ .

What is the complexity of f<sub>n</sub>?

Superpolynomial, if membership testing is hard!

## **Properties of varieties**

### Definition

A p-family of varieties  $(V_n)$  is *polynomially definable*, if for each n, there are polynomials  $f_1, \ldots, f_m$  such that  $V_n$  is the common zero set of these polynomials and  $L(f_i)$  is polynomially bounded in n for all  $1 \leq i \leq m$ .

### Definition

A p-family of varieties  $(V_n)$  with  $V_n \subseteq F^{p(n)}$  is uniformly generated if for all n, there are polynomials  $g_1, \ldots, g_{p(n)}$  over K such that

- 1. the image of  $(g_1, \ldots, g_{p(n)})$  is dense in  $V_n$ ,
- 2. each  $g_i$  has polynomial circuit complexity, and
- 3. there is a polynomial time bounded Turing machine M that given n in unary, outputs for each g<sub>i</sub> an arithmetic circuit.

## Barriers

#### Theorem

Let F be a field and K be an effective subfield. Let  $V = (V_n)$  be a *p*-family of varieties such that V is polynomially definable over K and uniformly generated and the V-membership problem is NP-hard. Then coNP  $\subseteq \exists$ BPP.

- 1. Guess a circuit C of size polynomial in n.
- 2. Generate the circuits  $D_1, \ldots, D_{p(n)}$  computing polynomials  $g_1, \ldots, g_{p(n)}$  generating a dense subset.
- 3. Use polynomial identity testing to check whether  $C(g_1, \ldots, g_{p(n)})$  is identically zero. If not, reject.
- 4. Otherwise, use polynomial identity testing to check whether  $C(x_1, \ldots, x_{p(n)})$  is identically zero. If yes, reject. Otherwise accept.

# Ingredients

## polynomially definability:

assumption lower bound

## uniformly generated:

hitting set generator typically easy to achieve for tensors e.g. for tensor rank r: sum of r generic rank-1-tensors

(ロ) (同) (三) (三) (三) (○) (○)

### hardness of membership problem: needs individual proof minimum circuit size problem

## Minrank

- There is a variant of rank called minrank.
- Border minrank can be defined as an orbit closure.
- Deciding border minrank is NP-hard.

## Corollary

Let S be an effective subfield of F. For infinitely many n, there is an m, a tensor  $t \in S^{m \times n \times n}$  and a value r such that there is no algebraic poly(n)-natural proof for the fact that the border minrank of t is greater than r unless coNP  $\subseteq \exists BPP$ .

## Is this the end?

- We can construct various equations for the minrank varieties using GCT methods, even "in the regime" where the membership problem is NP-hard.
- They have polynomial size descriptions in other models, for instance, they are given by:
  - succinctly represented exponential size determinants,
  - succinctly represented exponential sums, or
  - succinct representation-theoretic objects.
- Proving that these equations do not vanish on our points of interest becomes the hard problem.

(ロ) (同) (三) (三) (三) (○) (○)