On bounded depth proofs for Tseitin formulas on the grid; revisited

Kilian Risse EPFL

April 2023
Simons Institute

Joint work with Johan Håstad

Some Proof Systems

Some Proof Systems

Frege Proof System

- Frege Refutation π of a CNF F_{n} on n variables is a sequence of lines $\ell_{1}, \ldots, \ell_{N}$ where

Frege Proof System

- Frege Refutation π of a CNF F_{n} on n variables is a sequence of lines $\ell_{1}, \ldots, \ell_{N}$ where
- each line ℓ_{i} is a Boolean formula over the basis $\{\vee, \neg\}$,

Frege Proof System

- Frege Refutation π of a CNF F_{n} on n variables is a sequence of lines $\ell_{1}, \ldots, \ell_{N}$ where
- each line ℓ_{i} is a Boolean formula over the basis $\{\vee, \neg\}(\wedge:=\neg \vee \neg)$,

Frege Proof System

- Frege Refutation π of a CNF F_{n} on n variables is a sequence of lines $\ell_{1}, \ldots, \ell_{N}$ where
- each line ℓ_{i} is a Boolean formula over the basis $\{\vee, \neg\}(\wedge:=\neg \vee \neg)$,
- each line ℓ_{i} is either

Frege Proof System

- Frege Refutation π of a CNF F_{n} on n variables is a sequence of lines $\ell_{1}, \ldots, \ell_{N}$ where
- each line ℓ_{i} is a Boolean formula over the basis $\{\vee, \neg\}(\wedge:=\neg \vee \neg)$,
- each line ℓ_{i} is either
- a clause $C \in F_{n}$, or

Frege Proof System

- Frege Refutation π of a CNF F_{n} on n variables is a sequence of lines $\ell_{1}, \ldots, \ell_{N}$ where
- each line ℓ_{i} is a Boolean formula over the basis $\{\vee, \neg\}(\wedge:=\neg \vee \neg)$,
- each line ℓ_{i} is either
- a clause $C \in F_{n}$, or
- derived from previous lines by a derivation rule

Frege Proof System

- Frege Refutation π of a CNF F_{n} on n variables is a sequence of lines $\ell_{1}, \ldots, \ell_{N}$ where
- each line ℓ_{i} is a Boolean formula over the basis $\{\vee, \neg\}(\wedge:=\neg \vee \neg)$,
- each line ℓ_{i} is either
- a clause $C \in F_{n}$, or
- derived from previous lines by a derivation rule

$$
\frac{p \vee \neg p}{p \vee} \quad \frac{p}{p \vee q} \quad \frac{p \vee p}{p} \quad \frac{p \vee(q \vee r)}{(p \vee q) \vee r} \quad \frac{q \vee p \quad \neg p \vee r}{q \vee r}
$$

Frege Proof System

- Frege Refutation π of a CNF F_{n} on n variables is a sequence of lines $\ell_{1}, \ldots, \ell_{N}$ where
- each line ℓ_{i} is a Boolean formula over the basis $\{\vee, \neg\}(\wedge:=\neg \vee \neg)$,
- each line ℓ_{i} is either
- a clause $C \in F_{n}$, or
- derived from previous lines by a derivation rule

$$
\frac{p \vee \neg p}{p \vee} \quad \frac{p}{p \vee q} \quad \frac{p \vee p}{p} \quad \frac{p \vee(q \vee r)}{(p \vee q) \vee r} \quad \frac{q \vee p \quad \neg p \vee r}{q \vee r}
$$

Frege Proof System

- Frege Refutation π of a CNF F_{n} on n variables is a sequence of lines $\ell_{1}, \ldots, \ell_{N}$ where
- each line ℓ_{i} is a Boolean formula over the basis $\{\vee, \neg\}(\wedge:=\neg \vee \neg)$,
- each line ℓ_{i} is either
- a clause $C \in F_{n}$, or
- derived from previous lines by a derivation rule
- $\ell_{N}=\perp$ is constant false

$$
\frac{p \vee \neg p}{p \vee} \quad \frac{p}{p \vee q} \quad \frac{p \vee p}{p} \quad \frac{p \vee(q \vee r)}{(p \vee q) \vee r} \quad \frac{q \vee p \quad \neg p \vee r}{q \vee r}
$$

Frege Proof System

- Frege Refutation π of a CNF F_{n} on n variables is a sequence of lines $\ell_{1}, \ldots, \ell_{N}$ where
- each line ℓ_{i} is a Boolean formula over the basis $\{\vee, \neg\}(\wedge:=\neg \vee \neg)$,
- each line ℓ_{i} is either
- a clause $C \in F_{n}$, or
- derived from previous lines by a derivation rule
- $\ell_{N}=\perp$ is constant false

- Length of π is N, the line-size is $\max _{i} \operatorname{Size}\left(\ell_{i}\right)$, the size is $\sum_{i} \operatorname{Size}\left(\ell_{i}\right)$ and the depth is $\max _{i} \operatorname{Depth}\left(\ell_{i}\right)$

$$
\frac{p \vee \neg p}{p \vee \neg} \quad \frac{p \vee p}{p} \quad \frac{p \vee(q \vee r)}{(p \vee q) \vee r} \quad \frac{q \vee p \quad \neg p \vee r}{q \vee r}
$$

Frege Proof System

- Frege Refutation π of a CNF F_{n} on n variables is a sequence of lines $\ell_{1}, \ldots, \ell_{N}$ where
- each line ℓ_{i} is a Boolean formula over the basis $\{\vee, \neg\}(\wedge:=\neg \vee \neg)$,
- each line ℓ_{i} is either
- a clause $C \in F_{n}$, or
- derived from previous lines by a derivation rule
- $\ell_{N}=\perp$ is constant false

- Length of π is N, the line-size is $\max _{i} \operatorname{Size}\left(\ell_{i}\right)$, the size is $\sum_{i} \operatorname{Size}\left(\ell_{i}\right)$ and the depth is $\max _{i} \operatorname{Depth}\left(\ell_{i}\right)$

Ultimate Goal

Prove a super-polynomial length lower bound in n on Frege refutations for a CNF F_{n}.

Frege Proof System

- Frege Refutation π of a CNF F_{n} on n variables is a sequence of lines $\ell_{1}, \ldots, \ell_{N}$ where
- each line ℓ_{i} is a Boolean formula over the basis $\{\vee, \neg\}(\wedge:=\neg \vee \neg)$,
- each line ℓ_{i} is either
- a clause $C \in F_{n}$, or
- derived from previous lines by a derivation rule
- $\ell_{N}=\perp$ is constant false

- Length of π is N, the line-size is $\max _{i} \operatorname{Size}\left(\ell_{i}\right)$, the size is $\sum_{i} \operatorname{Size}\left(\ell_{i}\right)$ and the depth is $\max _{i} \operatorname{Depth}\left(\ell_{i}\right)$
- d-bounded depth Frege consists of all Frege refutations of depth $\leq d$

Ultimate Goal

Prove a super-polynomial length lower bound in n on Frege refutations for a CNF F_{n}.

Frege Proof System

- Frege Refutation π of a CNF F_{n} on n variables is a sequence of lines $\ell_{1}, \ldots, \ell_{N}$ where
- each line ℓ_{i} is a Boolean formula over the basis $\{\vee, \neg\}(\wedge:=\neg \vee \neg)$,
- each line ℓ_{i} is either
- a clause $C \in F_{n}$, or
- derived from previous lines by a derivation rule

- $\ell_{N}=\perp$ is constant false
- Length of π is N, the line-size is $\max _{i} \operatorname{Size}\left(\ell_{i}\right)$, the size is $\sum_{i} \operatorname{Size}\left(\ell_{i}\right)$ and the depth is $\max _{i} \operatorname{Depth}\left(\ell_{i}\right)$
- d-bounded depth Frege consists of all Frege refutations of depth $\leq d$

Ultimate Goal

Prove a super-polynomial length lower bound in n on Frege refutations for a CNF F_{n}.

Frege Proof System

- Frege Refutation π of a CNF F_{n} on n variables is a sequence of lines $\ell_{1}, \ldots, \ell_{N}$ where
- each line ℓ_{i} is a Boolean formula over the basis $\{\vee, \neg\}(\wedge:=\neg \vee \neg)$,
- each line ℓ_{i} is either
- a clause $C \in F_{n}$, or
- derived from previous lines by a derivation rule

- $\ell_{N}=\perp$ is constant false
- Length of π is N, the line-size is $\max _{i} \operatorname{Size}\left(\ell_{i}\right)$, the size is $\sum_{i} \operatorname{Size}\left(\ell_{i}\right)$ and the depth is $\max _{i} \operatorname{Depth}\left(\ell_{i}\right)$
- d-bounded depth Frege consists of all Frege refutations of depth $\leq d$

Ultimate Goal

Prove a super-polynomial length lower bound in n on Frege refutations for a CNF F_{n}.

Tseitin Formula

- The CNF Tseitin (G) is defined over a connected graph G

Tseitin Formula

- The CNF Tseitin (G) is defined over a connected graph G
- Boolean variable x_{e} associated with each edge $e \in E(G)$

Tseitin Formula

- The CNF Tseitin (G) is defined over a connected graph G
- Boolean variable x_{e} associated with each edge $e \in E(G)$
- Each vertex claims that an odd number of incident edges are set to 1

Tseitin Formula

- The CNF Tseitin (G) is defined over a connected graph G
- Boolean variable x_{e} associated with each edge $e \in E(G)$
- Each vertex claims that an odd number of incident edges are set to 1

Tseitin Formula

- The CNF Tseitin (G) is defined over a connected graph G
- Boolean variable x_{e} associated with each edge $e \in E(G)$
- Each vertex claims that an odd number of incident edges are set to 1

Tseitin Formula

- The CNF Tseitin (G) is defined over a connected graph G
- Boolean variable x_{e} associated with each edge $e \in E(G)$
- Each vertex claims that an odd number of incident edges are set to 1

- Tseitin (G) is satisfiable iff $|V(G)|$ even

Tseitin Formula

- The CNF Tseitin (G) is defined over a connected graph G
- Boolean variable x_{e} associated with each edge $e \in E(G)$
- Each vertex claims that an odd number of incident edges are set to 1

- Tseitin (G) is satisfiable iff $|V(G)|$ even
- We consider the two dimensional $n \times n$ torus T_{n}^{2}

Tseitin Formula

- The CNF Tseitin (G) is defined over a connected graph G
- Boolean variable x_{e} associated with each edge $e \in E(G)$
- Each vertex claims that an odd number of incident edges are set to 1

- Tseitin (G) is satisfiable iff $|V(G)|$ even
- We consider the two dimensional $n \times n$ torus T_{n}^{2}

Tseitin Formula

- The CNF Tseitin (G) is defined over a connected graph G
- Boolean variable x_{e} associated with each edge $e \in E(G)$
- Each vertex claims that an odd number of incident edges are set to 1

- Tseitin (G) is satisfiable iff $|V(G)|$ even
- We consider the two dimensional $n \times n$ torus T_{n}^{2}

Tseitin Formula

- The CNF Tseitin (G) is defined over a connected graph G
- Boolean variable x_{e} associated with each edge $e \in E(G)$
- Each vertex claims that an odd number of incident edges are set to 1

- Tseitin (G) is satisfiable iff $|V(G)|$ even
- We consider the two dimensional $n \times n$ torus T_{n}^{2}

Pigeonhole Principle

- The CNF $\operatorname{PHP}(n)$ claims that $n+1$ pigeons fit into n holes

Pigeonhole Principle

- The $\operatorname{CNF} \operatorname{PHP}(n)$ claims that $n+1$ pigeons fit into n holes
- Boolean variable $x_{p h}$ associated with each pigeon p and hole h

Pigeonhole Principle

- The $\operatorname{CNF} \operatorname{PHP}(n)$ claims that $n+1$ pigeons fit into n holes
- Boolean variable $x_{p h}$ associated with each pigeon p and hole h
- Pigeon p claims that it flies into at least one hole

$$
\bigvee_{h \in[n]} x_{p h}
$$

Pigeonhole Principle

- The CNF $\operatorname{PHP}(n)$ claims that $n+1$ pigeons fit into n holes
- Boolean variable $x_{p h}$ associated with each pigeon p and hole h
- Pigeon p claims that it flies into at least one hole

$$
\bigvee_{h \in[n]} x_{p h}
$$

- Each hole h occupied by at most 1 pigeon

$$
\bar{x}_{p h} \vee \bar{x}_{p^{\prime} h} \quad \forall p \neq p^{\prime}
$$

History

Super-poly d-bounded depth Frege lower bound for...
Pigeonhole Principle
Tseitin Formula

- Aitaj [Ait94] $d=\omega(1)$

History

Super-poly d-bounded depth Frege lower bound for...
Pigeonhole Principle
Tseitin Formula

- Aitaj [Ait94] $d=\omega(1)$
- Bellantoni et al [BPU92] $d=\Omega\left(\log ^{*} n\right)$

History

Super-poly d-bounded depth Frege lower bound for...

Pigeonhole Principle

- Aitaj [Ait94] $d=\omega(1)$
- Bellantoni et al [BPU92] $d=\Omega\left(\log ^{*} n\right)$
- Kraijeck et al, Pitassi et al [KPW95, PBI93] $d=\Omega(\log \log n)$

Tseitin Formula

History

Super-poly d-bounded depth Frege lower bound for. . .
Pigeonhole Principle

- Aitaj [Ait94] $d=\omega(1)$
- Bellantoni et al [BPU92] $d=\Omega\left(\log ^{*} n\right)$
- Kraijeck et al, Pitassi et al [KPW95, PBI93] $d=\Omega(\log \log n)$
- Håstad [Hås23] $d=\Omega(\log n / \log \log n)$

History

Super-poly d-bounded depth Frege lower bound for. . .

Pigeonhole Principle

- Aitaj [Ait94] $d=\omega(1)$
- Bellantoni et al [BPU92] $d=\Omega\left(\log ^{*} n\right)$
- Kraijeck et al, Pitassi et al [KPW95, PBI93] $d=\Omega(\log \log n)$
- Håstad [Hås23] $d=\Omega(\log n / \log \log n)$

Tseitin Formula

- Ben-Sasson [Ben02], Urquhart and Fu [UF96] $d=\Omega(\log \log n)$

History

Super-poly d-bounded depth Frege lower bound for. . .

Pigeonhole Principle

- Aitaj [Ait94] $d=\omega(1)$
- Bellantoni et al [BPU92] $d=\Omega\left(\log ^{*} n\right)$
- Kraijeck et al, Pitassi et al [KPW95, PBI93] $d=\Omega(\log \log n)$
- Håstad [Hås23] $d=\Omega(\log n / \log \log n)$

Tseitin Formula

- Ben-Sasson [Ben02], Urquhart and Fu [UF96] $d=\Omega(\log \log n)$
- Pitassi et al [PRST16] $d=\Omega(\sqrt{\log n})$

History

Super-poly d-bounded depth Frege lower bound for. . .

Pigeonhole Principle

- Aitaj [Ait94] $d=\omega(1)$
- Bellantoni et al [BPU92] $d=\Omega\left(\log ^{*} n\right)$
- Kraijeck et al, Pitassi et al [KPW95, PBI93] $d=\Omega(\log \log n)$
- Håstad [Hås23] $d=\Omega(\log n / \log \log n)$

Tseitin Formula

- Ben-Sasson [Ben02], Urquhart and Fu [UF96] $d=\Omega(\log \log n)$
- Pitassi et al [PRST16] $d=\Omega(\sqrt{\log n})$
- Håstad [Hås17] $d=\Omega(\log n / \log \log n)$

Frege and Tseitin

Long line of work [UF96, B02, PRST16, Hås17] ultimately culminated in the following

Theorem ([Hås17])

Any Frege refutation of $\operatorname{Tseitin}\left(T_{n}^{2}\right)$ of depth d requires proofs of size $\exp \left(\Omega\left(n^{1 / 58 d}\right)\right)$.

Frege and Tseitin

Long line of work [UF96, B02, PRST16, Hås17] ultimately culminated in the following

Theorem ([Hås17])

Any Frege refutation of $\operatorname{Tseitin}\left(T_{n}^{2}\right)$ of depth d requires proofs of size $\exp \left(\Omega\left(n^{1 / 58 d}\right)\right)$.
Significant improvement on dependence on d gives superpoly Frege lower bound

Frege and Tseitin

Long line of work [UF96, B02, PRST16, Hås17] ultimately culminated in the following

Theorem ([Hås17])

Any Frege refutation of $\operatorname{Tseitin}\left(T_{n}^{2}\right)$ of depth d requires proofs of size $\exp \left(\Omega\left(n^{1 / 58 d}\right)\right)$.
Significant improvement on dependence on d gives superpoly Frege lower bound
... all done!

Frege and Tseitin, Continued

Pitassi, Ramakrishnan and Tan: what if we also restrict the size of each line?

Frege and Tseitin, Continued

... Pitassi, Ramakrishnan and Tan: what if we also restrict the size of each line?

Theorem ([PRT21])

Frege and Tseitin, Continued

... Pitassi, Ramakrishnan and Tan: what if we also restrict the size of each line?

Theorem ([PRT21])

For $M=\operatorname{poly}(n)$ this lower bound is $\exp \left(n^{1-o(1)}\right)$ up to $d=o(\sqrt{\log n})$, whereas Håstad's lower bound is of the form $\exp \left(n^{o(1)}\right)$.

Frege and Tseitin, Continued

... Pitassi, Ramakrishnan and Tan: what if we also restrict the size of each line?

Theorem ([PRT21])

For $M=\operatorname{poly}(n)$ this lower bound is $\exp \left(n^{1-o(1)}\right)$ up to $d=o(\sqrt{\log n})$, whereas Håstad's lower bound is of the form $\exp \left(n^{o(1)}\right)$.

Conjecture ([PRT21])

Any Frege refutation of $\operatorname{Tseitin}\left(T_{n}^{2}\right)$ of depth d and line-size M is of length $\exp \left(n / \log ^{d-1} M\right)$.

Our Results

Our Results

Main Theorem

Frege refutations of $\operatorname{Tseitin}\left(T_{n}^{2}\right)$ of depth d and line-size M are of length $\exp \left(n / \log ^{O(d)} M\right)$.

Our Results

Main Theorem

Frege refutations of $\operatorname{Tseitin}\left(T_{n}^{2}\right)$ of depth d and line-size M are of length $\exp \left(n / \log { }^{O(d)} M\right)$. For $M \leq$ polnt $n^{\text {poly } \log (n)}$ and $d=o\left(\sqrt{\log n} \frac{\log n}{\log \log n}\right)$ this gives $\exp \left(n^{1-o(1)}\right)$ lower bounds.

Our Results

Main Theorem

Frege refutations of $\operatorname{Tseitin}\left(T_{n}^{2}\right)$ of depth d and line-size M are of length $\exp \left(n / \log { }^{O(d)} M\right)$. For $M \leq$ poly) $n^{\text {polylog }(n)}$ and $d=o\left(\sqrt{\log n} \frac{\log n}{\log \log n}\right)$ this gives $\exp \left(n^{1-o(1)}\right)$ lower bounds.

Theorem

Any Frege refutation of $\operatorname{Tseitin}\left(T_{n}^{2}\right)$ of depth d requires proofs of size $\exp \left(\tilde{\Omega}\left(n^{1 /(d-1)}\right)\right)$. improves over the previous $\exp \left(\Omega\left(n^{1 / 58 d}\right)\right)$ lower bound

Proof Ideas: Size Lower Bound

Proof Outline: Bounded Depth Circuit Lower Bounds

Given a small circuit C of depth d computing parity on n bits

Proof Outline: Bounded Depth Circuit Lower Bounds

Given a small circuit C of depth d computing parity on n bits

- Hit C with a random restriction ρ, keeping each variable independently with prob p

Proof Outline: Bounded Depth Circuit Lower Bounds

Given a small circuit C of depth d computing parity on n bits

- Hit C with a random restriction ρ, keeping each variable independently with prob p
- Argue that the circuit depth shrinks by 1

Proof Outline: Bounded Depth Circuit Lower Bounds

Given a small circuit C of depth d computing parity on n bits

- Hit C with a random restriction ρ, keeping each variable independently with prob p
- Argue that the circuit depth shrinks by 1

Prove a Switching Lemma!

Switching Lemma

Switching Lemma

except with probability $\operatorname{Fail}(p, t, s, n)$.

Switching Lemma

except with probability $\operatorname{Fail}(p, t, s, n)$.
Classic result [Hås86]:
$\operatorname{Fail}(p, t, s, n) \leq(5 p t)^{s}$

Applying the Switching Lemma

Applying the Switching Lemma

Applying the Switching Lemma

How to apply this Machinery to a Frege Proof?

Proof Outline: Bounded Depth Frege Lower Bounds

- Hit the Frege refutation $\pi=\left(\ell_{1}, \ldots, \ell_{N}\right)$ with a restriction ρ

Proof Outline: Bounded Depth Frege Lower Bounds

- Hit the Frege refutation $\pi=\left(\ell_{1}, \ldots, \ell_{N}\right)$ with a restriction ρ
- Depth of every line ℓ_{i} shrinks by 1

Proof Outline: Bounded Depth Frege Lower Bounds

- Hit the Frege refutation $\pi=\left(\ell_{1}, \ldots, \ell_{N}\right)$ with a restriction ρ
- Depth of every line ℓ_{i} shrinks by 1
- Reduce the $\operatorname{Tseitin}\left(T_{n}^{2}\right)$ formula to $\operatorname{Tseitin}\left(T_{m}^{2}\right)$, where $m<n$

Proof Outline: Bounded Depth Frege Lower Bounds

- Hit the Frege refutation $\pi=\left(\ell_{1}, \ldots, \ell_{N}\right)$ with a restriction ρ
- Depth of every line ℓ_{i} shrinks by 1
- Reduce the $\operatorname{Tseitin}\left(T_{n}^{2}\right)$ formula to $\operatorname{Tseitin}\left(T_{m}^{2}\right)$, where $m<n$
- Requires carefully crafted restriction ρ

Proof Outline: Bounded Depth Frege Lower Bounds

- Hit the Frege refutation $\pi=\left(\ell_{1}, \ldots, \ell_{N}\right)$ with a restriction ρ
- Depth of every line ℓ_{i} shrinks by 1
- Reduce the $\operatorname{Tseitin}\left(T_{n}^{2}\right)$ formula to $\operatorname{Tseitin}\left(T_{m}^{2}\right)$, where $m<n$
- Requires carefully crafted restriction ρ

Prove a Switching Lemma!

Switching Lemma

except with probability $\operatorname{Fail}(t, s, n, m)$.

Switching Lemma

except with probability $\operatorname{Fail}(t, s, n, m)$.

Original proof [Hås17]:

$\operatorname{Fail}(t, s, n, m) \approx\left(s^{27} t \sqrt{m / n}\right)^{\Omega(s)}$

Switching Lemma

except with probability $\operatorname{Fail}(t, s, n, m)$.

Original proof [Hås17]:

$$
\operatorname{Fail}(t, s, n, m) \approx\left(s^{27} t \sqrt{m / n}\right)^{\Omega(s)} \stackrel{!}{<} \frac{1}{\operatorname{Size}(\pi)}
$$

Switching Lemma

except with probability $\operatorname{Fail}(t, s, n, m)$.

Original proof [Hås17]:

$$
\operatorname{Fail}(t, s, n, m) \approx\left(s^{27} t \sqrt{m / n}\right)^{\Omega(s)} \stackrel{!}{\ll} \frac{1}{\operatorname{Size}(\pi)}
$$

Switching Lemma

except with probability $\operatorname{Fail}(t, s, n, m)$.
Our Proof:

$$
\operatorname{Fail}(t, s, n, m) \approx\left((\log n)^{27} t \sqrt{m / n}\right)^{\Omega(s)} \stackrel{!}{<} \frac{1}{\operatorname{Size}(\pi)}
$$

Switching Lemma

except with probability $\operatorname{Fail}(t, s, n, m)$.
Our Proof:
$\operatorname{Fail}(t, s, n, m) \approx\left((\log n)^{27} t \sqrt{m / n}\right)^{\Omega(s)} \stackrel{!}{<} \frac{1}{\operatorname{Size}(\pi)}$
...skipping a few steps ...
$\operatorname{Size}(\pi) \gtrsim \exp \left(n^{1 / d}\right)$

Proof Ideas: Line-Size vs Length

From Frege Tradeoffs to Multi-Switching

Main Theorem

Frege refutations of $\operatorname{Tseitin}\left(T_{n}^{2}\right)$ of depth d and line-size M are of length $\exp \left(n / \log ^{O(d)} M\right)$.

From Frege Tradeoffs to Multi-Switching

Main Theorem
 Frege refutations of $\operatorname{Tseitin}\left(T_{n}^{2}\right)$ of depth d and line-size M are of length $\exp \left(n / \log { }^{O(d)} M\right)$.

- [PRT21] crucially proved that multi-switching can be used to obtain Frege tradeoffs

From Frege Tradeoffs to Multi-Switching

Main Theorem

Frege refutations of $\operatorname{Tseitin}\left(T_{n}^{2}\right)$ of depth d and line-size M are of length $\exp \left(n / \log { }^{O(d)} M\right)$.

- [PRT21] crucially proved that multi-switching can be used to obtain Frege tradeoffs
- Multi-Switching [IMP12, Hås14] originally devised to get correlation bounds for circuits

From Frege Tradeoffs to Multi-Switching

Main Theorem

Frege refutations of $\operatorname{Tseitin}\left(T_{n}^{2}\right)$ of depth d and line-size M are of length $\exp \left(n / \log { }^{O(d)} M\right)$.

- [PRT21] crucially proved that multi-switching can be used to obtain Frege tradeoffs
- Multi-Switching [IMP12, Hås14] originally devised to get correlation bounds for circuits
Let's prove a Multi-Switching Lemma!

Multi-Switching Lemma

Switching lemma in fact switches into a depth $\leq s$ decision tree:

Multi-Switching Lemma

Switching lemma in fact switches into a depth $\leq s$ decision tree:

Multi-Switching Lemma

Multi-switching Lemma switches into an ℓ-partial common decision tree of depth $\leq s$:

Multi-Switching Lemma

Multi-switching Lemma switches into an ℓ-partial common decision tree of depth $\leq s$:

Multi-Switching Lemma

Multi-switching Lemma switches into an ℓ-partial common decision tree of depth $\leq s$:

Multi-Switching Lemma

Multi-switching Lemma switches into an ℓ-partial common decision tree of depth $\leq s$:

Multi-Switching Lemma

Multi-switching Lemma switches into an ℓ-partial common decision tree of depth $\leq s$:

Multi-Switching Lemma

Multi-switching Lemma switches into an ℓ-partial common decision tree of depth $\leq s$:

Multi-Switching Lemma

Multi-switching Lemma switches into an ℓ-partial common decision tree of depth $\leq s$:

except with probability $\operatorname{Fail}(t, s, \ell, n, m, M)$

Multi-Switching Lemma

Multi-switching Lemma switches into an ℓ-partial common decision tree of depth $\leq s$:

except with probability $\operatorname{Fail}(t, s, \ell, n, m, M) \approx M^{s / \ell}\left(\log ^{27}(n) t \sqrt{m / n}\right)^{\Omega(s)}$

Multi-Switching Lemma

Multi-switching Lemma switches into an ℓ-partial common decision tree of depth $\leq s$:

except with probability $\operatorname{Fail}(t, s, \ell, n, m, M) \approx M^{s / \ell}\left(\log ^{27}(n) t \sqrt{m / n}\right)^{\Omega(s)}$

The Restriction ρ

The Restriction ρ

Same restrictions as [Hås17, PRT21]

The Restriction ρ

Same restrictions as [Hås17, PRT21]

The Restriction ρ

Same restrictions as [Hås17, PRT21]
ρ is an affine restriction:

$$
\rho(x)= \begin{cases}1 & \\ 0 & \\ y & \text { a new variable } \\ \bar{y} & \text { negation of a variable. }\end{cases}
$$

The Restriction ρ

Same restrictions as [Hås17, PRT21]
ρ is an affine restriction:

$$
\rho(x)=\left\{\begin{array}{l}
1 \\
0 \\
y \\
\text { a new variable } \\
\bar{y}
\end{array}\right. \text { negation of a variable. }
$$

The Restriction ρ

Same restrictions as [Hås17, PRT21]
ρ is an affine restriction:

$$
\rho(x)=\left\{\begin{array}{l}
1 \\
0 \\
y \\
\text { a new variable } \\
\bar{y}
\end{array}\right. \text { negation of a variable. }
$$

The Restriction ρ

Same restrictions as [Hås17, PRT21]
ρ is an affine restriction:

$$
\rho(x)=\left\{\begin{array}{l}
1 \\
0 \\
y \\
\text { a new variable } \\
\bar{y}
\end{array}\right. \text { negation of a variable. }
$$

The Restriction ρ

Same restrictions as [Hås17, PRT21]
ρ is an affine restriction:

$$
\rho(x)=\left\{\begin{array}{l}
1 \\
0 \\
y \\
\text { a new variable } \\
\bar{y}
\end{array}\right. \text { negation of a variable. }
$$

The Restriction ρ

Same restrictions as [Hås17, PRT21]
ρ is an affine restriction:

$$
\rho(x)=\left\{\begin{array}{l}
1 \\
0 \\
y \\
\text { a new variable } \\
\bar{y}
\end{array}\right. \text { negation of a variable. }
$$

The Restriction ρ

Same restrictions as [Hås17, PRT21]
ρ is an affine restriction:

$$
\rho(x)=\left\{\begin{array}{l}
1 \\
0 \\
y \\
\text { a new variable } \\
\bar{y}
\end{array}\right. \text { negation of a variable. }
$$

The Restriction ρ

Same restrictions as [Hås17, PRT21]
ρ is an affine restriction:

$$
\rho(x)=\left\{\begin{array}{l}
1 \\
0 \\
y \\
\text { a new variable } \\
\bar{y}
\end{array}\right. \text { negation of a variable. }
$$

The Restriction ρ

Same restrictions as [Hås17, PRT21]
ρ is an affine restriction:

$$
\rho(x)=\left\{\begin{array}{l}
1 \\
0 \\
y \\
\text { a new variable } \\
\bar{y}
\end{array}\right. \text { negation of a variable. }
$$

The Restriction ρ

Same restrictions as [Hås17, PRT21]
ρ is an affine restriction:

$$
\rho(x)=\left\{\begin{array}{l}
1 \\
0 \\
y \\
\text { a new variable } \\
\bar{y}
\end{array}\right. \text { negation of a variable. }
$$

More Details about ρ

价

More Details about ρ

(A)

More Details about ρ

More Details about ρ

More Details about ρ

u.a.r. pick a solution to the formula where blue nodes have even constraints

More Details about ρ

More Details about ρ
left with an $m \times m$ torus

More Details about ρ

Need an intermediate restriction:

More Details about ρ

Need an intermediate restriction: pick vertices in adjacent squares \& connect

More Details about ρ

Need an intermediate restriction: pick vertices in adjacent squares \& connect

More Details about ρ

Need an intermediate restriction: pick vertices in adjacent squares \& connect

More Details about ρ

More Details about ρ

More Details about ρ

Key Difference:

\#nodes with even constraint is $\log n$ instead of s per square

More Details about ρ

Limitation of this technique:
need to assign a $1-o(1)$ fraction of vars

Conclusion

Conclusion and Open Problems

- Frege proofs of line-size M and depth d of $\operatorname{Tseitin}\left(T_{n}^{2}\right)$ are of length $\exp \left(n / \log ^{O(d)} M\right)$
- Frege proofs of depth d of $\operatorname{Tseitin}\left(T_{n}^{2}\right)$ are of size $\exp \left(\tilde{\Omega}\left(n^{1 /(d-1)}\right)\right)$
- Open Problems:
- Prove an $\exp \left(\tilde{\Omega}\left(n^{1 / d}\right)\right)$ lower bound on depth d Frege refutations for a CNF on n vars
- Tseitin over an expander?
- Circuits versus formulas? Can we obtain $\exp \left(\tilde{\Omega}\left(d \cdot n^{1 / d}\right)\right)$ lower bounds for $\operatorname{Tseitin}\left(T_{n}^{2}\right)$?
- Prove any bounded depth Frege lower bound for a (supposedly) hard formula
- truthtable formula
- clique
- random CNFs

Conclusion and Open Problems

- Frege proofs of line-size M and depth d of $\operatorname{Tseitin}\left(T_{n}^{2}\right)$ are of length $\exp \left(n / \log { }^{O(d)} M\right)$
- Frege proofs of depth d of $\operatorname{Tseitin}\left(T_{n}^{2}\right)$ are of size $\exp \left(\tilde{\Omega}\left(n^{1 /(d-1)}\right)\right)$
- Open Problems:
- Prove an $\exp \left(\tilde{\Omega}\left(n^{1 / d}\right)\right)$ lower bound on depth d Frege refutations for a CNF on n vars
- Tseitin over an expander?
- Circuits versus formulas? Can we obtain $\exp \left(\tilde{\Omega}\left(d \cdot n^{1 / d}\right)\right)$ lower bounds for $\operatorname{Tseitin}\left(T_{n}^{2}\right)$?
- Prove any bounded depth Frege lower bound for a (supposedly) hard formula
- truthtable formula
- clique
- random CNFs

Thanks!

