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Frege Proof System

• Frege Refutation π of a CNF Fn on n variables is a sequence of lines `1, . . . , `N where
• each line `i is a Boolean formula over the basis {∨,¬},
• each line `i is either

- a clause C ∈ Fn, or
- derived from previous lines by a derivation rule

• `N = ⊥ is constant false

• Length of π is N , the line-size is maxi Size(`i), the size is
∑
i Size(`i) and the depth is

maxi Depth(`i)

• d-bounded depth Frege consists of all Frege refutations of depth ≤ d

Ultimate Goal
Prove a super-polynomial length lower bound in n on Frege refutations for a CNF Fn.
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Tseitin Formula

• The CNF Tseitin(G) is defined over a connected graph G

• Boolean variable xe associated with each edge e ∈ E(G)

• Each vertex claims that an odd number of incident edges are set to 1

• Tseitin(G) is satisfiable iff |V (G)| even

• We consider the two dimensional n× n torus T 2
n
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Pigeonhole Principle

• The CNF PHP(n) claims that n+ 1 pigeons fit into n holes

• Boolean variable xph associated with each pigeon p and hole h

• Pigeon p claims that it flies into at least one hole∨
h∈[n]

xph

• Each hole h occupied by at most 1 pigeon

x̄ph ∨ x̄p′h ∀p 6= p′
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History

Super-poly d-bounded depth Frege lower bound for. . .

Pigeonhole Principle Tseitin Formula

• Aitaj [Ait94] d = ω(1)

• Bellantoni et al [BPU92] d = Ω(log∗ n)

• Kraijeck et al, Pitassi et al [KPW95,
PBI93] d = Ω(log logn)

• Håstad [Hås23] d = Ω(logn/ log logn)

• Ben-Sasson [Ben02], Urquhart and Fu
[UF96] d = Ω(log logn)

• Pitassi et al [PRST16] d = Ω(
√

logn)

• Håstad [Hås17] d = Ω(logn/ log logn)
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Frege and Tseitin

Long line of work [UF96, B02, PRST16, Hås17] ultimately culminated in the following

Theorem ([Hås17])
Any Frege refutation of Tseitin(T 2

n) of depth d requires proofs of size exp
(
Ω(n1/58d)

)
.

Significant improvement on dependence on d gives superpoly Frege lower bound

. . . all done!
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Frege and Tseitin, Continued

. . . Pitassi, Ramakrishnan and Tan: what if we also restrict the size of each line?

Theorem ([PRT21])
Any Frege refutation of Tseitin(T 2

n) of depth d and line-size M is of length exp(n/2O(d
√

logM)).

For M = poly(n) this lower bound is exp(n1−o(1)) up to d = o(
√

logn), whereas Håstad’s
lower bound is of the form exp(no(1)).

Conjecture ([PRT21])
Any Frege refutation of Tseitin(T 2

n) of depth d and line-size M is of length exp(n/ logd−1M).
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Proof Ideas: Size Lower Bound
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Proof Outline: Bounded Depth Circuit Lower Bounds

Given a small circuit C of depth d computing parity on n bits

• Hit C with a random restriction ρ, keeping each variable independently with prob p

• Argue that the circuit depth shrinks by 1

Prove a Switching Lemma!
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Switching Lemma

∨

∧

∨ ∨ ∨ ∨
≤ s

∨

∧ ∧ ∧∧∧
≤ t ρ

DNF F CNF F |ρ

except with probability Fail(p, t, s, n).

Classic result [Hås86]:

Fail(p, t, s, n) ≤ (5pt)s
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Applying the Switching Lemma
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∧
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∧ ∧ ∧

∨ ∨∨
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x x̄ y ȳ z z̄

depth d
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How to apply this Machinery to a Frege Proof?
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Proof Outline: Bounded Depth Frege Lower Bounds

• Hit the Frege refutation π = (`1, . . . , `N ) with a restriction ρ

• Depth of every line `i shrinks by 1

• Reduce the Tseitin(T 2
n) formula to Tseitin(T 2

m), where m < n

• Requires carefully crafted restriction ρ

Prove a Switching Lemma!
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Switching Lemma

∨

∧

∨ ∨ ∨ ∨
≤ s

∨

∧ ∧ ∧∧∧
≤ t ρ

DNF F CNF F |ρ

except with probability Fail(t, s, n,m).

Original proof [Hås17]:

Fail(t, s, n,m) ≈
(
s27t

√
m/n

)Ω(s) !
� 1

Size(π)

. . . skipping a few steps . . .

Size(π) & exp(n1/d)

Kilian Risse (EPFL) 16/24



Switching Lemma

∨

∧

∨ ∨ ∨ ∨
≤ s

∨

∧ ∧ ∧∧∧
≤ t ρ

DNF F CNF F |ρ

except with probability Fail(t, s, n,m).

Original proof [Hås17]:
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Proof Ideas: Line-Size vs Length
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From Frege Tradeoffs to Multi-Switching

Main Theorem
Frege refutations of Tseitin(T 2

n) of depth d and line-size M are of length exp
(
n/ logO(d)M

)
.

• [PRT21] crucially proved that multi-switching can be used to obtain Frege tradeoffs

• Multi-Switching [IMP12, Hås14] originally devised to get correlation bounds for circuits

Let’s prove a Multi-Switching Lemma!
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Multi-Switching Lemma

Switching lemma in fact switches into a depth ≤ s decision tree:

∨

∧

∨ ∨ ∨ ∨
≤ s

∨

∧ ∧ ∧∧∧
≤ t ρ

DNF F CNF F |ρ

except with probability Fail(t, s, `, n,m,M) ≈M s/`
(
log27(n)t

√
m/n

)Ω(s)
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The Restriction ρ
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The Restriction ρ

Same restrictions as [Hås17, PRT21]

ρ is an affine restriction:

ρ(x) =


1
0
y a new variable
ȳ negation of a variable.

x1,2 x2,3 x3,4 x4,5

x6,7 x7,8 x8,9 x9,10

x11,12 x12,13 x13,14 x14,15

x16,17 x17,18 x18,19 x19,20

x21,22 x22,23 x23,24 x24,25

x1,6

x6,11

x11,16

x16,21

x3,8

x8,13

x13,18

x18,23

x2,7

x7,12

x12,17

x17,22

x4,9

x9,14

x14,19

x19,24

x5,10

x10,15

x15,20

x20,25
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The Restriction ρ

Same restrictions as [Hås17, PRT21]

ρ is an affine restriction:

ρ(x) =


1
0
y a new variable
ȳ negation of a variable.
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y14
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y78 ȳ78 y89 ȳ89

Kilian Risse (EPFL) 21/24



The Restriction ρ

Same restrictions as [Hås17, PRT21]
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ȳ36
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y78 ȳ78 y89 ȳ89
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ȳ negation of a variable.

y12 y23

y14 y25 y36

y45 y56

y58y47 y69

y78 y89

Kilian Risse (EPFL) 21/24



More Details about ρ

n

n
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More Details about ρ

u.a.r. pick a solution to the formula
where blue nodes have even constraints
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More Details about ρ

left with an m×m torus
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More Details about ρ

Need an intermediate restriction:
pick vertices in adjacent squares &

connect
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More Details about ρ

Key Difference:

#nodes with even constraint is logn
instead of s per square
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More Details about ρ

Limitation of this technique:

need to assign a 1− o(1) fraction of vars
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Conclusion
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Conclusion and Open Problems

• Frege proofs of line-size M and depth d of Tseitin(T 2
n) are of length exp

(
n/ logO(d)M

)
• Frege proofs of depth d of Tseitin(T 2

n) are of size exp
(
Ω̃(n1/(d−1))

)
• Open Problems:

• Prove an exp
(
Ω̃(n1/d)

)
lower bound on depth d Frege refutations for a CNF on n vars

- Tseitin over an expander?

• Circuits versus formulas? Can we obtain exp
(
Ω̃(d · n1/d)

)
lower bounds for Tseitin(T 2

n)?

• Prove any bounded depth Frege lower bound for a (supposedly) hard formula
- truthtable formula
- clique
- random CNFs

Thanks!
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