On bounded depth proofs for Tseitin formulas on the grid; revisited

Kilian Risse

EPFL

April 2023 Simons Institute

Joint work with Johan Håstad

Some Proof Systems

Some Proof Systems

• Frege Refutation π of a CNF F_n on n variables is a sequence of lines ℓ_1,\ldots,ℓ_N where

- Frege Refutation π of a CNF F_n on n variables is a sequence of lines ℓ_1, \ldots, ℓ_N where
 - each line ℓ_i is a Boolean formula over the basis $\{\vee, \neg\}$,

- Frege Refutation π of a CNF F_n on n variables is a sequence of lines ℓ_1, \ldots, ℓ_N where
 - each line ℓ_i is a Boolean formula over the basis $\{\lor, \neg\}$ $(\land := \neg \lor \neg)$,

- Frege Refutation π of a CNF F_n on n variables is a sequence of lines ℓ_1,\ldots,ℓ_N where
 - each line ℓ_i is a Boolean formula over the basis $\{\lor, \neg\}$ $(\land \coloneqq \neg \lor \neg)$,
 - each line ℓ_i is either

- Frege Refutation π of a CNF F_n on n variables is a sequence of lines ℓ_1,\ldots,ℓ_N where
 - each line ℓ_i is a Boolean formula over the basis $\{\lor, \neg\}$ $(\land \coloneqq \neg \lor \neg)$,
 - each line ℓ_i is either
 - a clause $C \in F_n$, or

- Frege Refutation π of a CNF F_n on n variables is a sequence of lines ℓ_1,\ldots,ℓ_N where
 - each line ℓ_i is a Boolean formula over the basis $\{\lor, \neg\}$ ($\land := \neg \lor \neg$),
 - each line ℓ_i is either
 - a clause $C \in F_n$, or
 - derived from previous lines by a derivation rule

- Frege Refutation π of a CNF F_n on n variables is a sequence of lines ℓ_1,\ldots,ℓ_N where
 - each line ℓ_i is a Boolean formula over the basis $\{\vee, \neg\}$ ($\wedge := \neg \vee \neg$),
 - each line ℓ_i is either
 - a clause $C \in F_n$, or
 - derived from previous lines by a derivation rule

$$rac{p}{p \vee
eg p} \qquad rac{p}{p \vee q} \qquad rac{p \vee p}{p} \qquad rac{p \vee p}{(p \vee q) \vee r} \qquad rac{q \vee p \quad
eg p \vee r}{q \vee r}$$

- Frege Refutation π of a CNF F_n on n variables is a sequence of lines ℓ_1,\ldots,ℓ_N where
 - each line ℓ_i is a Boolean formula over the basis $\{\vee, \neg\}$ ($\wedge := \neg \vee \neg$),
 - each line ℓ_i is either
 - a clause $C \in F_n$, or
 - derived from previous lines by a derivation rule

$$rac{p}{p \vee \neg p} \qquad rac{p}{p \vee q} \qquad rac{p \vee p}{p} \qquad rac{p \vee (q \vee r)}{(p \vee q) \vee r} \qquad rac{q \vee p \quad \neg p \vee r}{q \vee r}$$

- Frege Refutation π of a CNF F_n on n variables is a sequence of lines ℓ_1,\ldots,ℓ_N where
 - each line ℓ_i is a Boolean formula over the basis $\{\lor, \neg\}$ ($\land := \neg \lor \neg$),
 - each line ℓ_i is either
 - a clause $C \in F_n$, or
 - derived from previous lines by a derivation rule
 - $\ell_N = \bot$ is constant false

$$rac{p}{p \vee \neg p} \qquad rac{p}{p \vee q} \qquad rac{p \vee p}{p} \qquad rac{p \vee p}{(p \vee q) \vee r} \qquad rac{q \vee p \quad \neg p \vee r}{q \vee r}$$

- Frege Refutation π of a CNF F_n on n variables is a sequence of lines ℓ_1,\ldots,ℓ_N where
 - each line ℓ_i is a Boolean formula over the basis $\{\lor, \neg\}$ $(\land := \neg \lor \neg)$,
 - each line ℓ_i is either
 - a clause $C \in F_n$, or
 - derived from previous lines by a derivation rule
 - $\ell_N = \bot$ is constant false

• Length of π is N, the line-size is $\max_i \text{Size}(\ell_i)$, the size is $\sum_i \text{Size}(\ell_i)$ and the depth is $\max_i \text{Depth}(\ell_i)$

$$rac{p \lor \neg p}{p \lor \neg p} \qquad rac{p}{p \lor q} \qquad rac{p \lor p}{p} \qquad rac{p \lor (q \lor r)}{(p \lor q) \lor r} \qquad rac{q \lor p \quad \neg p \lor r}{q \lor r}$$

- Frege Refutation π of a CNF F_n on n variables is a sequence of lines ℓ_1,\ldots,ℓ_N where
 - each line ℓ_i is a Boolean formula over the basis $\{\lor, \neg\}$ $(\land := \neg \lor \neg)$,
 - each line ℓ_i is either
 - a clause $C \in F_n$, or
 - derived from previous lines by a derivation rule
 - $\ell_N = \bot$ is constant false

• Length of π is N, the line-size is $\max_i \text{Size}(\ell_i)$, the size is $\sum_i \text{Size}(\ell_i)$ and the depth is $\max_i \text{Depth}(\ell_i)$

Ultimate Goal

- Frege Refutation π of a CNF F_n on n variables is a sequence of lines ℓ_1,\ldots,ℓ_N where
 - each line ℓ_i is a Boolean formula over the basis $\{\lor, \neg\}$ $(\land := \neg \lor \neg)$,
 - each line ℓ_i is either
 - a clause $C \in F_n$, or
 - derived from previous lines by a derivation rule
 - $\ell_N = \bot$ is constant false

- Length of π is N, the line-size is $\max_i \text{Size}(\ell_i)$, the size is $\sum_i \text{Size}(\ell_i)$ and the depth is $\max_i \text{Depth}(\ell_i)$
- *d*-bounded depth Frege consists of all Frege refutations of depth $\leq d$

Ultimate Goal

- Frege Refutation π of a CNF F_n on n variables is a sequence of lines ℓ_1, \ldots, ℓ_N where
 - each line ℓ_i is a Boolean formula over the basis $\{\vee, \neg\}$ ($\land := \neg \lor \neg$),
 - each line ℓ_i is either
 - a clause $C \in F_n$, or
 - derived from previous lines by a derivation rule $\frac{2}{2}$
 - $\ell_N = \bot$ is constant false
- Length of π is N, the line-size is $\max_i \operatorname{Size}(\ell_i)$, the size is $\sum_i \operatorname{Size}(\ell_i)$ and the depth is $\max_i \text{Depth}(\ell_i)$
- d-bounded depth Frege consists of all Frege refutations of depth $\leq d$

Ultimate Goal

- Frege Refutation π of a CNF F_n on n variables is a sequence of lines ℓ_1, \ldots, ℓ_N where
 - each line ℓ_i is a Boolean formula over the basis $\{\vee, \neg\}$ ($\land := \neg \lor \neg$),
 - each line ℓ_i is either
 - a clause $C \in F_n$, or
 - derived from previous lines by a derivation rule $\frac{2}{2}$
 - $\ell_N = \bot$ is constant false
- Length of π is N, the line-size is $\max_i \operatorname{Size}(\ell_i)$, the size is $\sum_i \operatorname{Size}(\ell_i)$ and the depth is $\max_i \text{Depth}(\ell_i)$
- d-bounded depth Frege consists of all Frege refutations of depth $\leq d$

Ultimate Goal

• The CNF $\operatorname{Tseitin}(G)$ is defined over a connected graph G

- The CNF $\operatorname{Tseitin}(G)$ is defined over a connected graph G
- Boolean variable x_e associated with each edge $e \in E(G)$

- The CNF $\operatorname{Tseitin}(G)$ is defined over a connected graph G
- Boolean variable x_e associated with each edge $e \in E(G)$
- Each vertex claims that an odd number of incident edges are set to 1

- The CNF $\operatorname{Tseitin}(G)$ is defined over a connected graph G
- Boolean variable x_e associated with each edge $e \in E(G)$
- Each vertex claims that an odd number of incident edges are set to 1

- The CNF $\operatorname{Tseitin}(G)$ is defined over a connected graph G
- Boolean variable x_e associated with each edge $e \in E(G)$
- Each vertex claims that an odd number of incident edges are set to 1

- The CNF $\operatorname{Tseitin}(G)$ is defined over a connected graph G
- Boolean variable x_e associated with each edge $e \in E(G)$
- Each vertex claims that an odd number of incident edges are set to 1

• Tseitin(G) is satisfiable iff |V(G)| even

- The CNF $\operatorname{Tseitin}(G)$ is defined over a connected graph G
- Boolean variable x_e associated with each edge $e \in E(G)$
- Each vertex claims that an odd number of incident edges are set to 1

- $\mathsf{Tseitin}(G)$ is satisfiable iff |V(G)| even
- We consider the two dimensional $n \times n$ torus T_n^2

- The CNF $\operatorname{Tseitin}(G)$ is defined over a connected graph G
- Boolean variable x_e associated with each edge $e \in E(G)$
- Each vertex claims that an odd number of incident edges are set to 1

- $\mathsf{Tseitin}(G)$ is satisfiable iff |V(G)| even
- We consider the two dimensional $n \times n$ torus T_n^2

- The CNF $\operatorname{Tseitin}(G)$ is defined over a connected graph G
- Boolean variable x_e associated with each edge $e \in E(G)$
- Each vertex claims that an odd number of incident edges are set to 1

- $\mathsf{Tseitin}(G)$ is satisfiable iff |V(G)| even
- We consider the two dimensional $n \times n$ torus T_n^2

- The CNF $\operatorname{Tseitin}(G)$ is defined over a connected graph G
- Boolean variable x_e associated with each edge $e \in E(G)$
- Each vertex claims that an odd number of incident edges are set to 1

- $\mathsf{Tseitin}(G)$ is satisfiable iff |V(G)| even
- We consider the two dimensional $n \times n$ torus T_n^2

• The CNF PHP(n) claims that n+1 pigeons fit into n holes

- The CNF PHP(n) claims that n+1 pigeons fit into n holes
- Boolean variable x_{ph} associated with each pigeon p and hole h

- The CNF PHP(n) claims that n+1 pigeons fit into n holes
- Boolean variable x_{ph} associated with each pigeon p and hole h
- Pigeon p claims that it flies into at least one hole

$$\bigvee_{h\in [n]} x_{ph}$$

- The CNF PHP(n) claims that n+1 pigeons fit into n holes
- Boolean variable x_{ph} associated with each pigeon p and hole h
- Pigeon p claims that it flies into at least one hole

$$\bigvee_{h\in [n]} x_{ph}$$

• Each hole *h* occupied by at most 1 pigeon

 $\bar{x}_{ph} \lor \bar{x}_{p'h} \quad \forall p \neq p'$

Pigeonhole Principle

Tseitin Formula

• Aitaj [Ait94] $d = \omega(1)$

Pigeonhole Principle

- Aitaj [Ait94] $d = \omega(1)$
- Bellantoni et al [BPU92] $d = \Omega(\log^* n)$

Pigeonhole Principle

- Aitaj [Ait94] $d = \omega(1)$
- Bellantoni et al [BPU92] $d = \Omega(\log^* n)$
- Kraijeck et al, Pitassi et al [KPW95, PBI93] $d = \Omega(\log \log n)$

Pigeonhole Principle

- Aitaj [Ait94] $d = \omega(1)$
- Bellantoni et al [BPU92] $d = \Omega(\log^* n)$
- Kraijeck et al, Pitassi et al [KPW95, PBI93] $d = \Omega(\log \log n)$
- Håstad [Hås23] $d = \Omega(\log n / \log \log n)$

Pigeonhole Principle

Tseitin Formula

- Aitaj [Ait94] $d = \omega(1)$
- Bellantoni et al [BPU92] $d = \Omega(\log^* n)$
- Kraijeck et al, Pitassi et al [KPW95, PBI93] $d = \Omega(\log \log n)$
- Håstad [Hås23] $d = \Omega(\log n / \log \log n)$

• Ben-Sasson [Ben02], Urquhart and Fu [UF96] $d = \Omega(\log \log n)$
Super-poly *d*-bounded depth Frege lower bound for...

Pigeonhole Principle

Tseitin Formula

- Aitaj [Ait94] $d = \omega(1)$
- Bellantoni et al [BPU92] $d = \Omega(\log^* n)$
- Kraijeck et al, Pitassi et al [KPW95, PBI93] $d = \Omega(\log \log n)$
- Håstad [Hås23] $d = \Omega(\log n / \log \log n)$

- Ben-Sasson [Ben02], Urquhart and Fu [UF96] $d = \Omega(\log \log n)$
- Pitassi et al [PRST16] $d = \Omega(\sqrt{\log n})$

Super-poly *d*-bounded depth Frege lower bound for...

Pigeonhole Principle

- Aitaj [Ait94] $d = \omega(1)$
- Bellantoni et al [BPU92] $d = \Omega(\log^* n)$
- Kraijeck et al, Pitassi et al [KPW95, PBI93] $d = \Omega(\log \log n)$
- Håstad [Hås23] $d = \Omega(\log n / \log \log n)$

• Ben-Sasson [Ben02], Urquhart and Fu [UF96] $d = \Omega(\log\log n)$

Tseitin Formula

- Pitassi et al [PRST16] $d = \Omega(\sqrt{\log n})$
- Håstad [Hås17] $d = \Omega(\log n / \log \log n)$

Long line of work [UF96, B02, PRST16, Hås17] ultimately culminated in the following

Theorem ([Hås17])

Any Frege refutation of Tseitin (T_n^2) of depth d requires proofs of size $\exp(\Omega(n^{1/58d}))$.

Long line of work [UF96, B02, PRST16, Hås17] ultimately culminated in the following

Theorem ([Hås17])

Any Frege refutation of Tseitin (T_n^2) of depth d requires proofs of size $\exp(\Omega(n^{1/58d}))$.

Significant improvement on dependence on d gives superpoly Frege lower bound

Long line of work [UF96, B02, PRST16, Hås17] ultimately culminated in the following

Theorem ([Hås17])

Any Frege refutation of Tseitin (T_n^2) of depth d requires proofs of size $\exp(\Omega(n^{1/58d}))$.

Significant improvement on dependence on d gives superpoly Frege lower bound

...all done!

Frege and Tseitin, Continued

... Pitassi, Ramakrishnan and Tan: what if we also restrict the size of each line?

... Pitassi, Ramakrishnan and Tan: what if we also restrict the size of each line?

Theorem ([PRT21])

Any Frege refutation of Tseitin (T_n^2) of depth d and line-size M is of length $\exp(n/2^{O(d\sqrt{\log M})})$.

... Pitassi, Ramakrishnan and Tan: what if we also restrict the size of each line?

Theorem ([PRT21])

Any Frege refutation of Tseitin (T_n^2) of depth d and line-size M is of length $\exp(n/2^{O(d\sqrt{\log M})})$.

For M = poly(n) this lower bound is $\exp(n^{1-o(1)})$ up to $d = o(\sqrt{\log n})$, whereas Håstad's lower bound is of the form $\exp(n^{o(1)})$.

... Pitassi, Ramakrishnan and Tan: what if we also restrict the size of each line?

Theorem ([PRT21])

Any Frege refutation of Tseitin (T_n^2) of depth d and line-size M is of length $\exp(n/2^{O(d\sqrt{\log M})})$.

For M = poly(n) this lower bound is $\exp(n^{1-o(1)})$ up to $d = o(\sqrt{\log n})$, whereas Håstad's lower bound is of the form $\exp(n^{o(1)})$.

Conjecture ([PRT21])

Any Frege refutation of $\text{Tseitin}(T_n^2)$ of depth d and line-size M is of length $\exp(n/\log^{d-1} M)$.

Our Results

Main Theorem

Frege refutations of Tseitin (T_n^2) of depth d and line-size M are of length $\exp(n/\log^{O(d)} M)$.

Main Theorem

Frege refutations of Tseitin (T_n^2) of depth d and line-size M are of length $\exp(n/\log^{O(d)} M)$.

For $M \leq \operatorname{poly}(n) n^{\operatorname{polylog}(n)}$ and $d = o(\sqrt{\log n} \log n)$ this gives $\exp(n^{1-o(1)})$ lower bounds.

Main Theorem

Frege refutations of Tseitin (T_n^2) of depth d and line-size M are of length $\exp(n/\log^{O(d)} M)$. For $M \leq \operatorname{poly}(n)$ and $d = o(\sqrt{\log n} \log n)$ this gives $\exp(n^{1-o(1)})$ lower bounds.

Theorem

Any Frege refutation of $\text{Tseitin}(T_n^2)$ of depth d requires proofs of size $\exp(\tilde{\Omega}(n^{1/(d-1)}))$.

improves over the previous $\expig(\Omega(n^{1/58d})ig)$ lower bound

Proof Ideas: Size Lower Bound

Proof Outline: Bounded Depth Circuit Lower Bounds

Given a small circuit C of depth d computing parity on n bits

Given a small circuit C of depth d computing parity on n bits

• Hit C with a random restriction ho, keeping each variable independently with prob p

Given a small circuit C of depth d computing parity on n bits

- Hit C with a random restriction ho, keeping each variable independently with prob p
- Argue that the circuit depth shrinks by $\boldsymbol{1}$

Given a small circuit C of depth d computing parity on n bits

- Hit C with a random restriction ho, keeping each variable independently with prob p
- Argue that the circuit depth shrinks by $\boldsymbol{1}$

Prove a Switching Lemma!

except with probability Fail(p, t, s, n).

except with probability ${\rm Fail}(p,t,s,n).$ Classic result [Hås86]: ${\rm Fail}(p,t,s,n) \leq (5pt)^s$

Applying the Switching Lemma

depth \boldsymbol{d}

Applying the Switching Lemma

Applying the Switching Lemma

depth d-1

How to apply this Machinery to a Frege Proof?

• Hit the Frege refutation $\pi = (\ell_1, \dots, \ell_N)$ with a restriction ho

- Hit the Frege refutation $\pi = (\ell_1, \dots, \ell_N)$ with a restriction ho
- Depth of every line ℓ_i shrinks by 1

- Hit the Frege refutation $\pi = (\ell_1, \dots, \ell_N)$ with a restriction ho
- Depth of every line ℓ_i shrinks by 1
- Reduce the $\operatorname{Tseitin}(T_n^2)$ formula to $\operatorname{Tseitin}(T_m^2)$, where m < n

- Hit the Frege refutation $\pi = (\ell_1, \dots, \ell_N)$ with a restriction ho
- Depth of every line ℓ_i shrinks by 1
- Reduce the $\operatorname{Tseitin}(T_n^2)$ formula to $\operatorname{Tseitin}(T_m^2),$ where m < n
- Requires carefully crafted restriction ρ

- Hit the Frege refutation $\pi = (\ell_1, \dots, \ell_N)$ with a restriction ho
- Depth of every line ℓ_i shrinks by 1
- Reduce the $\operatorname{Tseitin}(T_n^2)$ formula to $\operatorname{Tseitin}(T_m^2),$ where m < n
- Requires carefully crafted restriction ρ

Prove a Switching Lemma!

except with probability Fail(t, s, n, m).

except with probability Fail(t, s, n, m).

 $\begin{array}{l} \text{Original proof [Hås17]:}\\ \text{Fail}(t,s,n,m) \approx \left(s^{27}t\sqrt{m/n}\right)^{\Omega(s)} \end{array}$

except with probability $\operatorname{Fail}(t, s, n, m)$.

$$\begin{array}{l} \text{Original proof [Hås17]:} \\ \text{Fail}(t,s,n,m) \approx \left(s^{27}t\sqrt{m/n}\right)^{\Omega(s)} \ \stackrel{!}{\ll} \frac{1}{\text{Size}(\pi)} \end{array}$$

except with probability Fail(t, s, n, m).

$$\begin{array}{l} \text{Original proof [Hås17]:} \\ \text{Fail}(t,s,n,m) \approx \left(s^{27} t \sqrt{m/n} \right)^{\Omega(s)} \; \stackrel{!}{\ll} \; \frac{1}{\text{Size}(\pi)} \end{array}$$

except with probability Fail(t, s, n, m).

$$\begin{array}{l} \text{Our Proof:} \\ \text{Fail}(t,s,n,m) \approx \left((\log n)^{27} t \sqrt{m/n} \right)^{\Omega(s)} \ \overset{!}{\ll} \frac{1}{\text{Size}(\pi)} \end{array}$$

except with probability Fail(t, s, n, m).

Our Proof:
Fail
$$(t, s, n, m) \approx \left((\log n)^{27} t \sqrt{m/n} \right)^{\Omega(s)} \stackrel{!}{\ll} \frac{1}{\operatorname{Size}(\pi)}$$

... skipping a few steps ...
Size $(\pi) \gtrsim \exp(n^{1/d})$
Proof Ideas: Line-Size vs Length

Frege refutations of Tseitin (T_n^2) of depth d and line-size M are of length $\exp(n/\log^{O(d)} M)$.

Frege refutations of Tseitin (T_n^2) of depth d and line-size M are of length $\exp(n/\log^{O(d)} M)$.

• [PRT21] crucially proved that multi-switching can be used to obtain Frege tradeoffs

Frege refutations of Tseitin (T_n^2) of depth d and line-size M are of length $\exp(n/\log^{O(d)} M)$.

- [PRT21] crucially proved that multi-switching can be used to obtain Frege tradeoffs
- Multi-Switching [IMP12, Hås14] originally devised to get correlation bounds for circuits

Frege refutations of Tseitin (T_n^2) of depth d and line-size M are of length $\exp(n/\log^{O(d)} M)$.

- [PRT21] crucially proved that multi-switching can be used to obtain Frege tradeoffs
- Multi-Switching [IMP12, Hås14] originally devised to get correlation bounds for circuits

Let's prove a Multi-Switching Lemma!

Switching lemma in fact switches into a depth $\leq s$ decision tree:

Switching lemma in fact switches into a depth $\leq s$ decision tree:

Multi-switching Lemma switches into an ℓ -partial common decision tree of depth $\leq s$:

except with probability $\operatorname{Fail}(t,s,\ell,n,m,M)$

Multi-switching Lemma switches into an ℓ -partial common decision tree of depth $\leq s$:

except with probability $\operatorname{Fail}(t,s,\ell,n,m,M) \approx M^{s/\ell} (\log^{27}(n) t \sqrt{m/n})^{\Omega(s)}$

Multi-switching Lemma switches into an ℓ -partial common decision tree of depth $\leq s$:

except with probability $\operatorname{Fail}(t,s,\ell,n,m,M) \approx M^{s/\ell} (\log^{27}(n) t \sqrt{m/n})^{\Omega(s)}$

Same restrictions as [Hås17, PRT21]

	$x_{1,2}$	$x_{2,3}$	$x_{3,4}$	$x_{4,5}$	
	$x_{1,6}$	$x_{2,7}$	$x_{3,8}$	$x_{4,9}$	$x_{5,10}$
	$x_{6,7}$	$x_{7,8}$	$x_{8,9}$	$x_{9,10}$	
	$x_{6,11}$	$x_{7,12}$	$x_{8,13}$	$x_{9,14}$	$x_{10,15}$
	$x_{11,12}$	$x_{12,13}$	$x_{13,14}$	$x_{14,15}$	
•	$x_{11,16}$	$x_{12,17}$	$x_{13,18}$	$x_{14,19}$	$x_{15,20}$
	$x_{16,17}$	$x_{17,18}$	$x_{18,19}$	$x_{19,20}$	
	$x_{16,21}$	$x_{17,22}$	$x_{18,23}$	$x_{19,24}$	$x_{20,25}$
	$x_{21,22}$	$x_{22,23}$	$x_{23,24}$	$x_{24,25}$	
				_	

Same restrictions as [Hås17, PRT21]

Same restrictions as [Hås17, PRT21]

$$ho(x) = egin{cases} 1 \ 0 \ y & ext{a new variable} \ ar{y} & ext{negation of a variable}. \end{cases}$$

Same restrictions as [Hås17, PRT21]

$$ho(x) = egin{cases} 1 \ 0 \ y & ext{a new variable} \ ar{y} & ext{negation of a variable}. \end{cases}$$

Same restrictions as [Hås17, PRT21]

$$ho(x) = egin{cases} 1 \ 0 \ y & ext{a new variable} \ ar{y} & ext{negation of a variable}. \end{cases}$$

Same restrictions as [Hås17, PRT21]

 ρ is an affine restriction:

$$ho(x) = egin{cases} 1 \ 0 \ y & ext{a new variable} \ ar{y} & ext{negation of a variable} \end{cases}$$

.

Same restrictions as [Hås17, PRT21]

$$ho(x) = egin{cases} 1 \ 0 \ y & ext{a new variable} \ ar{y} & ext{negation of a variable}. \end{cases}$$

Same restrictions as [Hås17, PRT21]

$$ho(x) = egin{cases} 1 \ 0 \ y & ext{a new variable} \ ar{y} & ext{negation of a variable}. \end{cases}$$

Same restrictions as [Hås17, PRT21]

$$ho(x) = egin{cases} 1 \ 0 \ y & ext{a new variable} \ ar{y} & ext{negation of a variable}. \end{cases}$$

Same restrictions as [Hås17, PRT21]

$$ho(x) = egin{cases} 1 \ 0 \ y & ext{a new variable} \ ar{y} & ext{negation of a variable}. \end{cases}$$

Same restrictions as [Hås17, PRT21]

$$ho(x) = egin{cases} 1 \ 0 \ y & ext{a new variable} \ ar{y} & ext{negation of a variable}. \end{cases}$$

Same restrictions as [Hås17, PRT21]

 ρ is an affine restriction:

$$ho(x) = egin{cases} 1 \ 0 \ y & ext{a new variable} \ ar{y} & ext{negation of a variable} \end{cases}$$

.

Kilian Risse (EPFL)

u.a.r. pick a solution to the formula where blue nodes have even constraints

Kilian Risse (EPFL)

Kilian Risse (EPFL)

left with an m imes m torus

Need an intermediate restriction: pick vertices in adjacent squares & connect

Need an intermediate restriction: pick vertices in adjacent squares & connect

Need an intermediate restriction: pick vertices in adjacent squares & connect

Key Difference:

#nodes with even constraint is $\log n$ instead of s per square

Conclusion

Conclusion and Open Problems

- Frege proofs of line-size M and depth d of Tseitin (T_n^2) are of length $\exp(n/\log^{O(d)} M)$
- Frege proofs of depth d of Tseitin (T_n^2) are of size $\expig(ilde{\Omega}(n^{1/(d-1)})ig)$
- Open Problems:
 - Prove an $\exp(\tilde{\Omega}(n^{1/d}))$ lower bound on depth d Frege refutations for a CNF on n vars - Tseitin over an expander?
 - Circuits versus formulas? Can we obtain $\exp(\tilde{\Omega}(d \cdot n^{1/d}))$ lower bounds for Tseitin (T_n^2) ?
 - Prove any bounded depth Frege lower bound for a (supposedly) hard formula
 - truthtable formula
 - clique
 - random CNFs

Conclusion and Open Problems

- Frege proofs of line-size M and depth d of Tseitin (T_n^2) are of length $\exp(n/\log^{O(d)} M)$
- Frege proofs of depth d of Tseitin (T_n^2) are of size $\expig(ilde{\Omega}(n^{1/(d-1)})ig)$
- Open Problems:
 - Prove an $\exp(\tilde{\Omega}(n^{1/d}))$ lower bound on depth d Frege refutations for a CNF on n vars - Tseitin over an expander?
 - Circuits versus formulas? Can we obtain $\exp(\tilde{\Omega}(d \cdot n^{1/d}))$ lower bounds for Tseitin (T_n^2) ?
 - Prove any bounded depth Frege lower bound for a (supposedly) hard formula
 - truthtable formula
 - clique
 - random CNFs