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Definition (J. Kraj́ıček, 2004)

The implicit proof system of P, denoted by iP, proof is a pair
(C ,D) where C is a circuit bit-wise defining a (possibly exponential
size) proof in P and D is a P-proof of the correctness of C .

How robust is this definition?

Question 1. If P p-simulated Q, does iP simulate iQ?

[2]
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For a Boolean circuit C with n inputs and 1 output, define S(C )
the bit-string

S(C ) := (C (00 . . . 00),C (00 . . . 01), . . . ,C (11 . . . 11)).

Question 2. Let f ∈ FP. Does there exist an F ∈ FP such that
for every circuit C ,

S(F (C )) = f (S(C )) ?

Example. Let f be defined by

I f (0 . . . 00) := 0 . . . 00,

I f (w1 . . .wn−1wn) := w1 . . .wn−11, if w 6= 0 . . . 00.

f is definable by a finite automaton. Yet for this f , there exists
F ∈ FP iff P = NP.2

2Added after lecture: Olivier Korten pointed out that the completeness of
SuccintCircuitValue in EXP implies a negative answer unconditionally.
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Example. In the sequent calculus we may use the rule for
∨-introduction either in this form

Γ −→ ∆,A,B

Γ −→ ∆,A ∨ B

or
Γ −→ ∆,A

Γ −→ ∆,A ∨ B

Do we get equivalent Implicit Extended Frege proof systems?

Claim
For every two “natural” formalizations of Extended Frege System
P and P ′, the implicit proof systems iP and iP ′ are polynomially
equivalent.

[4]
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Theorem (Kraj́ıček, 2004)

I V 1
2 proves the soundness of iEF .

I If V 1
2 proves the soundness of P, then iEF polynomially

simulates P.

Since Kraj́ıček’s theorem can be proved for all “natural”
formalizations of EF , all the implicit versions of them polynomially
simulate each other.

Question 3. What are natural formalizations?

Fact
Let P,Q be proof systems. Assume that P is closed under
substitutions and Q-proofs of the Q-reflection principles can be
constructed in polynomial time. Then

I P p-simulates Q iff P-proofs of the Q-reflection principles can
be constructed in polynomial time.

[5]
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I V 1
2 proves the soundness of iEF .

I If V 1
2 proves the soundness of P, then iEF polynomially

simulates P.
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Since Kraj́ıček’s theorem can be proved for all “natural”
formalizations of EF , all the implicit versions of them polynomially
simulate each other.

Question 3. What are natural formalizations?

Fact
Let P,Q be proof systems. Assume that P is closed under
substitutions and Q-proofs of the Q-reflection principles can be
constructed in polynomial time. Then

I P p-simulates Q iff P-proofs of the Q-reflection principles can
be constructed in polynomial time.

[5]



Question 4. Starting with a natural formalization of EF , do we
get all iiEF equivalent?

[6]



Definition
Let T be a f.o. theory, polynomially axiomatized. The strong proof
system of T is defined by

1. translate propositions by replacing propositional variables pi
with xi = 0;

2. interpret f.o. proofs in T of such formulas as proofs of the
propositions.

We assume that the f.o. proofs are formalized in some Frege system.

Theorem
The strong proof system of Robinsons’s arithmetic Q polynomially
simulates iEF .

[7]
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Lemma
The strong proof system of Robinsons’s arithmetic Q is
polynomially equivalent to the strong proof system of S1

2 .

Proof.
There is an interpretation of S1

2 in Q using a formula that defines an
initial segment of natural numbers.

Lemma
If T contains Robinson’s arithmetic, then the strong proof system
of T can be defined by defining a proof of a tautology φ to be a
f.o. proof in T of Taut(dφe).

Proof.
There are P-time constructible Q proofs of

φ(x1 = 0, . . . , xn = 0) ≡ Taut(dφe)

Here dφe denotes the binary numeral representing the Gödel number
of φ.

[8]
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Lemma
S1
2 proves the soundness of iEF for proofs of logarithmic size.

Formally

S1
2 ` ∀x , y , z(x ≤ |y | ∧ PrfEF (x , z)→ Taut(z)).

Proof.
If x ≤ |y | ∧ PrfEF (y , z), one can expand the implicitly defined proof y to
an explicit EF -proof of z .

Lemma
For every n ∈ N, an S1

2 proof of ∃x(n̄ ≤ |x |) can be constructed in
polynomial time.

Here the numeral n̄ is a term of the form

a0 + 2(a1 + 2(a3 + 2(. . . ak) . . . )),

where ai ∈ {0, 1, }.

[9]
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Lemma
There exists a formula α(x) such that S1

2 proves

I α(0),

I ∀x(α(x)→ α(x + 1) ∧ α(2x)),

I ∀x(α(x)→ ∃y(x ≤ |y |)).

Hence given an iEF proof with the Gödel number n, we can
construct in polynomial time a proof in S1

2 that n̄ is of logarithmic
size. Then we can use the soundness of logarithmic size proofs iEF
proofs in S1

2 .
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construct in polynomial time a proof in S1

2 that n̄ is of logarithmic
size. Then we can use the soundness of logarithmic size proofs iEF
proofs in S1

2 .

[10]



Thank You
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