On implicit proof systems

Pavel Pudlák

Mathematical Institute, Czech Academy of Sciences, Prague¹

Proof Complexity and Metamathematics, Berkeley, 20-24 March 2023

¹supported by EPAC, grant 19-27871X of the Czech Grant Agency

Definition (J. Krajíček, 2004)

The implicit proof system of P, denoted by iP, proof is a pair (C, D) where C is a circuit bit-wise defining a (possibly exponential size) proof in P and D is a P-proof of the correctness of C.

Definition (J. Krajíček, 2004)

The implicit proof system of P, denoted by iP, proof is a pair (C, D) where C is a circuit bit-wise defining a (possibly exponential size) proof in P and D is a P-proof of the correctness of C.

How robust is this definition?

Question 1. If P p-simulated Q, does iP simulate iQ?

For a Boolean circuit C with n inputs and 1 output, define S(C) the bit-string

$$S(C) := (C(00...00), C(00...01), ..., C(11...11)).$$

Question 2. Let $f \in FP$. Does there exist an $F \in FP$ such that for every circuit C,

S(F(C)) = f(S(C)) ?

²Added after lecture: Olivier Korten pointed out that the completeness of SuccintCircuitValue in EXP implies a negative answer unconditionally.

For a Boolean circuit C with n inputs and 1 output, define S(C) the bit-string

$$S(C) := (C(00...00), C(00...01), ..., C(11...11)).$$

Question 2. Let $f \in FP$. Does there exist an $F \in FP$ such that for every circuit C,

$$S(F(C)) = f(S(C)) ?$$

Example. Let *f* be defined by

•
$$f(0...00) := 0...00$$
,
• $f(w_1...w_{n-1}w_n) := w_1...w_{n-1}1$, if $w \neq 0...00$

²Added after lecture: Olivier Korten pointed out that the completeness of SuccintCircuitValue in EXP implies a negative answer unconditionally.

For a Boolean circuit C with n inputs and 1 output, define S(C) the bit-string

$$S(C) := (C(00...00), C(00...01), ..., C(11...11)).$$

Question 2. Let $f \in FP$. Does there exist an $F \in FP$ such that for every circuit C,

$$S(F(C)) = f(S(C)) ?$$

Example. Let *f* be defined by

•
$$f(0...00) := 0...00$$
,
• $f(w_1...w_{n-1}w_n) := w_1...w_{n-1}1$, if $w \neq 0...00$

f is definable by a *finite automaton*. Yet for this *f*, there exists $F \in FP$ iff P = NP.²

²Added after lecture: Olivier Korten pointed out that the completeness of SuccintCircuitValue in EXP implies a negative answer unconditionally.

Example. In the sequent calculus we may use the rule for V-introduction either in this form

$$\frac{\Gamma \longrightarrow \Delta, A, B}{\Gamma \longrightarrow \Delta, A \lor B}$$
$$\frac{\Gamma \longrightarrow \Delta, A}{\Gamma \longrightarrow \Delta, A \lor B}$$

or

Do we get equivalent Implicit Extended Frege proof systems?

Example. In the sequent calculus we may use the rule for V-introduction either in this form

$$\frac{\Gamma \longrightarrow \Delta, A, B}{\longrightarrow \Delta, A \lor B}$$

or

$$\frac{\Gamma \longrightarrow \Delta, A}{\Gamma \longrightarrow \Delta, A \lor B}$$

Do we get equivalent Implicit Extended Frege proof systems?

Claim

For every two "natural" formalizations of Extended Frege System P and P', the implicit proof systems iP and iP' are polynomially equivalent.

- V_2^1 proves the soundness of iEF.
- If V₂¹ proves the soundness of P, then iEF polynomially simulates P.

- V_2^1 proves the soundness of iEF.
- If V₂¹ proves the soundness of P, then iEF polynomially simulates P.

Since Krajíček's theorem can be proved for all "natural" formalizations of *EF*, all the implicit versions of them polynomially simulate each other.

- V_2^1 proves the soundness of iEF.
- If V₂¹ proves the soundness of P, then iEF polynomially simulates P.

Since Krajíček's theorem can be proved for all "natural" formalizations of *EF*, all the implicit versions of them polynomially simulate each other.

Question 3. What are natural formalizations?

- V_2^1 proves the soundness of iEF.
- If V₂¹ proves the soundness of P, then iEF polynomially simulates P.

Since Krajíček's theorem can be proved for all "natural" formalizations of *EF*, all the implicit versions of them polynomially simulate each other.

Question 3. What are natural formalizations?

Fact

Let P, Q be proof systems. Assume that P is closed under substitutions and Q-proofs of the Q-reflection principles can be constructed in polynomial time. Then

P p-simulates Q iff P-proofs of the Q-reflection principles can be constructed in polynomial time. **Question 4.** Starting with a natural formalization of *EF*, do we get all *iiEF* equivalent?

Definition

Let T be a f.o. theory, polynomially axiomatized. The strong proof system of T is defined by

- 1. translate propositions by replacing propositional variables p_i with $x_i = 0$;
- 2. interpret f.o. proofs in T of such formulas as proofs of the propositions.

We assume that the f.o. proofs are formalized in some Frege system.

Definition

Let T be a f.o. theory, polynomially axiomatized. The strong proof system of T is defined by

- 1. translate propositions by replacing propositional variables p_i with $x_i = 0$;
- 2. interpret f.o. proofs in T of such formulas as proofs of the propositions.

We assume that the f.o. proofs are formalized in some Frege system.

Theorem

The strong proof system of Robinsons's arithmetic Q polynomially simulates iEF.

The strong proof system of Robinsons's arithmetic Q is polynomially equivalent to the strong proof system of S_2^1 .

Proof.

There is an interpretation of S_2^1 in Q using a formula that defines an initial segment of natural numbers.

The strong proof system of Robinsons's arithmetic Q is polynomially equivalent to the strong proof system of S_2^1 .

Proof.

There is an interpretation of S_2^1 in Q using a formula that defines an initial segment of natural numbers.

Lemma

If T contains Robinson's arithmetic, then the strong proof system of T can be defined by defining a proof of a tautology ϕ to be a f.o. proof in T of Taut($\lceil \phi \rceil$).

Proof.

There are P-time constructible Q proofs of

$$\phi(x_1 = 0, \ldots, x_n = 0) \equiv Taut(\lceil \phi \rceil)$$

Here $\lceil \phi \rceil$ denotes the binary numeral representing the Gödel number of $\phi.$

 $S_2^1\ {\rm proves}\ {\rm the}\ {\rm soundness}\ {\rm of}\ {\rm iEF}\ {\rm for}\ {\rm proofs}\ {\rm of}\ {\rm logarithmic}\ {\rm size}.$ Formally

$$S_2^1 \vdash \ orall x, y, z(x \leq |y| \land \textit{Prf}_{\textit{EF}}(x,z)
ightarrow \textit{Taut}(z)).$$

Proof.

If $x \leq |y| \wedge Prf_{EF}(y, z)$, one can expand the implicitly defined proof y to an explicit *EF*-proof of z.

 S_2^1 proves the soundness of iEF for proofs of logarithmic size. Formally

$$S_2^1 \vdash \ orall x, y, z(x \leq |y| \land \textit{Prf}_{\textit{EF}}(x,z)
ightarrow \textit{Taut}(z)).$$

Proof.

If $x \leq |y| \wedge Prf_{EF}(y, z)$, one can expand the implicitly defined proof y to an explicit *EF*-proof of z.

Lemma

For every $n \in \mathbb{N}$, an S_2^1 proof of $\exists x (\bar{n} \leq |x|)$ can be constructed in polynomial time.

Here the numeral \bar{n} is a term of the form

$$a_0 + 2(a_1 + 2(a_3 + 2(\ldots a_k) \ldots)),$$

where $a_i \in \{0, 1, \}$.

There exists a formula $\alpha(x)$ such that S_2^1 proves

$$\alpha(0)$$
,
 $\forall x(\alpha(x) \rightarrow \alpha(x+1) \land \alpha(2x))$,

$$\blacktriangleright \forall x(\alpha(x) \to \exists y(x \le |y|)).$$

There exists a formula $\alpha(x)$ such that S_2^1 proves

$$\begin{array}{l} \bullet \ \alpha(0), \\ \bullet \ \forall x(\alpha(x) \to \alpha(x+1) \land \alpha(2x)), \\ \bullet \ \forall x(\alpha(x) \to \exists y(x \leq |y|)). \end{array} \end{array}$$

Hence given an *iEF* proof with the Gödel number n, we can construct in polynomial time a proof in S_2^1 that \bar{n} is of logarithmic size. Then we can use the soundness of logarithmic size proofs *iEF* proofs in S_2^1 .

Thank You