On implicit proof systems

Pavel Pudlák

Mathematical Institute, Czech Academy of Sciences, Prague ${ }^{1}$

Proof Complexity and Metamathematics, Berkeley, 20-24 March 2023
${ }^{1}$ supported by EPAC, grant 19-27871X of the Czech Grant Agency

Definition (J. Krajíček, 2004)
The implicit proof system of P, denoted by $i P$, proof is a pair (C, D) where C is a circuit bit-wise defining a (possibly exponential size) proof in P and D is a P-proof of the correctness of C.

Definition (J. Krajíček, 2004)
The implicit proof system of P, denoted by $i P$, proof is a pair (C, D) where C is a circuit bit-wise defining a (possibly exponential size) proof in P and D is a P-proof of the correctness of C.

How robust is this definition?
Question 1. If P p-simulated Q, does $i P$ simulate $i Q$?

For a Boolean circuit C with n inputs and 1 output, define $S(C)$ the bit-string

$$
S(C):=(C(00 \ldots 00), C(00 \ldots 01), \ldots, C(11 \ldots 11))
$$

Question 2. Let $f \in F P$. Does there exist an $F \in F P$ such that for every circuit C,

$$
S(F(C))=f(S(C)) ?
$$

${ }^{2}$ Added after lecture: Olivier Korten pointed out that the completeness of SuccintCircuit Value in EXP implies a negative answer unconditionally.

For a Boolean circuit C with n inputs and 1 output, define $S(C)$ the bit-string

$$
S(C):=(C(00 \ldots 00), C(00 \ldots 01), \ldots, C(11 \ldots 11))
$$

Question 2. Let $f \in F P$. Does there exist an $F \in F P$ such that for every circuit C,

$$
S(F(C))=f(S(C)) ?
$$

Example. Let f be defined by

- $f(0 \ldots 00):=0 \ldots 00$,
- $f\left(w_{1} \ldots w_{n-1} w_{n}\right):=w_{1} \ldots w_{n-1} 1$, if $w \neq 0 \ldots 00$.
${ }^{2}$ Added after lecture: Olivier Korten pointed out that the completeness of SuccintCircuitValue in EXP implies a negative answer unconditionally.

For a Boolean circuit C with n inputs and 1 output, define $S(C)$ the bit-string

$$
S(C):=(C(00 \ldots 00), C(00 \ldots 01), \ldots, C(11 \ldots 11))
$$

Question 2. Let $f \in F P$. Does there exist an $F \in F P$ such that for every circuit C,

$$
S(F(C))=f(S(C)) ?
$$

Example. Let f be defined by

- $f(0 \ldots 00):=0 \ldots 00$,
- $f\left(w_{1} \ldots w_{n-1} w_{n}\right):=w_{1} \ldots w_{n-1} 1$, if $w \neq 0 \ldots 00$.
f is definable by a finite automaton. Yet for this f, there exists $F \in F P$ iff $P=N P .{ }^{2}$

[^0]Example. In the sequent calculus we may use the rule for V-introduction either in this form

$$
\frac{\Gamma \longrightarrow \Delta, A, B}{\Gamma \longrightarrow \Delta, A \vee B}
$$

or

$$
\frac{\Gamma \longrightarrow \Delta, A}{\Gamma \longrightarrow \Delta, A \vee B}
$$

Do we get equivalent Implicit Extended Frege proof systems?

Example. In the sequent calculus we may use the rule for V-introduction either in this form

$$
\frac{\Gamma \longrightarrow \Delta, A, B}{\Gamma \longrightarrow \Delta, A \vee B}
$$

or

$$
\frac{\Gamma \longrightarrow \Delta, A}{\Gamma \longrightarrow \Delta, A \vee B}
$$

Do we get equivalent Implicit Extended Frege proof systems?

Claim
For every two "natural" formalizations of Extended Frege System P and P^{\prime}, the implicit proof systems iP and $i P^{\prime}$ are polynomially equivalent.

Theorem (Krajíček, 2004)

- V_{2}^{1} proves the soundness of iEF.
- If V_{2}^{1} proves the soundness of P, then iEF polynomially simulates P.

Theorem (Krajiček, 2004)

- V_{2}^{1} proves the soundness of iEF.
- If V_{2}^{1} proves the soundness of P, then iEF polynomially simulates P.

Since Krajíček's theorem can be proved for all "natural" formalizations of $E F$, all the implicit versions of them polynomially simulate each other.

Theorem (Krajiček, 2004)

- V_{2}^{1} proves the soundness of iEF.
- If V_{2}^{1} proves the soundness of P, then iEF polynomially simulates P.

Since Krajíček's theorem can be proved for all "natural" formalizations of $E F$, all the implicit versions of them polynomially simulate each other.

Question 3. What are natural formalizations?

Theorem (Krajiček, 2004)

- V_{2}^{1} proves the soundness of iEF.
- If V_{2}^{1} proves the soundness of P, then iEF polynomially simulates P.

Since Krajíček's theorem can be proved for all "natural" formalizations of $E F$, all the implicit versions of them polynomially simulate each other.

Question 3. What are natural formalizations?

Fact

Let P, Q be proof systems. Assume that P is closed under substitutions and Q-proofs of the Q-reflection principles can be constructed in polynomial time. Then

- P p-simulates Q iff P-proofs of the Q-reflection principles can be constructed in polynomial time.

Question 4. Starting with a natural formalization of $E F$, do we get all iiEF equivalent?

Definition

Let T be a f.o. theory, polynomially axiomatized. The strong proof system of T is defined by

1. translate propositions by replacing propositional variables p_{i} with $x_{i}=0$;
2. interpret f.o. proofs in T of such formulas as proofs of the propositions.

We assume that the f.o. proofs are formalized in some Frege system.

Definition

Let T be a f.o. theory, polynomially axiomatized. The strong proof system of T is defined by

1. translate propositions by replacing propositional variables p_{i} with $x_{i}=0$;
2. interpret f.o. proofs in T of such formulas as proofs of the propositions.

We assume that the f.o. proofs are formalized in some Frege system.

Theorem
The strong proof system of Robinsons's arithmetic Q polynomially simulates iEF.

Lemma

The strong proof system of Robinsons's arithmetic Q is polynomially equivalent to the strong proof system of S_{2}^{1}.

Proof.
There is an interpretation of S_{2}^{1} in Q using a formula that defines an initial segment of natural numbers.

Lemma

The strong proof system of Robinsons's arithmetic Q is polynomially equivalent to the strong proof system of S_{2}^{1}.

Proof.

There is an interpretation of S_{2}^{1} in Q using a formula that defines an initial segment of natural numbers.

Lemma

If T contains Robinson's arithmetic, then the strong proof system of T can be defined by defining a proof of a tautology ϕ to be a f.o. proof in T of $\operatorname{Taut}(\lceil\phi\rceil)$.

Proof.
There are P-time constructible Q proofs of

$$
\phi\left(x_{1}=0, \ldots, x_{n}=0\right) \equiv \operatorname{Taut}(\lceil\phi\rceil)
$$

Here $\lceil\phi\rceil$ denotes the binary numeral representing the Gödel number of ϕ.

Lemma

S_{2}^{1} proves the soundness of iEF for proofs of logarithmic size.
Formally

$$
S_{2}^{1} \vdash \forall x, y, z\left(x \leq|y| \wedge \operatorname{Prf}_{E F}(x, z) \rightarrow \operatorname{Taut}(z)\right) .
$$

Proof.

If $x \leq|y| \wedge \operatorname{Prf}_{E F}(y, z)$, one can expand the implicitly defined proof y to an explicit $E F$-proof of z.

Lemma

S_{2}^{1} proves the soundness of iEF for proofs of logarithmic size.
Formally

$$
S_{2}^{1} \vdash \forall x, y, z\left(x \leq|y| \wedge \operatorname{Prf}_{E F}(x, z) \rightarrow \operatorname{Taut}(z)\right) .
$$

Proof.

If $x \leq|y| \wedge \operatorname{Prf}_{E F}(y, z)$, one can expand the implicitly defined proof y to an explicit $E F$-proof of z.

Lemma

For every $n \in \mathbb{N}$, an S_{2}^{1} proof of $\exists x(\bar{n} \leq|x|)$ can be constructed in polynomial time.
Here the numeral \bar{n} is a term of the form

$$
a_{0}+2\left(a_{1}+2\left(a_{3}+2\left(\ldots a_{k}\right) \ldots\right)\right)
$$

where $a_{i} \in\{0,1$,$\} .$

Lemma

There exists a formula $\alpha(x)$ such that S_{2}^{1} proves

- $\alpha(0)$,
- $\forall x(\alpha(x) \rightarrow \alpha(x+1) \wedge \alpha(2 x))$,
- $\forall x(\alpha(x) \rightarrow \exists y(x \leq|y|))$.

Lemma

There exists a formula $\alpha(x)$ such that S_{2}^{1} proves

- $\alpha(0)$,
- $\forall x(\alpha(x) \rightarrow \alpha(x+1) \wedge \alpha(2 x))$,
- $\forall x(\alpha(x) \rightarrow \exists y(x \leq|y|))$.

Hence given an iEF proof with the Gödel number n, we can construct in polynomial time a proof in S_{2}^{1} that \bar{n} is of logarithmic size. Then we can use the soundness of logarithmic size proofs iEF proofs in S_{2}^{1}.

Thank You

[^0]: ${ }^{2}$ Added after lecture: Olivier Korten pointed out that the completeness of SuccintCircuitValue in EXP implies a negative answer unconditionally.

