Indistinguishability Obfuscation via Mathematical Proofs of Equivalence

Abhishek Jain

Johns Hopkins University

Zhengzhong Jin

Johns Hopkins University \rightarrow MIT

Indistinguishability Obfuscation (iO)

Source code

function _0x19e6(_0x4d301f,_0xcaab53){var _0x3a4e72=_0x3a4e();return _0x19e6=function(_0x19e691,_0x5809f0){_0x19e691=_0x19e691-0x14e;var _0x16ee0b=_0x3a4e72[_0x19e691];return _0x10ce0b;},_0x19e6(_0x4d301f,_0xcaab53);}function _0x3a4e(){var _0x3f0a9d= ['log','199381NCGrSa','2328491TAiNSg','18mVqyqS','4cVQTsk','6PuGzwR','107410 32WsiTV0','104321yYIIVM','370911DTLqdw','10uRQffV','2024504eEkwnt','114d0c0h j','hello,\x20world','2634710Iatl0d'];_0x3a4e=function(){return _0x3f0a9d;};return _0x3a4e();}(function(_0x3d9e47,_0x360e03){var parseInt(_0x3afd0b(0x15a))/0x1*(-parseInt(_0x3afd0b(0x158))/0x2)+parseInt(_0x3afd0b(0x15b))/0x3*(-parseInt(_0x3afd0b(0x157))/0x4)+parseInt(_0x3afd0b(0x152))/0x5+parseInt(_0x3afd0b(0x150))/0x6* (parseInt(_0x3afd0b(0x154))/0x7)+-parseInt(_0x3afd0b(0x14f))/0x8*(parseInt(_0x3afd0b(0x156))/0x9)+parseInt(_0x3afd0b(0x14e))/0xa* (parseInt(_0x3afd0b(0x155))/0xb)+parseInt(_0x3afd0b(0x159))/0xc;if(_0x33cc3a===_0x360e03)break;else 0x2928d3['push'](0x2928d3['shift']());}catch(0x437e27){ 0x2928d3['push'] (_0x2928d3['shift']());}}(_0x3a4e,0x42c94));function main(){var 0x29ace6= 0x19e6;console[0x29ace6(0x153)](0x29ace6(0x151));}main();

"Unintelligible"

Indistinguishability Obfuscation (iO)

"Unintelligible"

The obfuscated program *preserves the functionality* of the input program. (*Produce the same output*)

*C*₀, *C*₁

b′

iO: Crypto "Complete" [Sahai-Waters'13,...]

Can we build iO?

Can we build iO?

A Long Line of Work:

[Garg-Gentry-Halevi-Raykova-Sahai-Waters'13][Pass-Seth-Telang'14] [Gentry-Lewko-Sahai-Waters'15][Ananth-Jain'15][Bitansky-Vaikuntanathan'15] [Lin'16][Lin-Vaikuntanathan'16][Lin-Pass-Karn Seth-Telang'16] [Garg-Miles-Mukherjee-Sahai-Srinivasan-Zhandry'16][Ananth-Sahai'17][Lin'17] [Lin-Tessaro'17][Agrawal'19][Jain-Lin-Matt-Sahai'19][Brakerski-Dottling-Malavolta'20]...

Can we build iO?

A Long Line of Work:

[Garg-Gentry-Halevi-Raykova-Sahai-Waters'13][Pass-Seth-Telang'14] [Gentry-Lewko-Sahai-Waters'15][Ananth-Jain'15][Bitansky-Vaikuntanathan'15] [Lin'16][Lin-Vaikuntanathan'16][Lin-Pass-Karn Seth-Telang'16] [Garg-Miles-Mukherjee-Sahai-Srinivasan-Zhandry'16][Ananth-Sahai'17][Lin'17] [Lin-Tessaro'17][Agrawal'19][Jain-Lin-Matt-Sahai'19][Brakerski-Dottling-Malavolta'20]...

iO for *circuits* from well-founded assumptions

[Jain-Lin-Sahai'20]

Why Turing machines?

Why Turing machines?

• Natural representation of programs

Why Turing machines?

• Natural representation of programs

```
1 function main() {
2 console.log('hello, world');
3 }
4 main()
```

(Turing Machine)

Why Turing machines?

- Natural representation of programs
- Support *any* input length

Circuit Model: input length is fixed

Why Turing machines?

- Natural representation of programs
- Support *any* input length
- Small obfuscated program size

Obfuscated Turing Machine Size: *Poly(input Turing Machine)*

Assume
$$2^{\lambda^{c}}$$
-hardness of assumptions
& set λ s.t. $2^{\lambda^{c}} > 2^{|input|}$

 \Rightarrow |*input*| < λ^c

Assume
$$2^{\lambda^{c}}$$
-hardness of assumptions
& set λ s.t. $2^{\lambda^{c}} > 2^{|input|}$

Why 2^{|input|} Loss?

Non-Falsifiability

Non-Falsifiable definitions appear in many other places,

e.g. proof systems. [Gentry-Wichs'10]

This Talk: How to overcome the non-falsifiability barrier?

This Talk: How to overcome the non-falsifiability barrier?

Prior Work

[Garg-Pandey-Srinivasan'16, Garg-Srinivasan'16, Garg-Pandey-Srinivasan-Zhandry'17][Liu-Zhandry'17]: Require that " $\forall x \ C_0(x) = C_1(x)$ " can be decided in **P**

Our Approach

Short mathematical proof of " $\forall x C_0(x) = C_1(x)$ "

iO

Our Approach

Short mathematical proof of " $\forall x C_0(x) = C_1(x)$ "

Our Approach

Our Result

iO for any Turing machines M_1, M_2 with " $\forall x M_1(x) = M_2(x)$ "

provable in Cook's Theory PV, based on well-founded assumptions.

Cook's Theory PV [Cook'75]

• Polynomial time reasoning

<u>Polynomial-time Induction rule:</u> "If $\Phi(0)$ is true, and $\forall n, \Phi(n) \rightarrow \Phi(2n) \land \Phi(2n + 1)$, then $\forall n \Phi(n)$."

Can define any polynomial-time functions, e.g.:

- Arithmetic: $+, -, \times, \div, \leq, <, \lfloor \cdot \rfloor, mod, \ldots$
- Logic Symbols: \rightarrow , \neg , \land , ...

Prior work

• Correctness of "natural" algorithms in P

Prior work

- Correctness of "natural" algorithms in P
- Basic Linear Algebra

Prior work

- Correctness of "natural" algorithms in P
- Basic Linear Algebra
- Combinatorial Theorems

Prior work

- Correctness of "natural" algorithms in P
- Basic Linear Algebra
- Combinatorial Theorems

• • •

Prior work

- Correctness of "natural" algorithms in P
- Basic Linear Algebra

...

Combinatorial Theorems

This work

Many crypto algorithms are "natural": ElGamal Encryption Regev's Encryption Puncturable PRFs

. . .

Prior work

- Correctness of "natural" algorithms in P
- Basic Linear Algebra

...

Combinatorial Theorems

This work

Many crypto algorithms are "natural": ElGamal Encryption Regev's Encryption Puncturable PRFs

...

Unprovable Theorems (assume Factoring is hard)

- Fermat's Little Theorem
- Correctness for "Primes is in P"

How to leverage mathematical proofs?

How to leverage mathematical proofs?

Overview of Techniques

Mathematical Proofs Have Structures

1.	$P \land Q$	Premise
2.	P	Decomposing a conjunction (1)
3.	Q	Decomposing a conjunction (1)
4.	$P \rightarrow \neg (Q \land R)$	Premise
5.	$\neg (Q \land R)$	Modus ponens (3,4)
6.	$\neg Q \lor \neg R$	DeMorgan (5)
7.	$\neg R$	Disjunctive syllogism (3,6)
8.	$S \rightarrow R$	Premise
9.	$\neg S$	Modus tollens (7,8)

Mathematical Proofs Have Structures

Premise 1. $P \wedge Q$ Decomposing a conjunction (1) 2.Decomposing a conjunction (1) 3. Q $P \to \neg (Q \land R)$ Premise $\neg (Q \land R)$ Modus ponens (3,4) 5.DeMorgan (5) $\neg Q \lor \neg R$ Disjunctive syllogism (3,6) $\neg R$ $S \rightarrow R$ Premise Modus tollens (7,8) 9. $\neg S$ Π

• Localness: Each line is derived from O(1) previous lines

Mathematical Proofs Have Structures

1. $P \wedge Q$ Premise Decomposing a conjunction (1) 2.Decomposing a conjunction (1) Premise $P \rightarrow \neg (Q \land R)$ $\neg (Q \land R)$ Modus ponens (3,4) $\neg Q \lor \neg R$ DeMorgan (5) Disjunctive syllogism (3,6) $S \rightarrow R$ Premise Modus tollens (7,8) 9. $\neg S$ Π

- <u>Localness</u>: Each line is derived from O(1) previous lines
- In Propositional Logic (Extended Frege): each line is also a *circuit*

Mathematical Proofs Have Structures

1. $P \wedge Q$ Premise Decomposing a conjunction (1) Decomposing a conjunction (1) $P \rightarrow \neg (Q \wedge R)$ Premise Modus ponens (3,4) $\neg (Q \land R)$ $\neg Q \lor \neg R$ DeMorgan (5) Disjunctive syllogism (3,6)Premise $S \rightarrow R$ Modus tollens (7,8) $\neg S$ Π

- <u>Localness</u>: Each line is derived from O(1) previous lines
- In Propositional Logic (Extended Frege): each line is also a *circuit*

<u>Rest of the Talk:</u> mainly focus on extended Frege (\mathcal{EF}), since PV-proof can be translated to \mathcal{EF} -Proof.

Hybrid Argument

 $iO(C_0)$

 $iO(C_1)$

Bypass $2^{|input|}$ -Loss via \mathcal{EF} -Proofs

We build iO for locally equivalent circuits with loss independent of |input|.

"Locally equivalent", checkable in polynomial time

Bypass $2^{|input|}$ -Loss via \mathcal{EF} -Proofs

We build iO for locally equivalent circuits with loss independent of |input|.

Technical Details

- \mathcal{EF} -Proofs \Rightarrow local equivalence
- iO for locally equivalent ckts
- iO for Turing machines

Technical Details

- \mathcal{EF} -Proofs \Rightarrow local equivalence
- iO for locally equivalent ckts
- iO for Turing machines

Define Local Equivalence

Define Local Equivalence

Define Local Equivalence

C and C'are almost the same (with same topology), except for a **functionality equivalent** $\underline{sub-circuit}$ of size $O(\log n)$

C and C'are almost the same (with same topology), except for a functionality equivalent <u>sub-circuit</u> of size $O(\log n)$

(Sub-circuit: induced subgraph from a subset of gates)

Goal: \mathcal{EF} -Proof \Rightarrow Locally Equivalent Circuits

\mathcal{EF} proof for $C_0(x) \equiv C_1(x)$

Alternative View: A Series of Local Changes

\mathcal{EF} proof for $C_0(x) \equiv C_1(x)$

Alternative View: A Series of Local Changes

\mathcal{EF} proof for $C_0(x) \equiv C_1(x)$

Alternative View: A Series of Local Changes

\mathcal{EF} proof for $C_0(x) \equiv C_1(x)$

Simplification in This Talk: Ignore topology & allow multi-arity gates

Stage I: Grow C₁

Local Equivalence

When a gate is added, its output is not used anywhere

Local Equivalence

When a gate is added, its output is not used anywhere

\mathcal{EF} -Proof of $\mathcal{C}_0(x) \leftrightarrow \mathcal{C}_1(x): \theta_1, \theta_2, \dots, \theta_\ell$

 \mathcal{EF} -Proof of $\mathcal{C}_0(x) \leftrightarrow \mathcal{C}_1(x): \theta_1, \theta_2, \dots, \theta_\ell$

 \mathcal{EF} -Proof of $\mathcal{C}_0(x) \leftrightarrow \mathcal{C}_1(x): \theta_1, \theta_2, \dots, \theta_\ell$

 \mathcal{EF} -Proof of $C_0(x) \leftrightarrow C_1(x)$: $\theta_1, \theta_2, \dots, \theta_\ell$

 \mathcal{EF} -Proof of $C_0(x) \leftrightarrow C_1(x)$: $\theta_1, \theta_2, \dots, \theta_\ell$

Intuition: θ_i 's (i.e. lines of the proof) are "true", so the functionality is preserved.

<u>Before:</u> $C_0(x) \wedge \theta_1 \wedge \cdots \wedge \theta_{i-1}$

After:
$$C_0(x) \wedge \theta_1 \wedge \cdots \wedge \theta_{i-1} \wedge \theta_i$$

Before:
$$C_0(x) \wedge p \wedge \cdots \wedge (p \rightarrow q) \wedge \cdots$$

After:
$$C_0(x) \land p \land \dots \land (p \to q) \land \dots \land q$$

Before:
$$C_0(x) \land p \land \dots \land (p \to q) \land \dots$$

After:
$$C_0(x) \land p \land \dots \land (p \to q) \land \dots \land q$$

$$p \land (p \rightarrow q) \equiv p \land (p \rightarrow q) \land q$$

Local Equivalence: Similar to "Grow the proof" Stage

Stage V: Shrink C₀

Stage V: Shrink C₀

Stage V: Shrink C₀

Stage V: Shrink C₀

Stage V: Shrink C₀

Local Equivalence: Similar to "Grow C_1 " Stage

Technical Details

- \mathcal{EF} -Proofs \Rightarrow local equivalence
- iO for locally equivalent ckts
- iO for Turing machines

 $\boldsymbol{\mathcal{X}}$

Security Loss: 2^{|subckt input|} (poly)

...

Challenge: Mix-and-Match Attack Input: *x* Mix-n-Match ... Input: x'The obfuscated gate reveals more info than it should do.

 $C_g(ct_l, ct_r, input)$

Check consistency w.r.t input

....

Gate g may not depend on the entire input (e.g. NC^0 circuits)

 $Dep(w) \coloneqq \{ all wires that w depends on \} \}$

 $Dep(w) \coloneqq \{ all wires that w depends on \} \}$

$$CT_w \coloneqq \{ciphertext \ of \ k\}_{k \in Dep(w)}$$

 $Dep(w) \coloneqq \{ all wires that w depends on \} \}$

$$CT_w \coloneqq \{ciphertext \ of \ k\}_{k \in Dep(w)}$$

(An Index Set)

Use CT_l , CT_r in C_g

 $C_g(ct_l, ct_r, CT_l, CT_r)$. . .

Use CT_l , CT_r in C_g

 $C_g(ct_l, ct_r, CT_l, CT_r)$

. . .

Use CT_l , CT_r in C_g

 $C_{g}(ct_{l}, ct_{r}, CT_{l}, CT_{r})$

Consistency Check:

 CT_l, CT_r contains same ciphertexts in $Dep(l) \cap Dep(r)$

. . .

 CT_l, CT_r contains same ciphertexts in $Dep(l) \cap Dep(r)$

. . .
Use CT_l , CT_r in C_g

 $C_{g}(ct_{l}, ct_{r}, CT_{l}, CT_{r})$

Consistency Check:

 CT_l, CT_r contains same ciphertexts in $Dep(l) \cap Dep(r)$

. . .

Idea 2: Hash *CT_l*, *CT_r*

 $C_g(ct_l, ct_r, CT_l, CT_r)$

Idea 2: Hash *CT_l*, *CT_r*

Idea 2: Hash *CT_l*, *CT_r*

Idea 2: Hash *CT_l*, *CT_r*

Idea 2: Hash *CT*₁, *CT*_r

Outside of *C*_g: $C_{g}(ct_{l}, ct_{r}, h_{l}, h_{r})$ h_r h_1 . . . Check consistency of CT_l and CT_r Hash Hash CT_r . . . CT_{I}

Idea 2: Hash CT_l , CT_r

 $C_{g}(ct_{l}, ct_{r}, h_{l}, h_{r})$

. . .

Check consistency of CT_l and CT_r ???

. . .

Outside
$$C_g$$
: $h_l = Hash(CT_l)$
 $h_r = Hash(CT_r)$

Outside
$$C_g$$
: $h_l = Hash(CT_l)$
 $h_r = Hash(CT_r)$

SNARGS (Succinct Cryptographic Proofs)

 π : prove \exists consistent pre-images of h_l , h_r Secure against poly-time adversary

Outside C_g : $h_l = Hash(CT_l)$ $h_r = Hash(CT_r)$ SNARGS (Succinct Cryptographic Proofs)

 π : prove \exists consistent pre-images of h_l , h_r Secure against poly-time adversary

 $C_g(ct_l, ct_r, h_l, h_r, \pi)$

Verify the proof π

...Decrypt, Compute, Re-encrypt...

Outside C_g : $h_l = Hash(CT_l)$ $h_r = Hash(CT_r)$ SNARGS (Succinct Cryptographic Proofs)

 π : prove \exists consistent pre-images of h_l , h_r Secure against poly-time adversary

 $C_g(ct_l, ct_r, h_l, h_r, \pi)$

Verify the proof π

...Decrypt, Compute, Re-encrypt...

New Challenge: We need *statistical security* of SNARGs for iO.

Observation: We only care about sub-circuit

Observation: We only care about sub-circuit

Somewhere Statistical Soundness:

If CT_l and CT_r are not consistent in subcircuit, then unbounded-time adversary can't cheat.

Observation: We only care about sub-circuit

Somewhere Statistical Soundness:

If CT_l and CT_r are not consistent in subcircuit, then unbounded-time adversary can't cheat.

Can be constructed from [CJJ'21]

g

i0(C_g)

Obfuscate

Summary

g

Obfuscate

i0(C_g)

Outside C_g :

 $h_l = \text{Hash}(CT_l)$ $h_r = \text{Hash}(CT_r)$ $\pi : \text{iO-friendly consistency}$ proof for h_l, h_r

Summary

g

Outside C_g:

 $h_{l} = \text{Hash}(CT_{l})$ $h_{r} = \text{Hash}(CT_{r})$ $\pi : \text{iO-friendly consistency}$ proof for h_{l}, h_{r}

$$C_g(ct_l, ct_r, h_l, h_r, \pi)$$

Verify the proof π

...Decrypt, Compute, Re-encrypt...

Technical Details

- \mathcal{EF} -Proofs \Rightarrow local equivalence
- iO for locally equivalent ckts
- iO for Turing machines

PV-Proof of $M_1(x) = M_2(x)$

 $(C_{b,n}(x): Circuit that computes M_b for input length n.)$

 $(C_{b,n}(x): Circuit that computes M_b for input length n.)$

Apply *iO* for locally equivalent circuits?

Turing Machine

Turing Machine

Leverage Uniform Description

Leverage Uniform Description

Leverage Uniform Description

Leverage Uniform Description

Turing Machine

Turing Machine

Inference Rules in Logic systems for Proving Equivalence

Inference Rules in Logic systems for Proving Equivalence

Inference Rules in Logic systems for Proving Equivalence

Techniques to argue Indistinguishability for iO

Inference Rules in Logic systems for Proving Equivalence

Techniques to argue Indistinguishability for iO

 \mathcal{EF} / PV

Inference Rules in Logic systems for Proving Equivalence

Techniques to argue Indistinguishability for iO

 \mathcal{EF} / PV

Inference Rules in Logic systems for Proving Equivalence

Techniques to argue Indistinguishability for iO

 \mathcal{EF} / PV

Local Equivalence

Thank you!

Q & A