
Indistinguishability Obfuscation via
Mathematical Proofs of Equivalence

Abhishek Jain Zhengzhong Jin

Johns Hopkins University Johns Hopkins University → MIT

Indistinguishability Obfuscation (iO)

Source code

“Unintelligible”

iO

Indistinguishability Obfuscation (iO)

Source code

“Unintelligible”

The obfuscated program preserves the functionality of the input program.
(Produce the same output)

iO

Indistinguishability Security (as a Game)

Indistinguishability Security (as a Game)

𝐶!, 𝐶"

Indistinguishability Security (as a Game)

𝐶!, 𝐶"

𝑏 ← {0,1}

Indistinguishability Security (as a Game)

𝐶!, 𝐶"

𝑖𝑂 1# , 𝐶$ 𝑏 ← {0,1}

Indistinguishability Security (as a Game)

𝐶!, 𝐶"

𝑖𝑂 1# , 𝐶$

𝑏′

𝑏 ← {0,1}

Indistinguishability Security (as a Game)

𝐶!, 𝐶"

𝑖𝑂 1# , 𝐶$

𝑏′ If ∀ 𝑥 𝐶! 𝑥 = 𝐶" 𝑥 and 𝑏 = 𝑏′,
adversary wins.

𝑏 ← {0,1}

Indistinguishability Security (as a Game)

𝐶!, 𝐶"

𝑖𝑂 1# , 𝐶$

𝑏′ If ∀ 𝑥 𝐶! 𝑥 = 𝐶" 𝑥 and 𝑏 = 𝑏′,
adversary wins.

𝑏 ← {0,1}

Pr 𝑤𝑖𝑛𝑠 ≤
1
2
+ negl(𝜆)

Indistinguishability Security (as a Game)

𝐶!, 𝐶"

𝑖𝑂 1# , 𝐶$

𝑏′ If ∀ 𝑥 𝐶! 𝑥 = 𝐶" 𝑥 and 𝑏 = 𝑏′,
adversary wins.

𝑏 ← {0,1}

Pr 𝑤𝑖𝑛𝑠 ≤
1
2
+ negl(𝜆)

Important!

iO: Crypto “Complete” [Sahai-Waters’13,...]

iO

Witness Encryption
Succinct Non-interactive

Zero-Knowledge Arg.

Deniable
Encryption

…

Nash Equilibrium

Software
watermarking

Can we build iO?

A Long Line of Work:
[Garg-Gentry-Halevi-Raykova-Sahai-Waters’13][Pass-Seth-Telang’14]
[Gentry-Lewko-Sahai-Waters’15][Ananth-Jain’15][Bitansky-Vaikuntanathan’15]
[Lin’16][Lin-Vaikuntanathan’16][Lin-Pass-Karn Seth-Telang’16]
[Garg-Miles-Mukherjee-Sahai-Srinivasan-Zhandry’16][Ananth-Sahai’17][Lin’17]
[Lin-Tessaro’17][Agrawal’19][Jain-Lin-Matt-Sahai’19][Brakerski-Dottling-Malavolta’20]…

Can we build iO?

iO for circuits from well-founded assumptions
[Jain-Lin-Sahai’20]

A Long Line of Work:
[Garg-Gentry-Halevi-Raykova-Sahai-Waters’13][Pass-Seth-Telang’14]
[Gentry-Lewko-Sahai-Waters’15][Ananth-Jain’15][Bitansky-Vaikuntanathan’15]
[Lin’16][Lin-Vaikuntanathan’16][Lin-Pass-Karn Seth-Telang’16]
[Garg-Miles-Mukherjee-Sahai-Srinivasan-Zhandry’16][Ananth-Sahai’17][Lin’17]
[Lin-Tessaro’17][Agrawal’19][Jain-Lin-Matt-Sahai’19][Brakerski-Dottling-Malavolta’20]…

Can we build iO?

Question: Can we build iO for Turing machines?

Question: Can we build iO for Turing machines?

Why Turing machines?

Question: Can we build iO for Turing machines?

Why Turing machines?
• Natural representation of programs

Question: Can we build iO for Turing machines?

Why Turing machines?
• Natural representation of programs (Turing Machine)

Question: Can we build iO for Turing machines?

Why Turing machines?
• Natural representation of programs
• Support any input length Circuit Model: input length is fixed

Question: Can we build iO for Turing machines?

Why Turing machines?
• Natural representation of programs
• Support any input length
• Small obfuscated program size Obfuscated Turing Machine Size:

Poly(input Turing Machine)

Prior Work: Only for Bounded-Input Length
[BGLPT’15][CHJV’15][KLW’15][GS’18]…

Prior Work: Only for Bounded-Input Length
[BGLPT’15][CHJV’15][KLW’15][GS’18]…

Adversary for iO

Prior Work: Only for Bounded-Input Length
[BGLPT’15][CHJV’15][KLW’15][GS’18]…

Adversary for iO

Prior Work: Only for Bounded-Input Length
[BGLPT’15][CHJV’15][KLW’15][GS’18]…

Adversary for iO
Reduction
Algorithm

Break

Assumptions

Prior Work: Only for Bounded-Input Length
[BGLPT’15][CHJV’15][KLW’15][GS’18]…

Adversary for iO
Reduction
Algorithm

Break

Assumptions
2|$%&'(|-time

Reduction

Prior Work: Only for Bounded-Input Length
[BGLPT’15][CHJV’15][KLW’15][GS’18]…

Adversary for iO
Reduction
Algorithm

Assume 2#
%
-hardness of assumptions

& set 𝝀 s.t. 2#% > 2|'()*+|

Break

Assumptions
2|$%&'(|-time

Reduction

Prior Work: Only for Bounded-Input Length
[BGLPT’15][CHJV’15][KLW’15][GS’18]…

Adversary for iO
Reduction
Algorithm

Assume 2#
%
-hardness of assumptions

& set 𝝀 s.t. 2#% > 2|'()*+|
𝒊𝒏𝒑𝒖𝒕 < 𝝀𝒄

Break

Assumptions
2|$%&'(|-time

Reduction

⇒

Why 2|34567| Loss?

Why 2|34567| Loss?

𝐶! ≡ 𝐶"
Reduction

Real adversary
Assumptions

Break

Why 2|34567| Loss?

𝐶! ≡ 𝐶"
Reduction

Real adversary
Assumptions

Break

𝐶! 𝑥∗ ≠ 𝐶#(𝑥∗)
Reduction

Fake adversary
Assumptions

Not Break

Why 2|34567| Loss?

𝐶! ≡ 𝐶"
Reduction

Real adversary
Assumptions

Break

𝐶! 𝑥∗ ≠ 𝐶#(𝑥∗)
Reduction

Fake adversary
Assumptions

Not Break

Reduction needs to ‘decide’ the
functionality equivalence.

Non-Falsifiability

Non-Falsifiability

Check ∀ 𝑥 𝐶! 𝑥 = 𝐶" 𝑥

𝐶!, 𝐶"

𝑖𝑂 𝐶$

𝑏′

𝑏 ← {0,1}

iO Security

Non-Falsifiability

Check ∀ 𝑥 𝐶! 𝑥 = 𝐶" 𝑥

𝐶!, 𝐶"

𝑖𝑂 𝐶$

𝑏′

𝑏 ← {0,1}

iO Security

(inefficient checking)

Non-Falsifiability

Check ∀ 𝑥 𝐶! 𝑥 = 𝐶" 𝑥

𝐶!, 𝐶"

𝑖𝑂 𝐶$

𝑏′

𝑏 ← {0,1}

iO Security

(inefficient checking)

Non-Falsifiable

Non-Falsifiability

Check ∀ 𝑥 𝐶! 𝑥 = 𝐶" 𝑥

𝐶!, 𝐶"

𝑖𝑂 𝐶$

𝑏′

𝑏 ← {0,1}

iO Security

(inefficient checking)

Non-Falsifiable

Broader Perspective
Non-Falsifiable definitions appear in many other places,

e.g. proof systems. [Gentry-Wichs’10]

This Talk: How to overcome the non-falsifiability barrier?

This Talk: How to overcome the non-falsifiability barrier?

Prior Work
[Garg-Pandey-Srinivasan’16, Garg-Srinivasan’16,

Garg-Pandey-Srinivasan-Zhandry’17][Liu-Zhandry’17]:
Require that “∀𝑥 𝐶! 𝑥 = 𝐶"(𝑥)” can be decided in P

Observation: We Prove Equivalence in Math

iO

Applications

Observation: We Prove Equivalence in Math

iO

Applications Security Proof of the Application

Observation: We Prove Equivalence in Math

iO

Applications Security Proof of the Application

Observation: We Prove Equivalence in Math

iO

Applications

Build 𝐶! , 𝐶"

Security Proof of the Application

Observation: We Prove Equivalence in Math

iO

Applications

Build 𝐶! , 𝐶"

Math proof of ∀𝑥 𝐶! 𝑥 = 𝐶"(𝑥)

Security Proof of the Application

Observation: We Prove Equivalence in Math

iO

Applications

Build 𝐶! , 𝐶"

Math proof of ∀𝑥 𝐶! 𝑥 = 𝐶"(𝑥)

Security Proof of the Application

iO Security ⇒ 𝑖𝑂 𝐶! ≈ 𝑖𝑂(𝐶")

Observation: We Prove Equivalence in Math

iO

Applications

Build 𝐶! , 𝐶"

Math proof of ∀𝑥 𝐶! 𝑥 = 𝐶"(𝑥)

Security Proof of the Application

iO Security ⇒ 𝑖𝑂 𝐶! ≈ 𝑖𝑂(𝐶")

Observation: We Prove Equivalence in Math

iO

Applications

Build 𝐶! , 𝐶"

Math proof of ∀𝑥 𝐶! 𝑥 = 𝐶"(𝑥)

Security Proof of the Application

iO Security ⇒ 𝑖𝑂 𝐶! ≈ 𝑖𝑂(𝐶")

I can only process short proofs.
(length ≪ 2|'()*+|)

(our little brain)

Our Approach

iO

Short mathematical proof of “∀𝑥 𝐶! 𝑥 = 𝐶"(𝑥)”

Our Approach

iO

Short mathematical proof of “∀𝑥 𝐶! 𝑥 = 𝐶"(𝑥)”

Our Approach

iO

Assumptions

Short mathematical proof of “∀𝑥 𝐶! 𝑥 = 𝐶"(𝑥)”

Efficient Reduction Algorithm
(this work)

𝑖𝑂 for any Turing machines 𝑀", 𝑀- with “∀𝑥 𝑀" 𝑥 = 𝑀-(𝑥)”

provable in Cook’s Theory PV, based on well-founded assumptions.

Our Result

Cook’s Theory 𝑃𝑉 [Cook’75]

Can define any polynomial-time functions, e.g.:
• Arithmetic: +,−,×,÷,≤,<, ⋅ , 𝑚𝑜𝑑,…
• Logic Symbols: →,¬,∧, …

• Polynomial time reasoning

Polynomial-time Induction rule:
“If Φ(0) is true, and ∀𝑛,Φ 𝑛 → Φ 2𝑛 ∧ Φ 2𝑛 + 1 , then ∀𝑛 Φ(𝑛).”

What Theorems Can 𝑃𝑉 Prove?

What Theorems Can 𝑃𝑉 Prove?
Prior work

What Theorems Can 𝑃𝑉 Prove?
Prior work

• Correctness of “natural”
algorithms in P

What Theorems Can 𝑃𝑉 Prove?
Prior work

• Correctness of “natural”
algorithms in P

• Basic Linear Algebra

What Theorems Can 𝑃𝑉 Prove?
Prior work

• Correctness of “natural”
algorithms in P

• Basic Linear Algebra
• Combinatorial Theorems

What Theorems Can 𝑃𝑉 Prove?
Prior work

• Correctness of “natural”
algorithms in P

• Basic Linear Algebra
• Combinatorial Theorems

…

What Theorems Can 𝑃𝑉 Prove?
Prior work

• Correctness of “natural”
algorithms in P

• Basic Linear Algebra
• Combinatorial Theorems

…

This work
Many crypto algorithms are “natural”:

ElGamal Encryption
Regev’s Encryption
Puncturable PRFs
...

What Theorems Can 𝑃𝑉 Prove?
Prior work

• Correctness of “natural”
algorithms in P

• Basic Linear Algebra
• Combinatorial Theorems

…

This work
Many crypto algorithms are “natural”:

ElGamal Encryption
Regev’s Encryption
Puncturable PRFs
...

Unprovable Theorems (assume Factoring is hard)
• Fermat’s Little Theorem
• Correctness for “Primes is in P”

How to leverage mathematical proofs?

How to leverage mathematical proofs?

Overview of Techniques

What Information does a Proof Provide?

What Information does a Proof Provide?

Mathematical Proofs Have Structures

What Information does a Proof Provide?

• Localness: Each line is derived
from O(1) previous lines

Mathematical Proofs Have Structures

What Information does a Proof Provide?

• Localness: Each line is derived
from O(1) previous lines

Mathematical Proofs Have Structures

• In Propositional Logic (Extended Frege):
each line is also a circuit

What Information does a Proof Provide?

• Localness: Each line is derived
from O(1) previous lines

Mathematical Proofs Have Structures

• In Propositional Logic (Extended Frege):
each line is also a circuit

Rest of the Talk: mainly focus on extended Frege (ℰℱ),
since PV-proof can be translated to ℰℱ-Proof.

Bypass 2|input|-Loss via ℰℱ-Proofs

Bypass 2|input|-Loss via ℰℱ-Proofs

𝑖𝑂 𝐶! 𝑖𝑂(𝐶")

Hybrid Argument

Bypass 2|input|-Loss via ℰℱ-Proofs

𝑖𝑂 𝐶! ≈ 𝑖𝑂() 𝑖𝑂() 𝑖𝑂(𝐶")

Hybrid Argument

…≈

Bypass 2|input|-Loss via ℰℱ-Proofs

𝑖𝑂 𝐶! ≈ 𝑖𝑂() 𝑖𝑂() 𝑖𝑂(𝐶")

Hybrid Argument

…≈

Bypass 2|input|-Loss via ℰℱ-Proofs

𝑖𝑂 𝐶! ≈ 𝑖𝑂() 𝑖𝑂() 𝑖𝑂(𝐶")

Hybrid Argument

“Locally equivalent”, checkable in polynomial time

…≈

Bypass 2|input|-Loss via ℰℱ-Proofs

𝑖𝑂 𝐶! ≈ 𝑖𝑂() 𝑖𝑂() 𝑖𝑂(𝐶")

Hybrid Argument

“Locally equivalent”, checkable in polynomial time

…≈

We build iO for locally equivalent circuits
with loss independent of |input|.

Bypass 2|input|-Loss via ℰℱ-Proofs

Poly. size ℰℱ-proof for 𝐶! 𝑥 ≡ 𝐶"(𝑥)

𝑖𝑂 𝐶! ≈ 𝑖𝑂() 𝑖𝑂() 𝑖𝑂(𝐶")

Hybrid Argument

“Locally equivalent”, checkable in polynomial time

…≈

We build iO for locally equivalent circuits
with loss independent of |input|.

• ℰℱ-Proofs ⇒ local equivalence
• iO for locally equivalent ckts
• iO for Turing machines

Technical Details

• ℰℱ-Proofs ⇒ local equivalence
• iO for locally equivalent ckts
• iO for Turing machines

• 𝓔𝓕-Proofs ⇒ local equivalence
• iO for locally equivalent ckts
• iO for Turing machines

Technical Details

Define Local Equivalence

Define Local Equivalence

𝐶: : 𝐶′

𝐶 and 𝐶′are almost the same (with same topology), except for
a functionality equivalent sub-circuit of size 𝑂(log 𝑛)

Define Local Equivalence

≡

𝐶: : 𝐶′

𝐶 and 𝐶′are almost the same (with same topology), except for
a functionality equivalent sub-circuit of size 𝑂(log 𝑛)

Define Local Equivalence

≡

𝐶: : 𝐶′

(Sub-circuit: induced subgraph from a subset of gates)

Goal: ℰℱ-Proof ⇒ Locally Equivalent Circuits

ℰℱ proof for 𝐶! 𝑥 ≡ 𝐶"(𝑥)

𝐶! 𝐶"……

Locally Equivalent

Goal: ℰℱ-Proof ⇒ Locally Equivalent CircuitsAlternative View: A Series of Local Changes
ℰℱ proof for 𝐶! 𝑥 ≡ 𝐶"(𝑥)

𝐶! 𝐶"……

Locally Equivalent

Goal: ℰℱ-Proof ⇒ Locally Equivalent CircuitsAlternative View: A Series of Local Changes
ℰℱ proof for 𝐶! 𝑥 ≡ 𝐶"(𝑥)

𝐶! 𝐶"……

Local Change

Goal: ℰℱ-Proof ⇒ Locally Equivalent CircuitsAlternative View: A Series of Local Changes
ℰℱ proof for 𝐶! 𝑥 ≡ 𝐶"(𝑥)

𝐶! 𝐶"……

Local Change
Simplification in This Talk: Ignore topology & allow multi-arity gates

Stage I: Grow 𝐶:

𝐶! 𝐶! 𝐶"
𝑥 𝑥 𝑥

Add Gates in 𝐶" one-by-one

Stage I: Grow 𝐶:

𝐶! 𝐶! 𝐶"
𝑥 𝑥 𝑥Set output as 𝐶!(𝑥)

Add Gates in 𝐶" one-by-one

Stage I: Grow 𝐶:

𝐶! 𝐶! 𝐶"
𝑥 𝑥 𝑥Set output as 𝐶!(𝑥)

Local Equivalence
When a gate is added, its output is not used anywhere

Add Gates in 𝐶" one-by-one

Stage I: Grow 𝐶:

𝐶! 𝐶! 𝐶"
𝑥 𝑥 𝑥Set output as 𝐶!(𝑥)

Local Equivalence
When a gate is added, its output is not used anywhere

Add Gates in 𝐶" one-by-one
𝑜! 𝑜"

𝑜!

Stage II: Grow the Proof

ℰℱ-Proof of 𝐶! 𝑥 ↔ 𝐶"(𝑥): 𝜃", 𝜃-, … , 𝜃ℓ

Stage II: Grow the Proof

ℰℱ-Proof of 𝐶! 𝑥 ↔ 𝐶"(𝑥): 𝜃", 𝜃-, … , 𝜃ℓ

𝐶! 𝐶"

𝑜! 𝑜"

𝑜!

Stage II: Grow the Proof

ℰℱ-Proof of 𝐶! 𝑥 ↔ 𝐶"(𝑥): 𝜃", 𝜃-, … , 𝜃ℓ

𝐶! 𝐶"

Add 𝜃' one-by-one
𝑜! 𝑜"

𝑜!

Stage II: Grow the Proof

ℰℱ-Proof of 𝐶! 𝑥 ↔ 𝐶"(𝑥): 𝜃", 𝜃-, … , 𝜃ℓ

𝐶! 𝐶"

Add 𝜃' one-by-one
𝑜! 𝑜"

𝑜!

𝐶! 𝐶"

𝑜! 𝑜"

𝑜! ∧ 𝜃" ∧ ⋯∧ 𝜃'/" ∧ 𝜃'

Stage II: Grow the Proof

ℰℱ-Proof of 𝐶! 𝑥 ↔ 𝐶"(𝑥): 𝜃", 𝜃-, … , 𝜃ℓ

𝐶! 𝐶"

Add 𝜃' one-by-one
𝑜! 𝑜"

𝑜!

𝐶! 𝐶"

𝑜! 𝑜"

𝑜! ∧ 𝜃" ∧ ⋯∧ 𝜃'/" ∧ 𝜃'

Intuition: 𝜃'’s (i.e. lines of the proof) are “true”,
so the functionality is preserved.

Stage II: Local Equivalence

Before: 𝐶!(𝑥) ∧ 𝜃" ∧ ⋯∧ 𝜃'/"

After: 𝐶!(𝑥) ∧ 𝜃" ∧ ⋯∧ 𝜃'/" ∧ 𝜃#

𝑖-th Step: Add 𝜃#

Stage II: Local Equivalence

Before: 𝐶!(𝑥) ∧ 𝜃" ∧ ⋯∧ 𝜃'/"

After: 𝐶!(𝑥) ∧ 𝜃" ∧ ⋯∧ 𝜃'/" ∧ 𝜃#

𝜃' is derived via Modus Ponens:

𝑖-th Step: Add 𝜃#

𝑝, 𝑝 → 𝑞 ⊢ 𝑞

Stage II: Local Equivalence

Before:

After:

𝜃' is derived via Modus Ponens:

𝑖-th Step: Add 𝜃#

𝑝, 𝑝 → 𝑞 ⊢ 𝑞

Stage II: Local Equivalence

Before:

After:

𝜃' is derived via Modus Ponens:

𝑖-th Step: Add 𝜃#

𝐶! 𝑥 ∧ 𝑝 ∧ ⋯∧ 𝑝 → 𝑞 ∧ ⋯

𝐶! 𝑥 ∧ 𝑝 ∧ ⋯∧ 𝑝 → 𝑞 ∧ ⋯∧ 𝑞

𝑝, 𝑝 → 𝑞 ⊢ 𝑞

Stage II: Local Equivalence

Before:

After:

𝜃' is derived via Modus Ponens:

𝑖-th Step: Add 𝜃#

𝐶! 𝑥 ∧ 𝑝 ∧ ⋯∧ 𝑝 → 𝑞 ∧ ⋯

𝐶! 𝑥 ∧ 𝑝 ∧ ⋯∧ 𝑝 → 𝑞 ∧ ⋯∧ 𝑞

𝑝 ∧ 𝑝 → 𝑞 ≡ 𝑝 ∧ 𝑝 → 𝑞 ∧ 𝑞

𝑝, 𝑝 → 𝑞 ⊢ 𝑞

Stage III: Switch 𝑜A to 𝑜:

𝐶! 𝐶"

𝑜! 𝑜"

𝑜! ∧ 𝜃" ∧ ⋯∧ 𝜃ℓ

Stage III: Switch 𝑜A to 𝑜:

𝐶! 𝐶"

𝑜! 𝑜"

𝑜! ∧ 𝜃" ∧ ⋯∧ 𝜃ℓ

𝐶! 𝐶"

𝑜! 𝑜"

𝑜" ∧ 𝜃" ∧ ⋯∧ 𝜃ℓ

Stage III: Switch 𝑜A to 𝑜:

𝐶! 𝐶"

𝑜! 𝑜"

𝑜! ∧ 𝜃" ∧ ⋯∧ 𝜃ℓ

𝐶! 𝐶"

𝑜! 𝑜"

𝑜" ∧ 𝜃" ∧ ⋯∧ 𝜃ℓ

𝜃ℓ is “𝑜! ↔ 𝑜"” (A proof of 𝐶! 𝑥 ↔ 𝐶"(𝑥) must end with 𝑜!↔ 𝑜")

Local Equivalence

Stage III: Switch 𝑜A to 𝑜:

𝐶! 𝐶"

𝑜! 𝑜"

𝑜! ∧ 𝜃" ∧ ⋯∧ 𝜃ℓ

𝐶! 𝐶"

𝑜! 𝑜"

𝑜" ∧ 𝜃" ∧ ⋯∧ 𝜃ℓ

𝜃ℓ is “𝑜! ↔ 𝑜"” (A proof of 𝐶! 𝑥 ↔ 𝐶"(𝑥) must end with 𝑜!↔ 𝑜")

𝑜! ∧ 𝑜! ↔ 𝑜" ≡ 𝑜" ∧ 𝑜! ↔ 𝑜"

Local Equivalence

Stage IV: Shrink the Proof

𝐶! 𝐶"

𝑜! 𝑜"

𝑜" ∧ 𝜃" ∧ ⋯∧ 𝜃ℓ

Stage IV: Shrink the Proof

𝐶! 𝐶"

𝑜! 𝑜"

𝑜" ∧ 𝜃" ∧ ⋯∧ 𝜃ℓ Delete 𝜃'
one-by-one

Stage IV: Shrink the Proof

𝐶! 𝐶"

𝑜! 𝑜"

𝑜" ∧ 𝜃" ∧ ⋯∧ 𝜃ℓ

𝐶! 𝐶"

𝑜! 𝑜"

𝑜"
Delete 𝜃'

one-by-one

Stage IV: Shrink the Proof

𝐶! 𝐶"

𝑜! 𝑜"

𝑜" ∧ 𝜃" ∧ ⋯∧ 𝜃ℓ

𝐶! 𝐶"

𝑜! 𝑜"

𝑜"

Local Equivalence: Similar to “Grow the proof” Stage

Delete 𝜃'
one-by-one

Stage V: Shrink 𝐶A

Stage V: Shrink 𝐶A

𝐶! 𝐶"

𝑜! 𝑜"

𝑜"

Stage V: Shrink 𝐶A

𝐶! 𝐶"

𝑜! 𝑜"

𝑜"
Delete 𝐶!

gate-by-gate

Stage V: Shrink 𝐶A

𝐶! 𝐶"

𝑜! 𝑜"

𝑜"
Delete 𝐶!

gate-by-gate
𝐶"

𝑜"

𝑜"

𝐶"

Stage V: Shrink 𝐶A

𝐶! 𝐶"

𝑜! 𝑜"

𝑜"
Delete 𝐶!

gate-by-gate
𝐶"

𝑜"

𝑜"

𝐶"

Local Equivalence: Similar to “Grow 𝐶"” Stage

Technical Details • ℰℱ-Proofs ⇒ local equivalence
• iO for locally equivalent ckts
• iO for Turing machines

Gate-by-Gate Obfuscation

𝑔
𝑙 𝑟

𝑜

Gate-by-Gate Obfuscation

𝑔

𝑖𝑂(𝐶0)

Obfuscate

𝑙 𝑟

𝑜

Gate-by-Gate Obfuscation

𝑔

𝑖𝑂(𝐶0)

Obfuscate

𝑙 𝑟

𝑜

iO for small ckt

Gate-by-Gate Obfuscation

𝑔
: encrypt and sign the wire values

𝑖𝑂(𝐶0)

Obfuscate

𝑙 𝑟

𝑜

iO for small ckt

𝐶$()

Gate-by-Gate Obfuscation

𝑔

𝑚1 𝑚2

𝑚3

: encrypt and sign the wire values

Decrypt 𝑚), 𝑚*
𝑚+ = 𝑔(𝑤), 𝑤*)

𝑖𝑂(𝐶0)

Obfuscate

Output:

𝑙 𝑟

𝑜

iO for small ckt

𝐶$()

Gate-by-Gate Obfuscation

𝑔

𝑚1 𝑚2

𝑚3

: encrypt and sign the wire values

Decrypt 𝑚), 𝑚*
𝑚+ = 𝑔(𝑤), 𝑤*)

𝑖𝑂(𝐶0)

Obfuscate

Output:

𝑙 𝑟

𝑜

Key Feature: obfuscated circuit preserves
the topology of the input circuit

iO for small ckt

Prove Security w/o 2|DEFGH| Loss

Prove Security w/o 2|DEFGH| Loss

𝐶:

𝐶4:

𝐶, 𝐶,: Locally Equivalent

Prove Security w/o 2|DEFGH| Loss

𝐶:

𝐶4:

Gate-by-Gate
Obfuscation

𝐶, 𝐶,: Locally Equivalent

Prove Security w/o 2|DEFGH| Loss

𝐶:

𝐶4:

Gate-by-Gate
Obfuscation

𝐶, 𝐶,: Locally Equivalent

Prove Security w/o 2|DEFGH| Loss

𝐶:

𝐶4:

Gate-by-Gate
Obfuscation

𝐶, 𝐶,: Locally Equivalent

Prove Security w/o 2|DEFGH| Loss

𝐶:

𝐶4:

Gate-by-Gate
Obfuscation

𝐶, 𝐶,: Locally Equivalent

Prove Security w/o 2|DEFGH| Loss

Security Loss:
2|"#$%&' ()*#'|

(poly)

𝐶:

𝐶4:

Gate-by-Gate
Obfuscation ≈

𝐶, 𝐶,: Locally Equivalent

Challenge: Mix-and-Match Attack

Challenge: Mix-and-Match Attack

Input: 𝑥

Challenge: Mix-and-Match Attack

Input: 𝑥

…

Input: 𝑥′

…

Challenge: Mix-and-Match Attack

Mix-n-Match

Input: 𝑥

…

Input: 𝑥′

…

Challenge: Mix-and-Match Attack

Mix-n-Match

Input: 𝑥

…

Input: 𝑥′

…

Challenge: Mix-and-Match Attack

Mix-n-Match

Input: 𝑥

…

Input: 𝑥′

…

The obfuscated gate reveals
more info than it should do.

𝐶0(𝑐𝑡1 , 𝑐𝑡2 , 𝑖𝑛𝑝𝑢𝑡)

Check consistency w.r.t input
....

𝐶0(𝑐𝑡1 , 𝑐𝑡2 , 𝑖𝑛𝑝𝑢𝑡)

Check consistency w.r.t input
....

New Challenge
Too Long

Idea 1: Replace Input with Dependent Wires

𝐶0(𝑐𝑡1 , 𝑐𝑡2 , 𝑖𝑛𝑝𝑢𝑡)

Check consistency w.r.t input
....

New Challenge
Too Long

Idea 1: Replace Input with Dependent Wires

Gate 𝑔 may not depend on the entire input
(e.g. 𝑁𝐶+ circuits)

𝐶0(𝑐𝑡1 , 𝑐𝑡2 , 𝑖𝑛𝑝𝑢𝑡)

Check consistency w.r.t input
....

New Challenge
Too Long

Define Dependence

𝑤

Dep(𝑤)

Define Dependence

𝑤

Dep(𝑤)

Dep(𝑤) ≔ { all wires that 𝑤 depends on }

Define Dependence

𝑤

Dep(𝑤)

Dep(𝑤) ≔ { all wires that 𝑤 depends on }

𝐶𝑇5 ≔ 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 𝑜𝑓 𝑘 6∈89:(5)

Define Dependence

𝑤

Dep(𝑤)

Dep(𝑤) ≔ { all wires that 𝑤 depends on }

𝐶𝑇5 ≔ 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 𝑜𝑓 𝑘 6∈89:(5)

(An Index Set)

Use 𝐶𝑇I , 𝐶𝑇J in 𝐶K

𝐶$(𝑐𝑡% , 𝑐𝑡& , 𝐶𝑇% , 𝐶𝑇&)

...

𝑔
𝑙 𝑟

Dep(𝑟)Dep(𝑙)

Use 𝐶𝑇I , 𝐶𝑇J in 𝐶K

𝐶$(𝑐𝑡% , 𝑐𝑡& , 𝐶𝑇% , 𝐶𝑇&)

...

𝑔
𝑙 𝑟

Dep(𝑟)Dep(𝑙)

Use 𝐶𝑇I , 𝐶𝑇J in 𝐶K

𝐶$(𝑐𝑡% , 𝑐𝑡& , 𝐶𝑇% , 𝐶𝑇&)

...

𝑔
𝑙 𝑟

Dep(𝑟)Dep(𝑙)

Consistency Check:
𝐶𝑇𝒍, 𝐶𝑇2 contains same ciphertexts

in Dep 𝑙 ∩ Dep 𝑟

Use 𝐶𝑇I , 𝐶𝑇J in 𝐶K

𝐶$(𝑐𝑡% , 𝑐𝑡& , 𝐶𝑇% , 𝐶𝑇&)

...

𝑔
𝑙 𝑟

Dep(𝑟)Dep(𝑙)

Consistency Check:
𝐶𝑇𝒍, 𝐶𝑇2 contains same ciphertexts

in Dep 𝑙 ∩ Dep 𝑟

New Challenge: for general
circuits, still too Long

Use 𝐶𝑇I , 𝐶𝑇J in 𝐶K

𝐶$(𝑐𝑡% , 𝑐𝑡& , 𝐶𝑇% , 𝐶𝑇&)

...

𝑔
𝑙 𝑟

Dep(𝑟)Dep(𝑙)

Consistency Check:
𝐶𝑇𝒍, 𝐶𝑇2 contains same ciphertexts

in Dep 𝑙 ∩ Dep 𝑟

Idea 2: Hash 𝐶𝑇I , 𝐶𝑇J

𝐶$(𝑐𝑡% , 𝑐𝑡& ,)

...

𝐶𝑇1, 𝐶𝑇2
...

Idea 2: Hash 𝐶𝑇I , 𝐶𝑇J

Hash

𝐶𝑇, 𝐶𝑇-

Hash

Outside of 𝑪𝒈:
ℎ, ℎ-𝐶$(𝑐𝑡% , 𝑐𝑡& ,)

...

𝐶𝑇1, 𝐶𝑇2
...

Idea 2: Hash 𝐶𝑇I , 𝐶𝑇J

Hash

𝐶𝑇, 𝐶𝑇-

Hash

Outside of 𝑪𝒈:
ℎ, ℎ-𝐶$(𝑐𝑡% , 𝑐𝑡& ,)

...

...

Idea 2: Hash 𝐶𝑇I , 𝐶𝑇J

Hash

𝐶𝑇, 𝐶𝑇-

Hash

Outside of 𝑪𝒈:
ℎ, ℎ-𝐶$(𝑐𝑡% , 𝑐𝑡& ,)

...

ℎ1 , ℎ2
...

Idea 2: Hash 𝐶𝑇I , 𝐶𝑇J

Hash

𝐶𝑇, 𝐶𝑇-

Hash

Outside of 𝑪𝒈:
ℎ, ℎ-𝐶$(𝑐𝑡% , 𝑐𝑡& ,)

...

ℎ1 , ℎ2

Check consistency of 𝐶𝑇1 and 𝐶𝑇2
...

Idea 2: Hash 𝐶𝑇I , 𝐶𝑇J

Hash

𝐶𝑇, 𝐶𝑇-

Hash

Outside of 𝑪𝒈:
ℎ, ℎ-𝐶$(𝑐𝑡% , 𝑐𝑡& ,)

...

ℎ1 , ℎ2

Check consistency of 𝐶𝑇1 and 𝐶𝑇2Check consistency of 𝐶𝑇1 and 𝐶𝑇2???
...

Idea 3: Apply SNARGs
ℎ) = 𝐻𝑎𝑠ℎ(𝐶𝑇))
ℎ* = 𝐻𝑎𝑠ℎ(𝐶𝑇*)

Outside 𝐶0:

Idea 3: Apply SNARGs
ℎ) = 𝐻𝑎𝑠ℎ(𝐶𝑇))
ℎ* = 𝐻𝑎𝑠ℎ(𝐶𝑇*)

Outside 𝐶0:
SNARGs (Succinct Cryptographic Proofs)

𝜋 : prove ∃ consistent pre-images of ℎ), ℎ*
Secure against poly-time adversary

Idea 3: Apply SNARGs
ℎ) = 𝐻𝑎𝑠ℎ(𝐶𝑇))
ℎ* = 𝐻𝑎𝑠ℎ(𝐶𝑇*)

Outside 𝐶0:
SNARGs (Succinct Cryptographic Proofs)

𝜋 : prove ∃ consistent pre-images of ℎ), ℎ*
Secure against poly-time adversary

𝐶$(𝑐𝑡% , 𝑐𝑡& , ℎ% , ℎ& , 𝜋)

...Decrypt, Compute, Re-encrypt...
Verify the proof 𝜋

Idea 3: Apply SNARGs
ℎ) = 𝐻𝑎𝑠ℎ(𝐶𝑇))
ℎ* = 𝐻𝑎𝑠ℎ(𝐶𝑇*)

Outside 𝐶0:
SNARGs (Succinct Cryptographic Proofs)

𝜋 : prove ∃ consistent pre-images of ℎ), ℎ*
Secure against poly-time adversary

New Challenge: We need statistical security of SNARGs for iO.

𝐶$(𝑐𝑡% , 𝑐𝑡& , ℎ% , ℎ& , 𝜋)

...Decrypt, Compute, Re-encrypt...
Verify the proof 𝜋

We Use: iO-Friendly SNARGs

Dep(𝑟)Dep(𝑙)

We Use: iO-Friendly SNARGs

Dep(𝑟)Dep(𝑙)

Observation: We only care about sub-circuit

We Use: iO-Friendly SNARGs

Dep(𝑟)Dep(𝑙) Somewhere Statistical Soundness:
If 𝐶𝑇) and 𝐶𝑇* are not consistent in subcircuit,
then unbounded-time adversary can’t cheat.

Observation: We only care about sub-circuit

We Use: iO-Friendly SNARGs

Dep(𝑟)Dep(𝑙) Somewhere Statistical Soundness:
If 𝐶𝑇) and 𝐶𝑇* are not consistent in subcircuit,
then unbounded-time adversary can’t cheat.

Observation: We only care about sub-circuit

Can be constructed from [CJJ’21]

Summary

𝑔

𝑖𝑂(𝐶0)

Obfuscate

Summary

ℎ) = Hash(𝐶𝑇))
ℎ* = Hash(𝐶𝑇*)Outside 𝐶0:

𝜋 : iO-friendly consistency
proof for ℎ1 , ℎ2

𝑔

𝑖𝑂(𝐶0)

Obfuscate

Summary

ℎ) = Hash(𝐶𝑇))
ℎ* = Hash(𝐶𝑇*)Outside 𝐶0:

𝐶$(𝑐𝑡% , 𝑐𝑡& , ℎ% , ℎ& , 𝜋)

...Decrypt, Compute, Re-encrypt...

Verify the proof 𝜋

𝜋 : iO-friendly consistency
proof for ℎ1 , ℎ2

𝑔

𝑖𝑂(𝐶0)

Obfuscate

Technical Details • ℰℱ-Proofs ⇒ local equivalence
• iO for locally equivalent ckts
• iO for Turing machines

Propositional Translation [Cook’75]

Propositional Translation [Cook’75]

Proofs in PV Poly-size ℰℱ-Proofs
Translate

Propositional Translation [Cook’75]

Proofs in PV Poly-size ℰℱ-Proofs
Translate

𝑃𝑉-Proof of
𝑀" 𝑥 = 𝑀-(𝑥)

Propositional Translation [Cook’75]

Proofs in PV Poly-size ℰℱ-Proofs
Translate

𝑃𝑉-Proof of
𝑀" 𝑥 = 𝑀-(𝑥)

Fix input length 𝑛

Propositional Translation [Cook’75]

Proofs in PV Poly-size ℰℱ-Proofs
Translate

𝑃𝑉-Proof of
𝑀" 𝑥 = 𝑀-(𝑥)

ℰℱ-Proof of
𝐶",(𝑥 ↔ 𝐶-,((𝑥)

Fix input length 𝑛

Propositional Translation [Cook’75]

Proofs in PV Poly-size ℰℱ-Proofs
Translate

𝑃𝑉-Proof of
𝑀" 𝑥 = 𝑀-(𝑥)

ℰℱ-Proof of
𝐶",(𝑥 ↔ 𝐶-,((𝑥)

(𝐶-,%(𝑥): Circuit that computes 𝑀- for input length 𝑛.)

Fix input length 𝑛

Propositional Translation [Cook’75]

Proofs in PV Poly-size ℰℱ-Proofs
Translate

𝑃𝑉-Proof of
𝑀" 𝑥 = 𝑀-(𝑥)

ℰℱ-Proof of
𝐶",(𝑥 ↔ 𝐶-,((𝑥)

(𝐶-,%(𝑥): Circuit that computes 𝑀- for input length 𝑛.)

Fix input length 𝑛

Apply 𝑖𝑂 for locally equivalent circuits?

iO for Turing Machines: Initial Attempt

iO for Turing Machines: Initial Attempt

Turing Machine

iO for Turing Machines: Initial Attempt

(𝑁! = 𝜆/01 2)

Turing Machine

iO for Turing Machines: Initial Attempt

(𝑁! = 𝜆/01 2)

Turing Machine

𝐶":

𝐶-:

…

𝐶@!:

Ckt for every input length
𝑛 ≤ 𝑁!

iO for Turing Machines: Initial Attempt

(𝑁! = 𝜆/01 2) iO for locally
Equivalent Ckts

Turing Machine

𝐶":

𝐶-:

…

𝐶@!:

Ckt for every input length
𝑛 ≤ 𝑁!

iO for Turing Machines: Initial Attempt

(𝑁! = 𝜆/01 2) iO for locally
Equivalent Ckts

r𝐶"

r𝐶-

…

r𝐶@!

Turing Machine

𝐶":

𝐶-:

…

𝐶@!:

Ckt for every input length
𝑛 ≤ 𝑁!

iO for Turing Machines: Initial Attempt

(𝑁! = 𝜆/01 2) iO for locally
Equivalent Ckts

r𝐶"

r𝐶-

…

r𝐶@!

Obfuscated Turing Machine

Turing Machine

𝐶":

𝐶-:

…

𝐶@!:

Ckt for every input length
𝑛 ≤ 𝑁!

iO for Turing Machines: Initial Attempt

(𝑁! = 𝜆/01 2) iO for locally
Equivalent Ckts

r𝐶"

r𝐶-

…

r𝐶@!

Obfuscated Turing Machine

Challenge: Obfuscation time is super-poly!

Turing Machine

𝐶":

𝐶-:

…

𝐶@!:

Ckt for every input length
𝑛 ≤ 𝑁!

Leverage Uniform Description

Small ckt

[𝑀]
𝑛
𝑖

Compute description of 𝑖-th gate of 𝐶(

𝐶":

𝐶(:

…

…

𝐶@!:

𝑖

Leverage Uniform Description

Small ckt

Recall: Obfuscation of 𝑪𝒏

[𝑀]
𝑛
𝑖

Compute description of 𝑖-th gate of 𝐶(

𝐶":

𝐶(:

…

…

𝐶@!:

𝑖

Leverage Uniform Description

Small ckt

𝑖𝑂(𝐶0")
Recall: Obfuscation of 𝑪𝒏

𝑖𝑂(𝐶0#)
…

[𝑀]
𝑛
𝑖

Compute description of 𝑖-th gate of 𝐶(

𝐶":

𝐶(:

…

…

𝐶@!:

𝑖

Leverage Uniform Description

Small ckt

𝑖𝑂(𝐶0")
Recall: Obfuscation of 𝑪𝒏

𝑖𝑂(𝐶0#)
…

Idea: Generate
𝐶3 on-the-fly

using [𝑀]

[𝑀]
𝑛
𝑖

Compute description of 𝑖-th gate of 𝐶(

𝐶":

𝐶(:

…

…

𝐶@!:

𝑖

Efficient Construction

Efficient Construction

Turing Machine

Efficient Construction

Turing Machine

Efficient Construction

𝑈𝐶

Turing Machine
“Uniform Version” 𝐶0

Efficient Construction

𝑈𝐶

Turing Machine
“Uniform Version” 𝐶0

𝑈𝐶 𝑛, 𝑖, 𝑖𝑛𝑝𝑢𝑡,
• Get description of 𝑖-th gate of 𝐶%:

• Compute 𝐶3(𝑖𝑛𝑝𝑢𝑡′)

[𝑀]
𝑛
𝑖

𝑔

Efficient Construction

𝑈𝐶

iO for Ckt

Turing Machine
“Uniform Version” 𝐶0

𝑈𝐶 𝑛, 𝑖, 𝑖𝑛𝑝𝑢𝑡,
• Get description of 𝑖-th gate of 𝐶%:

• Compute 𝐶3(𝑖𝑛𝑝𝑢𝑡′)

[𝑀]
𝑛
𝑖

𝑔

Efficient Construction

𝑈𝐶

iO for Ckt

Turing Machine
“Uniform Version” 𝐶0

𝑈𝐶 𝑛, 𝑖, 𝑖𝑛𝑝𝑢𝑡,
• Get description of 𝑖-th gate of 𝐶%:

• Compute 𝐶3(𝑖𝑛𝑝𝑢𝑡′)

[𝑀]
𝑛
𝑖

𝑔

𝑖𝑂(𝑈𝐶)
Obfuscated Turing Machine

Summary & Future Directions

Summary & Future Directions

Inference Rules in
Logic systems for

Proving Equivalence

Summary & Future Directions

Inference Rules in
Logic systems for

Proving Equivalence

Summary & Future Directions

Techniques to argue
Indistinguishability for iO

Inference Rules in
Logic systems for

Proving Equivalence

Summary & Future Directions

Techniques to argue
Indistinguishability for iO

Inference Rules in
Logic systems for

Proving Equivalence

ℰℱ / 𝑃𝑉

Summary & Future Directions

Techniques to argue
Indistinguishability for iO

Inference Rules in
Logic systems for

Proving Equivalence

ℰℱ / 𝑃𝑉

Summary & Future Directions

Techniques to argue
Indistinguishability for iO

Inference Rules in
Logic systems for

Proving Equivalence

ℰℱ / 𝑃𝑉 Local Equivalence

Summary & Future Directions

Techniques to argue
Indistinguishability for iO

Inference Rules in
Logic systems for

Proving Equivalence

ℰℱ / 𝑃𝑉 Local Equivalence

𝑍𝐹𝐶
(Zermelo-Fraenkel set theory

with axiom of Choice)

Thank you!

Q & A

