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Source code

“Unintelligible”

The obfuscated program preserves the functionality of the input program.
(Produce the same output)

iO
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Indistinguishability Security (as a Game)

𝐶!, 𝐶"

𝑖𝑂 1# , 𝐶$

𝑏′ If ∀ 𝑥 𝐶! 𝑥 = 𝐶" 𝑥 and 𝑏 = 𝑏′,
adversary wins.

𝑏 ← {0,1}

Pr 𝑤𝑖𝑛𝑠 ≤
1
2
+ negl(𝜆)

Important!



iO: Crypto “Complete” [Sahai-Waters’13,...]

iO

Witness Encryption
Succinct Non-interactive 

Zero-Knowledge Arg.

Deniable
Encryption

…

Nash Equilibrium

Software 
watermarking
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A Long Line of Work:
[Garg-Gentry-Halevi-Raykova-Sahai-Waters’13][Pass-Seth-Telang’14]
[Gentry-Lewko-Sahai-Waters’15][Ananth-Jain’15][Bitansky-Vaikuntanathan’15]
[Lin’16][Lin-Vaikuntanathan’16][Lin-Pass-Karn Seth-Telang’16]
[Garg-Miles-Mukherjee-Sahai-Srinivasan-Zhandry’16][Ananth-Sahai’17][Lin’17]
[Lin-Tessaro’17][Agrawal’19][Jain-Lin-Matt-Sahai’19][Brakerski-Dottling-Malavolta’20]…
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iO for circuits from well-founded assumptions
[Jain-Lin-Sahai’20]

A Long Line of Work:
[Garg-Gentry-Halevi-Raykova-Sahai-Waters’13][Pass-Seth-Telang’14]
[Gentry-Lewko-Sahai-Waters’15][Ananth-Jain’15][Bitansky-Vaikuntanathan’15]
[Lin’16][Lin-Vaikuntanathan’16][Lin-Pass-Karn Seth-Telang’16]
[Garg-Miles-Mukherjee-Sahai-Srinivasan-Zhandry’16][Ananth-Sahai’17][Lin’17]
[Lin-Tessaro’17][Agrawal’19][Jain-Lin-Matt-Sahai’19][Brakerski-Dottling-Malavolta’20]…
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Question: Can we build iO for Turing machines?

Why Turing machines?
• Natural representation of programs
• Support any input length
• Small obfuscated program size Obfuscated Turing Machine Size:

Poly(input Turing Machine)
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Prior Work: Only for Bounded-Input Length
[BGLPT’15][CHJV’15][KLW’15][GS’18]…

Adversary for iO
Reduction 
Algorithm

Assume 2#
%
-hardness of assumptions

& set 𝝀 s.t. 2#% > 2|'()*+|
𝒊𝒏𝒑𝒖𝒕 < 𝝀𝒄

Break

Assumptions
2|$%&'(|-time

Reduction

⇒
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Why 2|34567| Loss?

𝐶! ≡ 𝐶"
Reduction

Real adversary
Assumptions

Break

𝐶! 𝑥∗ ≠ 𝐶#(𝑥∗)
Reduction

Fake adversary
Assumptions

Not Break

Reduction needs to ‘decide’ the 
functionality equivalence.
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Non-Falsifiability

Check ∀ 𝑥 𝐶! 𝑥 = 𝐶" 𝑥

𝐶!, 𝐶"

𝑖𝑂 𝐶$

𝑏′

𝑏 ← {0,1}

iO Security

(inefficient checking)

Non-Falsifiable

Broader Perspective
Non-Falsifiable definitions appear in many other places, 

e.g. proof systems. [Gentry-Wichs’10]
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Prior Work
[Garg-Pandey-Srinivasan’16, Garg-Srinivasan’16, 

Garg-Pandey-Srinivasan-Zhandry’17][Liu-Zhandry’17]:
Require that “∀𝑥 𝐶! 𝑥 = 𝐶"(𝑥)” can be decided in P
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Observation: We Prove Equivalence in Math

iO

Applications

Build 𝐶! , 𝐶"

Math proof of ∀𝑥 𝐶! 𝑥 = 𝐶"(𝑥)

Security Proof of the Application

iO Security ⇒ 𝑖𝑂 𝐶! ≈ 𝑖𝑂(𝐶")

I can only process short proofs.
(length ≪ 2|'()*+|)

(our little brain)
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Our Approach

iO

Assumptions

Short mathematical proof of “∀𝑥 𝐶! 𝑥 = 𝐶"(𝑥)”

Efficient Reduction Algorithm
(this work)



𝑖𝑂 for any Turing machines 𝑀", 𝑀- with “∀𝑥 𝑀" 𝑥 = 𝑀-(𝑥)”

provable in Cook’s Theory PV, based on well-founded assumptions. 

Our Result



Cook’s Theory 𝑃𝑉 [Cook’75]

Can define any polynomial-time functions, e.g.:
• Arithmetic: +,−,×,÷,≤,<, ⋅ , 𝑚𝑜𝑑,…
• Logic Symbols: →,¬,∧, …

• Polynomial time reasoning

Polynomial-time Induction rule:
“If Φ(0) is true, and ∀𝑛,Φ 𝑛 → Φ 2𝑛 ∧ Φ 2𝑛 + 1 , then ∀𝑛 Φ(𝑛).”
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What Theorems Can 𝑃𝑉 Prove?
Prior work

• Correctness of “natural” 
algorithms in P

• Basic Linear Algebra
• Combinatorial Theorems

…

This work
Many crypto algorithms are “natural”:

ElGamal Encryption
Regev’s Encryption
Puncturable PRFs
...

Unprovable Theorems (assume Factoring is hard)
• Fermat’s Little Theorem
• Correctness for “Primes is in P”



How to leverage mathematical proofs?



How to leverage mathematical proofs?

Overview of Techniques
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What Information does a Proof Provide?

• Localness: Each line is derived 
from O(1) previous lines

Mathematical Proofs Have Structures

• In Propositional Logic (Extended Frege):
each line is also a circuit

Rest of the Talk: mainly focus on extended Frege (ℰℱ), 
since PV-proof can be translated to ℰℱ-Proof.
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Poly. size ℰℱ-proof for 𝐶! 𝑥 ≡ 𝐶"(𝑥)

𝑖𝑂 𝐶! ≈ 𝑖𝑂( ) 𝑖𝑂( ) 𝑖𝑂(𝐶")

Hybrid Argument

“Locally equivalent”, checkable in polynomial time

…≈

We build iO for locally equivalent circuits 
with loss independent of |input|.



• ℰℱ-Proofs ⇒ local equivalence
• iO for locally equivalent ckts
• iO for Turing machines

Technical Details



• ℰℱ-Proofs ⇒ local equivalence
• iO for locally equivalent ckts
• iO for Turing machines

• 𝓔𝓕-Proofs ⇒ local equivalence
• iO for locally equivalent ckts
• iO for Turing machines

Technical Details
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𝐶 and 𝐶′are almost the same (with same topology), except for 
a functionality equivalent sub-circuit of size 𝑂(log 𝑛)

Define Local Equivalence

≡

𝐶: : 𝐶′

(Sub-circuit: induced subgraph from a subset of gates)
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Goal: ℰℱ-Proof ⇒ Locally Equivalent CircuitsAlternative View: A Series of Local Changes
ℰℱ proof for 𝐶! 𝑥 ≡ 𝐶"(𝑥)

𝐶! 𝐶"……

Local Change
Simplification in This Talk: Ignore topology & allow multi-arity gates
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Stage II: Grow the Proof

ℰℱ-Proof of 𝐶! 𝑥 ↔ 𝐶"(𝑥): 𝜃", 𝜃-, … , 𝜃ℓ

𝐶! 𝐶"

Add 𝜃' one-by-one
𝑜! 𝑜"

𝑜!

𝐶! 𝐶"

𝑜! 𝑜"

𝑜! ∧ 𝜃" ∧ ⋯∧ 𝜃'/" ∧ 𝜃'

Intuition: 𝜃'’s (i.e. lines of the proof) are “true”,
so the functionality is preserved.
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Before:

After:

𝜃' is derived via Modus Ponens:

𝑖-th Step: Add 𝜃#

𝐶! 𝑥 ∧ 𝑝 ∧ ⋯∧ 𝑝 → 𝑞 ∧ ⋯

𝐶! 𝑥 ∧ 𝑝 ∧ ⋯∧ 𝑝 → 𝑞 ∧ ⋯∧ 𝑞

𝑝 ∧ 𝑝 → 𝑞 ≡ 𝑝 ∧ 𝑝 → 𝑞 ∧ 𝑞

𝑝, 𝑝 → 𝑞 ⊢ 𝑞
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𝑜! ∧ 𝑜! ↔ 𝑜" ≡ 𝑜" ∧ 𝑜! ↔ 𝑜"

Local Equivalence
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𝐶! 𝐶"

𝑜! 𝑜"

𝑜"
Delete 𝐶!

gate-by-gate
𝐶"

𝑜"

𝑜"

𝐶"

Local Equivalence: Similar to “Grow 𝐶"” Stage
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Gate-by-Gate Obfuscation

𝑔

𝑚1 𝑚2

𝑚3

: encrypt and sign the wire values

Decrypt 𝑚), 𝑚*
𝑚+ = 𝑔(𝑤), 𝑤*)

𝑖𝑂(𝐶0)

Obfuscate

Output:

𝑙 𝑟

𝑜

Key Feature: obfuscated circuit preserves 
the topology of the input circuit

iO for small ckt
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Prove Security w/o 2|DEFGH| Loss

Security Loss: 
2|"#$%&' ()*#'|

(poly)

𝐶:

𝐶4:

Gate-by-Gate
Obfuscation ≈

𝐶, 𝐶,: Locally Equivalent
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Mix-n-Match

Input: 𝑥

…

Input: 𝑥′

…

The obfuscated gate reveals 
more info than it should do.
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(e.g. 𝑁𝐶+ circuits)
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Define Dependence

𝑤

Dep(𝑤)

Dep(𝑤) ≔ { all wires that 𝑤 depends on }

𝐶𝑇5 ≔ 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 𝑜𝑓 𝑘 6∈89:(5)

(An Index Set)
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ℎ1 , ℎ2
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ℎ) = 𝐻𝑎𝑠ℎ(𝐶𝑇))
ℎ* = 𝐻𝑎𝑠ℎ(𝐶𝑇*)

Outside 𝐶0:
SNARGs (Succinct Cryptographic Proofs)

𝜋 : prove ∃ consistent pre-images of ℎ), ℎ*
Secure against poly-time adversary

New Challenge: We need statistical security of SNARGs for iO.

𝐶$(𝑐𝑡% , 𝑐𝑡& , ℎ% , ℎ& , 𝜋)

...Decrypt, Compute, Re-encrypt...
Verify the proof 𝜋
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We Use: iO-Friendly SNARGs

Dep(𝑟)Dep(𝑙) Somewhere Statistical Soundness:
If 𝐶𝑇) and 𝐶𝑇* are not consistent in subcircuit, 
then unbounded-time adversary can’t cheat. 

Observation: We only care about sub-circuit

Can be constructed from [CJJ’21]
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ℎ) = Hash(𝐶𝑇))
ℎ* = Hash(𝐶𝑇*)Outside 𝐶0:

𝐶$(𝑐𝑡% , 𝑐𝑡& , ℎ% , ℎ& , 𝜋)

...Decrypt, Compute, Re-encrypt...

Verify the proof 𝜋

𝜋 : iO-friendly consistency 
proof for ℎ1 , ℎ2

𝑔

𝑖𝑂(𝐶0)

Obfuscate
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Propositional Translation [Cook’75]

Proofs in PV Poly-size ℰℱ-Proofs
Translate

𝑃𝑉-Proof of
𝑀" 𝑥 = 𝑀-(𝑥)

ℰℱ-Proof of 
𝐶",( 𝑥 ↔ 𝐶-,((𝑥)

(𝐶-,%(𝑥): Circuit that computes 𝑀- for input length 𝑛.)

Fix input length 𝑛

Apply 𝑖𝑂 for locally equivalent circuits?
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iO for Turing Machines: Initial Attempt

(𝑁! = 𝜆/01 2) iO for locally 
Equivalent Ckts

r𝐶"

r𝐶-

…

r𝐶@!

Obfuscated Turing Machine

Challenge: Obfuscation time is super-poly!

Turing Machine

𝐶":

𝐶-:

…

𝐶@!:

Ckt for every input length 
𝑛 ≤ 𝑁!
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Leverage Uniform Description

Small ckt

𝑖𝑂(𝐶0")
Recall: Obfuscation of 𝑪𝒏

𝑖𝑂(𝐶0#)
…

Idea: Generate 
𝐶3 on-the-fly 

using [𝑀]

[𝑀]
𝑛
𝑖

Compute description of 𝑖-th gate of 𝐶(

𝐶":

𝐶(:

…

…

𝐶@!:

𝑖
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Turing Machine
“Uniform Version” 𝐶0
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Efficient Construction

𝑈𝐶

iO for Ckt

Turing Machine
“Uniform Version” 𝐶0

𝑈𝐶 𝑛, 𝑖, 𝑖𝑛𝑝𝑢𝑡,
• Get description of 𝑖-th gate of 𝐶%:

• Compute 𝐶3(𝑖𝑛𝑝𝑢𝑡′)

[𝑀]
𝑛
𝑖

𝑔

𝑖𝑂(𝑈𝐶)
Obfuscated Turing Machine
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Summary & Future Directions

Techniques to argue 
Indistinguishability for iO

Inference Rules in 
Logic systems for 

Proving Equivalence

ℰℱ / 𝑃𝑉 Local Equivalence

𝑍𝐹𝐶
(Zermelo-Fraenkel set theory

with axiom of Choice)



Thank you!

Q & A


