## Working with Toni in

## Algebraic Proof Complexity

ToniCS: Celebrating the Contributions \& Influence of Toniann Pitassi
March 2023
Joshua A. Grochow
University of Colorado Boulder

## Proof Complexity

Something I like about proof complexity: gives a way of measuring the complexity of individual instances of SAT

## Proof Complexity

Something I like about proof complexity: gives a way of measuring the complexity of individual instances of SAT

Unsaid: but actually, coming from computational/circuit complexity, I had a really hard time understanding and getting into proof complexity!

## Why I Find Proof Complexity Too Hard

Too finicky about proofs:

What do you mean the Pigeonhole Principle and the OntoPigeonhole Principle aren't just obviously equivalent?

Why should it matter whether I encode the pigeonhole principle using $\sum_{j} x_{i j} \geq 1$ or $\Pi_{j}\left(x_{i j}-1\right)=0$ ? It's the same principle!

## Why I Find Proof Complexity Too Hard

Too syntactic:
"AC0-Frege"? Where every line is an $\mathrm{AC}^{0}$ formula? But as a function, every line is just " 1 ".

$$
\frac{\neg x \vee(x \wedge \neg y) \vee y}{\frac{\neg y \vee y}{1}}
$$



## Enter Toni

2012-2014: I did a postdoc at U. Toronto.

## Toni Built This Community!

| Toni's Grad Students | Konstantinos Georgiou Barbara Kauffmann |  | Neil Thapen <br> lan Mertz |
| :--- | :--- | :--- | :--- |
| Natan Dubitski |  | Shlomo Hoory |  |
| Noah Fleming | Lei Huang | Toni's Postdocs | Avner Magen |
| David Madras | Matei David | Rafael Oliveira | Tasos Viglas |
| Elliot Creager | Siu Man Chan | Denis Pankratov | Nicola Galesi |
| Morgan Shirley | Philipp Hertel | Siu Man Chan | Alexis Maciel |
| Alex Emonds | Alex Hertel | Thomas Watson |  |
| Yasaman Mahdaviyeh | Paul McCabe | Josh Grochow |  |
| Robert Robere | Daniel Zabwawa | Rotem Oshman |  |
| Venkatesh Medabalimi | Frank Pok Man Chu | Per Austrin |  |
| Mika Göös | Dennis Kao | Arkadev Chattopadhyay |  |
| Nick Spooner | Daniel Ivan | Rahul Santhanam |  |
| David Liu | Alan Skelley | lannis Tourlakis |  |
| Wu Yu | Josh Buresh- | Klaus Aehlig |  |
| Yuval Filmus | Oppenheim | Philipp Woelfel |  |
| Lila Fontes | Tsuyoshi Morioka | Evangelos Markakis |  |
| Siavosh Benabbas | Stephanie Horn | Emil Jerabek |  |
| Frank Vanderzwet | Shannon Dalmao | Marcus Latte |  |

## Enter Toni

2012-2014: I did a postdoc at U. Toronto.

Technically under Allan Borodin. But Toni met with me (almost) every week, often for 2 hours

## Enter Toni

2012-2014: I did a postdoc at U. Toronto.

Technically under Allan Borodin. But Toni met with me (almost) every week, often for 2 hours

She tricked me! "Let's just talk; you teach me something about algebraic circuits, l'll teach you something about proof complexity, and we'll see if we can come up with something to work on"

## A Very Toni View <br> On Frege Systems

Bounded depth Frege = Frege where there's a constant d s.t. proofs only ever uses the cut rule on formulas of depth d.

Similarly for C-Frege for any syntactically-defined circuit class C.

Okay, that made some sense to me!

## Algebraic Proof Complexity

Lines are of the form " $\mathrm{f}=0$ " ( f a polynomial)

Various complexity measures:

- Max degree per line
- Total number of monomials
- Number of lines

Coming from algebraic circuit complexity: how to prove a lower bound on this? What polynomial even to prove bounds on (every proof has lots of lines)? It looks like a mess!

## The Ideal Proof System [P96, P98, GP14]

Input: An unsatisfiable system of polynomial equations

$$
F_{1}(\vec{x})=F_{2}(\vec{x})=\cdots=F_{k}(\vec{x})=0
$$

Hilbert's Nullstellensatz: $F_{1}=F_{2}=\cdots=F_{k}=0$ has no solutions if and only if there are polynomials $G_{1}, \ldots, G_{k}$ such that

$$
F_{1} G_{1}+F_{2} G_{2}+\cdots+F_{k} G_{k}=1
$$

Introduce new place-holder variables $y_{1}, \ldots, y_{k}$, get a new polynomial

$$
C\left(y_{1}, \ldots, y_{k}, \vec{x}\right)=y_{1} G_{1}(\vec{x})+\cdots+y_{k} G_{k}(\vec{x})
$$

## The Ideal Proof System [P96, P98, GP14]

Definition [GP14]: $C(\vec{y}, \vec{x})$ is an IPS certificate if

1. $C(\overrightarrow{F(\vec{x})}, \vec{x})=1$
2. $C(\vec{y}, \vec{x}) \in\left\langle y_{1}, \ldots, y_{k}\right\rangle$ (ideal in $F\left[y_{1}, \ldots, y_{k}, x_{1}, \ldots, x_{n}\right]$ )

Definition: The IPS complexity of an unsatisfiable system of equations is the optimum function complexity of any certificate.
E.g. algebraic circuit size, formula size, VNP, ...

Default: algebraic circuit size (no degree bound!)

## Our First Work Together

July 2013: earliest email I could find with a draft of our Ideal Proof System paper

## Our First Work Together

July 2013: earliest email I could find with a draft of our Ideal Proof System paper
Feb , 2014: Gave a talk at Rutgers on it. Called it "our algebraic proof system", listed "find a better name" as the most important open question.

## Our First Work Together

July 2013: earliest email I could find with a draft of our Ideal Proof System paper
Feb , 2014: Gave a talk at Rutgers on it. Called it "our algebraic proof system", listed "find a better name" as the most important open question.
Eric Allender:
(1) Suggests the name "Ideal Proof System" (thanks Eric!)
(2) Asks "If PIT is EF-provably easy, then does EF psimulate IPS?" (Also Andy Drucker.) Turns out yes!

## Our First Work Together

July 2013: earliest email I could find with a draft of our Ideal Proof System paper
Feb 19, 2014: Gave a talk at Rutgers on it. Called it "our algebraic proof system", listed "find a better name" as the most important open question.
Eric Allender:
(1) Suggests the name "Ideal Proof System" (thanks Eric!)
(2) Asks "If PIT is EF-provably easy, then does EF psimulate IPS?" (Also Andy Drucker.) Turns out yes!

## Our First Work Together

July 2013: earliest email I could find with a draft of our Ideal Proof System paper
Feb 19, 2014: Gave a talk at Rutgers on it. Called it "our algebraic proof system", listed "find a better name" as the most important open question.
Eric Allender:
(1) Suggests the name "Ideal Proof System" (thanks Eric!)
(2) Asks "If PIT is EF-provably easy, then does EF psimulate IPS?" (Also Andy Drucker.) Turns out yes!
April 2, 2014 : submitted to FOCS

## Our First Work Together

July 2013: earliest email I could find with a draft of our Ideal Proof System paper
Feb 19, 2014: Gave a talk at Rutgers on it. Called it "our algebraic proof system", listed "find a better name" as the most important open question.
Eric Allender:
(1) Suggests the name "Ideal Proof System" (thanks Eric!)
(2) Asks "If PIT is EF-provably easy, then does EF psimulate IPS?" (Also Andy Drucker.) Turns out yes!
April 2, 2014 4:29pm: submitted to FOCS

## Our First Work Together

July 2013: earliest email I could find with a draft of our Ideal Proof System paper
Feb 19, 2014: Gave a talk at Rutgers on it. Called it "our algebraic proof system", listed "find a better name" as the most important open question.
Eric Allender:
(1) Suggests the name "Ideal Proof System" (thanks Eric!)
(2) Asks if "PIT is EF-provably easy, then does EF psimulate IPS?" Turns out yes!
April 2, 2014 4:29pm: submitted to FOCS


## Follow-up work on the Ideal Proof System

[Forbes-Shpilka-Tzameret-Wigderson '16]: Lower bounds on C-IPS for small circuit classes C, by "powering up" algebraic circuit lower bounds
[Li-Tzameret-Wang '15]: Characterize ordinary Frege (up to quasipoly) by noncommutative formula IPS (follows our/Allender's suggestion to show that PIT for this class is Frege-provable)
[Alekseev-Grigoriev-Hirsch-Tzameret '19]: "Cone proof system", analogue of IPS for semi-algebraic proofs, connection w/ $\tau$ Conjecture
Additional works: [ST21], [AF21], [GHT22], [GP??]

## Back to Pitassi '96/'98

[P96]: Introduced considering algebraic circuit size of the Nullstellensatz certificates. ("Hilbert-like IPS" or "IPS ${ }_{\text {LIN }}$ ", proved equivalent to IPS [FSTW16])
[P98]: Number of lines in PC, represent each line however* you want. (Proved equivalent to det-IPS [GP14].)

## Back to Pitassi '96/'98

Toni's questions [P96] eventually resolved:

1. Close the $O(n)$ vs $\Omega(\sqrt{n})$ gap for PC degree for PHP. [R98]
2. Is $\Theta(\sqrt{n})$ the right bound for $P H P_{n}^{m}$ with $m$ large? No. [R98]
3. Nullstellensatz degree lower bound on random 3CNF? [BI99]
4. Does Extended Frege p-simulate IPS? Implies PIT in NP [G '23]
5. Tighten degree bound on simulation of Resolution by PC. ?
6. Is Cutting Planes p-simulated by PC in sublinear degree? Incomparable.

## Proof Complexity Zoo [Vinyals]



Proof Complexity Zoo - https://proofcomplexityzoo.gitlab.io/zoo/

## Proof Complexity Zoo [Vinyals]

## All about Cutting Planes

## Proof Systems

- Cutting Planes stronger than Resolution
- Source: cp $\rightarrow$ unarycp $\rightarrow$ res
- Source: $\mathrm{cp} \rightarrow$ unarycp $\rightarrow \mathrm{php} \rightarrow \mathrm{pcQ}-\rightarrow$ res
- Cutting Planes stronger than Truth table
- Source: $\mathrm{cp} \rightarrow$ treecp $\rightarrow$ treeres $\rightarrow \mathrm{ttp}$
- Source: $\mathrm{cp} \rightarrow$ unarycp $\rightarrow$ php $\rightarrow$ treereslinF2_ $\rightarrow$ treeres_ $\rightarrow$ ttp_
- Cutting Planes stronger than Tree-like resolution
- Source: $\mathrm{cp} \rightarrow$ treecp $\rightarrow$ treeres
- Source: $\mathrm{cp} \rightarrow$ unarycp $\rightarrow$ php $\rightarrow$ treereslinF2_ $\rightarrow$ treeres_
- Cutting Planes stronger than Regular resolution
- Source: $\mathrm{cp} \rightarrow$ unarycp $\rightarrow$ res $\rightarrow$ regres
- Source: $\mathrm{cp} \rightarrow$ unarycp $\rightarrow \mathrm{php} \rightarrow \mathrm{pcQ} \rightarrow$ res_ $\rightarrow$ regres_
- Cutting Planes stronger than Ordered resolution
- Source: $\mathrm{cp} \rightarrow$ unarycp $\rightarrow$ res $\rightarrow$ regres $\rightarrow$ ordres
- Source: $\mathrm{cp} \rightarrow$ unarycp $\rightarrow$ res $\rightarrow$ regres $\rightarrow$ pearl $\rightarrow$ ordres_
- Cutting Planes stronger than Pool resolution
- Source: $\mathrm{cp} \rightarrow$ unarycp $\rightarrow$ res $\rightarrow$ poolres
- Source: $\mathrm{cp} \rightarrow$ unarycp $\rightarrow$ php $\rightarrow$ pcQ_ $\rightarrow$ res_ $\rightarrow$ poolres_
- Cutting Planes stronger than Linear resolution
- Source: $\mathrm{cp} \rightarrow$ unarycp $\rightarrow$ res $\rightarrow$ linres
- Source: $\mathrm{cp} \rightarrow$ unarycp $\rightarrow$ php $\rightarrow$ pcQ_ $\rightarrow$ res_ $\rightarrow$ linres_
- Cutting Planes stronger than Tree-like Cutting Planes
- Source: [subsystem]
- Source: $\mathrm{cp} \rightarrow$ unarycp $\rightarrow$ res $\rightarrow$ regres $\rightarrow$ ordres $\rightarrow$ peb+ind $\rightarrow$ treecp_
- Cutting Planes simulates Cutting Planes with Unary Coefficients
- Source: [subsystem]
- Cutting Planes weaker than Semantic Cutting Planes
- Source: [subsystem]
- Source: semanticcp $\rightarrow$ cliquecolouringeq $\rightarrow \mathrm{cp}$ _
- Cutting Planes stronger than Cutting Planes with Saturation
- Source: $\mathrm{cp} \rightarrow$ unarycp $\rightarrow$ res $\rightarrow$ saturationcp
- Source: $\mathrm{cp} \rightarrow$ unarycp $\rightarrow$ php $\rightarrow$ pcQ_ $\rightarrow$ res_ $\rightarrow$ saturationcp_
- Cutting Planes simulated by Stabbing Planes
- Source: [citation needed]
- Cutting Planes simulates Stabbing Planes with Unary Coefficients
ance. TUIPKIW21 On the Power and Limminn Branch and Cut
Cutting Planes incomparable wrt Polynomial Calculus over $\mathbb{F}_{2}$
- Source: $\mathrm{cp} \rightarrow$ unarycp $\rightarrow$ php $\rightarrow \mathrm{pcF} 2$
- Cutting Planes incomparable wrt Nullstellensatz over $\mathbb{F}_{2}$
- Source: $\mathrm{cp} \rightarrow$ unarycp $\rightarrow \mathrm{php} \rightarrow \mathrm{pcF} 2_{-} \rightarrow \mathrm{nssF} 2_{-}$
- Source: nssF2 $\rightarrow$ ts+ind $\rightarrow \mathrm{cp}_{-}$



## Back to Pitassi '96/'98

Toni's questions eventually resolved:

1. Close the $O(n)$ vs $\Omega(\sqrt{n})$ gap for PC degree for PHP. [R98]
2. Is $\Theta(\sqrt{n})$ the right bound for $P H P_{n}^{m}$ with $m$ large? No. [R98]
3. Nullstellensatz degree lower bound on random 3CNF? [BI99]
4. Does Extended Frege p-simulate IPS? Implies PIT in NP [G '23]
5. Tighten degree bound on simulation of Resolution by PC. ?
6. Is Cutting Planes p-simulated by PC in sublinear degree? Incomparable.
7. [P98] Relationship between degree and number of monomials? [Impagliazzo-Pudlák-Sgall '99, ..., Lagarde-Nordström-Sokolov-Swernofsky '20]

## Back to Pitassi '96/'98

Toni's questions from P96 still open:

1. Does poly-degree IPS p-simulate Extended Frege? (Probably not. Prove it!)
2. Get PC to work well for SAT in practice (though, see Noriko Arai's talk yesterday)
3. $A C^{0}[2]$-Frege lower bounds? Maciel-Pitassi ' 97 proved quasi-poly reduction to depth 3 (proof complexity version of Biegel-Tarui/Yao). Toni suggested looking at PC proofs over probabilistic polynomials.

## Back to Pitassi '96/'98

Toni's questions from P98 still open:
4. Ajtai/Krajicek representation-theoretic approach to uniform lower bounds deserves further study.
5. Conjecture: For a prime $p$, if IPS over GF(p) is $p$ bounded, then NP=coNP. (Can prove directly, avoiding PIT?)
6. Natural proofs-like barrier for proof complexity?

## Algebraic Proof Complexity Of Tensor Isomorphism

Joint w/ Toni, Nicola Galesi, Adrian She (to appear on arXiv momentarily)

Tensor Isomorphism:

- Verbose version a bottleneck to improving Graph Isomorphism
- Succinct version is Gl-hard
- Many natural algebraic problems are Tl-complete, eg Ring Isomorphism or local equivalence of quantum states


## Algebraic Proof Complexity Of Tensor Isomorphism

How hard, really, could TI be?


Psst: Proof complexity?

From my talk at Banff (2019)

## Tricks Returning the Favor

## How hard, really, could TI be?

Are these tensors isomorphic?
$\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$

Psst: Proof complexity?

From my talk at Banff (2019)

## Algebraic Proof Complexity Of Tensor Isomorphism

Main Results [Galesi-G.-Pitassi-She '23]:

1. $\Omega(n)$ lower bound on PC degree for Tensor Iso
2. O(1)-degree PC proofs for non-isomorphism of bounded-rank tensors
3. $P C$ can't decide matrix rank, nor derive $A B=\mid$ from $B A=\mid$ in sub-linear degree
4. Conjecture: PC+Inv can't solve Tensor Iso either

## Open:

Stronger lower bound? Note: no Boolean axioms here (obv. upper bound is $2^{O\left(n^{2}\right)}$ ).

## Highlights

Go back and look at Toni's open questions from 1996/98!

Toni: still at the forefront of proof complexity

## Highlights

Go back and look at Toni's open questions from 1996/98!

Toni: still at the forefront of proof complexity

What great things will Toni trick us into next?

## Highlights

Go back and look at Toni's open questions from 1996/98!

Toni: still at the forefront of proof complexity

What great things will Toni trick us into next?

## Happy Birthday Toni!

