Consistency of NEXP $\nsubseteq \mathrm{P} /$ poly in a Strong Theory

Albert Atserias
UPC Barcelona

Joint work with:
Sam Buss, UCSD,
Moritz Müller, U. Passau

Main Result

Theorem:

"NEXP $\ddagger \mathrm{P} /$ poly" is true in a model of V 02

Circuit Lower Bounds

The Big Open Problem:
Prove that some explicit problem A
is not solvable by poly-size Boolean circuits, i.e., $A \notin P / p o l y$.

Ideally, the problem A is in NP,
i.e., SAT $\notin P /$ poly.

Approaches

- Enlarge NP, e.g., PSPACE, EXP, NEXP, NEXPNP
- Shrink P/poly, e.g., small depth, monotone, symmetric, ...
- Prove that "SAT $\notin \mathrm{P} /$ poly" is consistent with a theory T

Cook-Krajicek 07

Consistency Approach

(a) Formalize the statement $A \notin P / p o l y$: the quotes in " $A \notin P / p o l y "$
(b) Prove: " $A \notin P /$ poly" is consistent with T, i.e., " $A \notin P /$ poly" is true in some model of T, i.e., "A $\in P /$ poly" is unprovable in T.

The stronger the theory T,
the stronger the evidence for $\mathrm{A} \notin \mathrm{P} /$ poly !

Theories of Arithmetic

$$
\begin{aligned}
& \text { PV } \\
& \text { In } \\
& \mathrm{S} 12 \subseteq \mathrm{~T} 12 \subseteq \ldots \subseteq \mathrm{~T} 2 \\
& \text { (V02) } \subseteq \text { V12 } \subseteq \cdots \subseteq V_{2} \\
& \text { in } \\
& \text { Peano Arithmetic } \\
& \cdots \subseteq P A
\end{aligned}
$$

Strength (1/2)

T2 - Cook-Levin Theorem

- Karp-Lipton Theorem for NP

C75, 886

- Hastad's Switching Lemma
- BPP \subseteq P/poly

B86

- Rabin test decides (Fermat) Primality J04
$-\mathrm{BPP} \subseteq \Sigma_{2} \mathrm{P} \cap \Pi_{2} \mathrm{P}$
J07
- Graph Isomorphism is in co-AM J07
$-\mathrm{AM}=\mathrm{MAM}=\mathrm{AMAM}=\mathrm{MAMAM}=\ldots \quad \mathrm{J} \quad \mathrm{I}$
- [...]

Strength (2/2)

T2 - Bipartite Perfect Matching is in RNC²

- PCP Theorem
- PARITY \notin AC $/$ /poly
- CLIQUE $\notin \mathrm{mP} /$ poly

V02 - PH $\subseteq P S P A C E \subseteq E X P \subseteq$ NEXP

- bounded halting for NTMs is NEXP-complete
- Karp-Lipton Theorems for PSPACE and EXP
follow from
our work

L: There is a NEXP-machine M_{0} s.t. V02 proves that M_{0} correctly decides the bounded halting problem for NTMs and also proves that $\mathrm{L}\left(\mathrm{M}_{0}\right)$ is NEXP-complete.

Open Problem

Is "NP $\nsubseteq P /$ poly" true in a model of S12?

Answer is YES
assuming PH \nsubseteq NPNP $^{N P}$ by Karp-Lipton Theorem or even PH \ddagger ZPPNP by Watanabe’s KL Theorem

Previous Consistency Results (1/2)

Thm: If PH \ddagger PNP[log] $^{\text {, then }}$
"NP $\ddagger P /$ poly" is true in a model of S12
Thm: If $\mathrm{PH} \nsubseteq \mathrm{P}^{N P}$, then
"NP $\nsubseteq P /$ poly" is true in a model of S22

Previous Consistency Results (2/2)

Thm: For every c >0, "NP $\ddagger \operatorname{SIZE}\left(\mathrm{n}^{c}\right)$ " is true in a model of S 12

Thm: For every c >0,
"PNP $\nsubseteq \operatorname{SIZE}\left(n^{c}\right)$ " is true in a model of $S 22$
Thm: For every c > 0 ,
"ZPPNP $\nsubseteq \operatorname{SIZE}\left(n^{c}\right) "$ is true in a model of APC2

Recall: For every c >0, NPNP $\nsubseteq \operatorname{SIZE}\left(n^{c}\right)$
$\longleftarrow \mathrm{KO17}$

witnessing
method"

Our Main Result

Theorem:

"NEXP $\ddagger \mathrm{P} /$ poly" is true in a model of V02

1. MINUS: For NEXP instead of ZPPNP, PNP, NP,
2. PLUS: Against P/poly instead of $\operatorname{SIZE}\left(n^{c}\right)$,
3. PLUS: In V02 instead of $\mathrm{S} 12 \subseteq \mathrm{~S} 22 \subseteq \mathrm{APC} 2 \subseteq \ldots$
4. PLUS: Unconditional!

Two-Sorted Language

Basic arithmetic:

$$
0 \quad \operatorname{succ}(x) \quad x+y \quad x \times y \quad x \# y \quad\lfloor x / 2\rfloor \quad|x| \quad x<y
$$

PV symbols: a function symbol for each poly-time clocked algorithm:

$$
\begin{gathered}
\operatorname{EUCLID-GCD}(x, y) \\
\text { AKS-PRIME }(x) \\
\operatorname{BINARY}^{Y}-\operatorname{SEARCH}^{Y}(x, l, r)
\end{gathered}
$$

$\begin{array}{lll}\text { Quantifiers over number sort: } & \exists x \varphi & \forall x \varphi \\ \text { Quantifiers over set sort: } & \exists_{2} Y \varphi & \forall_{2} Y \varphi \\ \text { Membership relation: } & x \in Y & \end{array}$

Axioms

1. BASIC axioms for basic arithmetic
2. Cobham's definitions for PV-symbols
3. Boundedness and Extensionality for set sort
4. Induction for formulas in class Φ :

$$
\varphi(0) \wedge \forall z<x(\varphi(z) \rightarrow \varphi(z+1)) \rightarrow \varphi(x)
$$

5. Comprehension for formulas in class Φ :

$$
\exists_{2} Y \leq z \forall x \leq z(x \in Y \leftrightarrow \varphi(x))
$$

Definition: To define V02 take $\Phi=\Sigma_{0}^{1, b}$ (1) bounded quantifiers
(2) zero set-sort quantifiers

Models

Domain for number sort:
\mathbb{N} in the standard model \mathbb{N}_{2}
Domain for set sort:
$\mathcal{P}_{\omega}(\mathbb{N})$ in the standard model \mathbb{N}_{2}
Interpretations for PV-symbols:

All polynomial-time computable (type-1 and type-2) functions in the standard model \mathbb{N}_{2}

Standard interpretation for $x \in Y$ in all models.

Formalization of NEXP \ddagger P/poly

K_{0} : a (standard) NEXP-complete problem, e.g., bounded halting
M_{0} : a (standard) explicit NEXP-machine deciding K_{0}

$$
\begin{array}{ll}
\text { TFAE: } & \text { NEXP } \nsubseteq \mathrm{P} / \text { poly } \\
& \mathrm{K}_{0} \notin \mathrm{P} / \text { poly } \\
& \mathbb{N}_{2} \vDash \neg \alpha^{c} \text { for all } c>0
\end{array}
$$

$\alpha^{c}:=\forall n \in \log \exists C<2^{n^{c}} \forall x<2^{n}$

$$
\begin{aligned}
& C(x)=1 \rightarrow \exists_{2} Y \text { " } Y \text { is an acc. comp. of } \mathrm{M}_{0} \text { on } x \text { " } \\
& C(x)=0 \rightarrow \forall_{2} Y \text { " } Y \text { is not an acc. comp. of } \mathrm{M}_{0} \text { on } x \text { " }
\end{aligned}
$$

A Better Formalization

Easy Witness Lemma

TFAE: NEXP \ddagger P/poly
$\mathrm{K}_{0} \notin \mathrm{P} /$ poly
K_{0} does not have poly-size witness circuits
$\mathbb{N}_{2} \vDash \neg \beta^{c}$ for all $c>0$

$$
\beta^{c}:=\forall n \in \log \exists C<2^{n^{c}} \exists D<2^{n^{c}} \forall x<2^{n}
$$

$$
C(x)=1 \rightarrow "\{y: D(x, y)=1\} \text { is an acc. comp. of } \mathrm{M}_{0} \text { on } x "
$$

$$
C(x)=0 \rightarrow \forall_{2} Y \text { " } Y \text { is not an acc. comp. of } \mathrm{M}_{0} \text { on } x \text { " }
$$

Note: V02 $\stackrel{\checkmark}{\vdash} \beta^{c} \rightarrow \alpha^{c}$ but V02 $\stackrel{?}{\vdash} \alpha^{c} \rightarrow \beta^{c \prime}$

Main Theorem

There is a model \mathcal{M} of V02 s.t.

$$
\begin{aligned}
& \mathcal{M} \vDash \neg \alpha^{c} \text { for all } c>0 \\
& \mathcal{M} \vDash \neg \beta^{c} \text { for all } c>0 \\
& \text { i.e. } \\
& \mathcal{M} \vDash \text { "NEXP } \nsubseteq \mathrm{P} / \text { poly" }
\end{aligned}
$$

Proof Sketch in Four Steps

Step 0: Assume otherwise; i.e., for every model \mathcal{M} of V 02 there exists $c>0$ such that $\mathcal{M} \vDash \beta^{c}$

Step 1: Take a non-standard model \mathcal{M} of V02 where Pigeonhole Principle fails: $Y:[a] \xrightarrow{\text { inj }}[a-1]$

Step 2: Take a NEXP-machine N which, given a as input, guesses and verifies 1-1 maps, provably in V02

Step 3: Use the assumption to get a contradiction because, in M , some such 1-1 maps cannot be in P/poly

Step 1: Get the model

Jewel Theorem of Proof Complexity: For every $\mathrm{d}>0$ and every large $m>0$, every depth-d Frege proof of $\mathrm{PHP}_{m, m-1}$ has size at least $\exp \left(m^{-\exp (d)}\right)$.

Gives a model \mathcal{M} of $\mathfrak{V} 02$ and $a \in \mathcal{M}$ where $\operatorname{PHP}(a)$ fails, i.e.

$$
\mathcal{M} \vDash \exists_{2} Y " Y \text { is a } 1-1 \text { map from } a \text { to } a-1 "
$$

More strongly,

$$
\mathcal{M} \vDash P H P(0) \wedge \forall z<a(P H P(z) \rightarrow P H P(z+1)) \wedge \neg P H P(a)
$$

Step 2 : Get the NEXP machine

$$
\mathcal{M} \vDash \exists_{2} Y " Y \text { is a } 1-1 \text { map from } a \text { to } a-1 "
$$

Think of these as:
a : an input of length $n:=|a|$ in \log of \mathfrak{M}
Y : the guess of a NEXP-machine N on input a

L: For every $\mathrm{s} \Sigma_{1}^{b, 1}$-formula $\varphi(x)$ there is NEXP-machine N and $\mathrm{f} \in \mathrm{PV}$:
V02 $\vdash \varphi(x) \leftrightarrow \exists_{2} Y$ " Y is an acc. comp. of N on x " $\leftrightarrow \exists_{2} Y^{" Y}$ is an acc. comp. of M_{0} on $\mathrm{f}(x)$ "

Step 3 : Use the assumption

$$
\mathcal{M} \vDash \neg P H P(x) \leftrightarrow \exists_{2} Y \text { " } Y \text { is an acc. comp. of } \mathrm{M}_{0} \text { on } \mathrm{f}(x) \text { " }
$$

By assumption $\mathcal{M} \vDash \beta^{c}$ for some $c>0$. Hence:

$$
\mathcal{M} \vDash \exists C<2^{|a|^{c}} \forall x<2^{|a|}(C(x) \leftrightarrow \neg P H P(x))
$$

Recall

$$
\mathcal{M} \vDash P H P(0) \wedge \forall z<a(P H P(z) \rightarrow P H P(z+1)) \wedge \neg P H P(a) .
$$

Therefore, for the above $C \in \mathcal{M}$, we have

$$
\mathfrak{M} \vDash \neg C(0) \wedge \forall z<a(\neg C(z) \rightarrow \neg C(z+1)) \wedge C(a)
$$

against the quantifier-free induction axiom of $\vee 02$.
QED

Discussion (1/2)

We proved "NEXP \ddagger P/poly" true in some model of V02. Might "NEXP \ddagger P/poly" be independent of V02?

Magnification Theorem for Unprovability:
If it is unprovable in V02, then it is also unprovable in V12!
unprovability in
S12 (α) suffices
would settle
Razborov's program

Discussion (2/2)

Similar ideas give:

Theorem:
 "NTIME $\left(n^{\log \log \cdots \log n}\right) \nsubseteq \mathrm{P} /$ poly" is true in a model of V 02

Relies on Murray-Williams' EWL instead of IKW's EWL

Open Problems

Q1 : Can V02 prove the Easy Witness Lemma? V02 $\vdash \alpha^{c} \rightarrow \beta^{c^{\prime}}$?
Q2 : Can V02 prove IP = PSPACE or MIP = NEXP?
Q3 : Can V02 prove Polynomial Identity Testing in BPP or P/poly?
Q4 : Can V02 prove "NEXPNP $\nsubseteq P /$ poly"?
Q5 : Is "NEXP $\nsubseteq P /$ poly" true in some model of $\mathrm{V} 02+\mathrm{PHP}(\mathrm{x})$?
Q6 : Is "EXP $\ddagger \mathrm{P} /$ poly" true in some model of V02?
Q7 : Is "PSPACE $\nsubseteq P /$ poly" true in some model of V02?

THE END

