Consistency of NEXP ⊈ P/poly in a Strong Theory

Albert Atserias UPC Barcelona

Joint work with: Sam Buss, UCSD, Moritz Müller, U. Passau

Main Result

Theorem:

"NEXP ⊈ P/poly" is true in a model of V02

Circuit Lower Bounds

The Big Open Problem: Prove that some explicit problem A is not solvable by poly-size Boolean circuits, i.e., $A \notin P/poly$.

Ideally, the problem A is in NP, i.e., SAT ∉ P/poly.

Approaches

- Enlarge NP, e.g., PSPACE, EXP, NEXP, NEXPNP
- Shrink P/poly, e.g., small depth, monotone, symmetric, ...
- Prove that "SAT ∉ P/poly" is consistent with a theory T

Cook-Krajicek 07

Consistency Approach

(a) Formalize the statement $A \notin P/poly$: the quotes in " $A \notin P/poly$ "

i.e., "A \notin P/poly" is true in some model of T, i.e., "A \in P/poly" is unprovable in T. (b) Prove: " $A \notin P/poly$ " is consistent with T,

The stronger the theory T, the stronger the evidence for $A \notin P/poly$!

Theories of Arithmetic

Strength (1/2)

T2	- Cook-Levin Theorem	C75, B86
	 Karp-Lipton Theorem for NP 	B86
	 Hastad's Switching Lemma 	R95
	- BPP ⊆ P/poly	J04
	 Rabin test decides (Fermat) Primality 	J04
	$-BPP \subseteq \Sigma_2 P \cap \Pi_2 P$	J07
	- Graph Isomorphism is in co-AM	J07
	$-AM = MAM = AMAM = MAMAM = \dots$	J07
	- []	

Strength (2/2)

T2	 Bipartite Perfect Matching is in RNC² 	LC11
	- PCP Theorem	P15
	- PARITY ∉ AC ⁰ /poly	K95
	- CLIQUE ∉ mP/poly	MP19
V02	- PH \subseteq PSPACE \subseteq EXP \subseteq NEXP - bounded halting for NTMs is NEXP-complete - Karp-Lipton Theorems for PSPACE and EXP	follow from our work
Ĺ:	There is a NEXP-machine M_0 s.t. V02 proves the	t M ₀

8

correctly decides the bounded halting problem for NTMs and also proves that $L(M_0)$ is NEXP-complete.

Open Problem

Is "NP ⊈ P/poly" true in a model of S12?

9

Answer is YES assuming PH \nsubseteq NP^{NP} by Karp-Lipton Theorem or even PH \nsubseteq ZPP^{NP} by Watanabe's KL Theorem

Previous Consistency Results (1/2)

Thm: If PH $\not\subseteq$ P^{NP[log]}, then "NP $\not\subseteq$ P/poly" is true in a model of S12

Thm: If PH \nsubseteq P^{NP}, then "NP \nsubseteq P/poly" is true in a model of S22

Previous Consistency Results (2/2)

Thm: For every c > 0, "NP \nsubseteq SIZE(n^c)" is true in a model of S12 Thm: For every c > 0, "PNP \nsubseteq SIZE(n^c)" is true in a model of S22 Thm: For every c > 0, "ZPPNP \nsubseteq SIZE(n^c)" is true in a model of APC2 \longleftarrow CKKO21

Recall: For every c > 0, NP^{NP} \nsubseteq SIZE(n^c)

Kannan's

Theorem

Our Main Result

Theorem:

"NEXP ⊈ P/poly" is true in a model of V02

- **1**. MINUS: For NEXP instead of ZPP^{NP}, P^{NP}, NP,
- **2**. PLUS: Against P/poly instead of SIZE(n^c),
- **3**. PLUS: In V02 instead of S12 \subseteq S22 \subseteq APC2 $\subseteq \cdots$
- **4. PLUS**: Unconditional!

Two-Sorted Language

Basic arithmetic:

0 succ(x) x + y $x \times y$ x # y $\lfloor x/2 \rfloor$ |x| x < y

PV symbols: a function symbol for each poly-time clocked algorithm:

EUCLID-GCD(x, y) AKS-PRIME(x) BINARY-SEARCH^Y(x, l, r)

Quantifiers over number sort: $\exists x \in A$ Quantifiers over set sort: $\exists_2 Y$ Membership relation: $x \in A$

 $\exists x \varphi \qquad \forall x \varphi \\ \exists_2 Y \varphi \qquad \forall_2 Y \varphi \\ x \in Y$

Axioms

- **1.** BASIC axioms for basic arithmetic
- 2. Cobham's definitions for PV-symbols
- 3. Boundedness and Extensionality for set sort
- **4.** Induction for formulas in class Φ :

 $\varphi(0) \land \forall z < x (\varphi(z) \rightarrow \varphi(z+1)) \rightarrow \varphi(x)$

5. Comprehension for formulas in class Φ :

 $\exists_2 Y \leq z \ \forall x \leq z \ (x \in Y \leftrightarrow \varphi(x))$

Models

Domain for number sort:

 \mathbb{N} in the standard model \mathbb{N}_2

Domain for set sort:

 $\mathcal{P}_{\omega}(\mathbb{N})$ in the standard model \mathbb{N}_2

Interpretations for PV-symbols:

All polynomial-time computable (type-1 and type-2) functions in the standard model N_2

Standard interpretation for $x \in Y$ in all models.

 $\mathbb{N}^k \longrightarrow \mathbb{N}$

 $\mathbb{N}^k \, \mathbf{x} \, \mathcal{P}_{\omega}(\mathbb{N})^l \, \longrightarrow \, \mathbb{N}$

Formalization of NEXP ⊈ P/poly

 K_0 : a (standard) NEXP-complete problem, e.g., bounded halting M_0 : a (standard) explicit NEXP-machine deciding K_0

TFAE: NEXP
$$\nsubseteq$$
 P/poly
 $K_0 \notin$ P/poly
 $\mathbb{N}_2 \models \neg \alpha^c$ for all $c > 0$

 $\alpha^{c} \coloneqq \forall n \in Log \ \exists C < 2^{n^{c}} \ \forall x < 2^{n}$ $C(x) = 1 \longrightarrow \exists_{2}Y \quad "Y \text{ is an acc. comp. of } M_{0} \text{ on } x"$ $C(x) = 0 \longrightarrow \forall_{2}Y \quad "Y \text{ is not an acc. comp. of } M_{0} \text{ on } x"$

A Better Formalization

TFAE: NEXP \nsubseteq P/poly $K_0 \notin$ P/poly K_0 does not have poly-size witness circuits $\mathbb{N}_2 \models \neg \beta^c$ for all c > 0

 $\beta^{c} \coloneqq \forall n \in Log \ \exists C < 2^{n^{c}} \ \exists D < 2^{n^{c}} \ \forall x < 2^{n}$ $C(x) = 1 \longrightarrow ``\{y : D(x, y) = 1\} \text{ is an acc. comp. of } M_{0} \text{ on } x^{"}$ $C(x) = 0 \longrightarrow \forall_{2}Y \ ``Y \text{ is not an acc. comp. of } M_{0} \text{ on } x^{"}$

Note: V02
$$\stackrel{\checkmark}{\vdash} \beta^c \rightarrow \alpha^c$$
 but V02 $\stackrel{?}{\vdash} \alpha^c \rightarrow \beta^{c'}$

17

Easy Witness Lemma

Main Theorem

There is a model \mathcal{M} of V02 s.t. $\mathcal{M} \models \neg \alpha^c$ for all c > 0 $\mathcal{M} \models \neg \beta^c$ for all c > 0i.e. $\mathcal{M} \models "NEXP \nsubseteq P/poly"$

Proof Sketch in Four Steps

Step 0: Assume otherwise; i.e., for every model \mathcal{M} of V02 there exists c > 0 such that $\mathcal{M} \models \beta^c$

Step 1: Take a non-standard model \mathcal{M} of V02 where Pigeonhole Principle fails: $Y: [a] \xrightarrow{inj} [a-1]$

Step 2: Take a NEXP-machine N which, given *a* as input, guesses and verifies 1-1 maps, provably in V02

Step 3: Use the assumption to get a contradiction because, in \mathcal{M} , some such 1-1 maps cannot be in P/poly

Step 1: Get the model

Jewel Theorem of Proof Complexity: For every d > 0 and every large m > 0, every depth-d Frege proof of PHP_{m,m-1} has size at least $exp(m^{-exp(d)})$.

Gives a model \mathcal{M} of V02 and $a \in \mathcal{M}$ where PHP(a) fails, i.e.

 $\mathcal{M} \models \exists_2 Y "Y \text{ is a } 1-1 \text{ map from } a \text{ to } a-1"$

More strongly,

 $\mathcal{M} \models PHP(0) \land \forall z < a \left(PHP(z) \rightarrow PHP(z+1) \right) \land \neg PHP(a)$

Step 2 : Get the NEXP machine

 $\mathfrak{M} \models \exists_2 Y "Y \text{ is a } 1-1 \text{ map from } a \text{ to } a-1"$

Think of these as: *a*: an input of length n := |a| in *Log* of \mathcal{M} *Y*: the guess of a NEXP-machine N on input *a* L: For every $s\Sigma_1^{b,1}$ -formula $\varphi(x)$ there is NEXP-machine N and $f \in PV$: $V02 \vdash \varphi(x) \leftrightarrow \exists_2 Y "Y \text{ is an acc. comp. of N on } x"$ $\leftrightarrow \exists_2 Y "Y \text{ is an acc. comp. of M_0 on } f(x)"$ getting V02 here is not entirely trivial

Step 3 : Use the assumption

 $\mathcal{M} \models \neg PHP(x) \leftrightarrow \exists_2 Y "Y \text{ is an acc. comp. of } M_0 \text{ on } f(x)"$

By assumption $\mathcal{M} \models \beta^c$ for some c > 0. Hence:

$$\mathfrak{M} \models \exists C < 2^{|a|^{c}} \forall x < 2^{|a|} (C(x) \leftrightarrow \neg PHP(x))$$

Recall

 $\mathcal{M} \vDash PHP(0) \land \forall z < a \left(PHP(z) \rightarrow PHP(z+1) \right) \land \neg PHP(a).$

Therefore, for the above $C \in \mathcal{M}$, we have

 $\mathcal{M} \vDash \neg \mathcal{C}(0) \land \forall z < a \left(\neg \mathcal{C}(z) \rightarrow \neg \mathcal{C}(z+1) \right) \land \mathcal{C}(a)$

against the quantifier-free induction axiom of V02.

Discussion (1/2)

We proved "NEXP ⊈ P/poly" true in some model of V02. Might "NEXP ⊈ P/poly" be independent of V02?

Discussion (2/2)

Similar ideas give:

Theorem:"NTIME($n^{\log \log \cdots \log n}$)
 \subseteq P/poly" is truein a model of V02

Relies on Murray-Williams' EWL instead of IKW's EWL

Open Problems

- **Q1** : Can V02 prove the Easy Witness Lemma? V02 $\vdash \alpha^c \rightarrow \beta^{c'}$?
- **Q2** : Can V02 prove IP = PSPACE or MIP = NEXP?
- Q3 : Can V02 prove Polynomial Identity Testing in BPP or P/poly?
- **Q4** : Can V02 prove "NEXP^{NP} ⊈ P/poly"?
- **Q5** : Is "NEXP $\not\subseteq$ P/poly" true in some model of V02 + PHP(x)?
- **Q6** : Is "EXP ⊈ P/poly" true in some model of V02?
- **Q7** : Is "PSPACE ⊈ P/poly" true in some model of V02?

