The Power of
 Extended Resolution

A Practitioner's Perspective

Randal E. Bryant
Carnegie
Mellon
University

Simons Institute, 2023
http://www.cs.cmu.edu/~bryant

Background: My Research in "Formal" Verification

1990 Formal Verification of Digital Circuits Using Symbolic Ternary System Models
1991 Formal Hardware Verification by Symbolic Simulation
1991 Formal Verification of Memory Circuits by Switch-Level Simulation
1994 Formally Verifying a Microprocessor using a Simulation Methodology
1996 Formal Verification of PowerPC(TM) Arrays using Symbolic Trajectory Evaluation
1997 Forma/ Verification of a Superscalar Execution Unit
1998 Formal Verification of Pipelined Processors
1999 Formal Verification of an ARM Processor
2006 Formal Verification of Infinite State Systems Using Boolean Methods

Automated Reasoning Programs

Automated Reasoning Programs

Standard Tools

- Lingering doubt about whether result can be trusted
- If find bug in tool, must rerun all prior verifications

Automated Reasoning Programs

Standard Tools

- Lingering doubt about whether result can be trusted
- If find bug in tool, must rerun all prior verifications

Formally Verified Tools

- Hard to develop
- Hard to make scalable

Proof-Generating Automated Reasoning Programs

Proof-Generating Tools

- Only need to prove individual executions, not entire program
- Can have bugs in tool but still trust result

Proof-Generating Automated Reasoning Programs

Proof-Generating Tools

- Only need to prove individual executions, not entire program
- Can have bugs in tool but still trust result
- Can we trust the checker?
- Simple algorithms and implementation
- Possibly formally verified

Boolean Satisfiability Solvers

Boolean Satisfiability Solvers

Boolean Satisfiability Solvers

Proof Generating Solvers

Adoption of Proof Checking by SAT Community

Some History

2003 Proof generation added to zChaff [ZhaMal-2003] and BerkMin [GolNov-2003]
2013 Proof framework and checker well matched to CDCL solvers [HeuHunWet-2013]
2016 Proof generation mandatory for SAT competition main track

Adoption of Proof Checking by SAT Community

Some History

2003 Proof generation added to zChaff [ZhaMal-2003] and BerkMin [GolNov-2003]
2013 Proof framework and checker well matched to CDCL solvers [HeuHunWet-2013]
2016 Proof generation mandatory for SAT competition main track

Impact

- 2022 SAT Competition
- No main track entrant reported UNSAT on satisfiable problem
- Even on new benchmark formulas
- Tool developers alerted to bugs early in development
- Has enabled implementation of more complex \& risky optimizations

Talk Overview

Add Proof Support to Other Forms of Automated Reasoning
Basics

- (Extended) resolution
- Clausal proofs

Binary Decision Diagrams (BDDs) and Proof Generation

- BDDs and extended resolution
- Supporting other Boolean reasoning methods

Certified Knowledge Compilation

- Partitioned-Operation Graphs (POGs)
- Equivalence proofs

Basics

Clauses

- $[\bar{u} \vee v \vee w]$ Disjunction of literals
- \perp

Empty clause (False)

Resolution Principle

- Robinson, 1965

$$
\frac{\bar{u} \vee v \vee w \quad \bar{w} \vee x \vee \bar{z}}{(\bar{u} \vee v) \vee(x \vee \bar{z})}
$$

Basics

Clauses

- $[\bar{u} \vee v \vee w]$ Disjunction of literals
- \perp

Empty clause (False)

Resolution Principle

- Robinson, 1965

$$
\begin{aligned}
(u \wedge \bar{v}) \rightarrow & w \quad w \rightarrow(x \vee \bar{z}) \\
& \frac{\bar{u} \vee v \vee w \quad \bar{w} \vee x \vee \bar{z}}{(\bar{u} \vee v) \vee(x \vee \bar{z})}
\end{aligned}
$$

Basics

Clauses

- $[\bar{u} \vee v \vee w]$ Disjunction of literals
- \perp

Empty clause (False)

Resolution Principle

- Robinson, 1965

$$
\begin{gathered}
(u \wedge \bar{v}) \rightarrow w \\
\frac{\bar{u} \vee v \vee w \quad \bar{w} \vee x \vee \bar{z}}{(\bar{u} \vee v) \vee(x \vee \bar{z})} \\
(u \wedge \bar{v}) \rightarrow(x \vee \bar{z})
\end{gathered}
$$

Clausal Proof Systems

Input Formula: Set of Clauses

$$
C_{1}, C_{2}, \ldots, C_{m}
$$

Clausal Proof (of Unsatisfiability):

$$
C_{m+1}, C_{m+2}, \ldots, C_{t}
$$

- Preserves satisfiability: For $i \geq m$:

If $\quad\left\{C_{1}, C_{2}, \ldots, C_{i}\right\} \quad$ is satisfiable then $\left\{C_{1}, C_{2}, \ldots, C_{i}, C_{i+1}\right\}$ is satisfiable

- $C_{t}=\perp$

Clausal Proof Systems

Input Formula: Set of Clauses

$$
C_{1}, C_{2}, \ldots, C_{m}
$$

Clausal Proof (of Unsatisfiability):

$$
C_{m+1}, C_{m+2}, \ldots, C_{t}
$$

- Preserves satisfiability: For $i \geq m$:

If	$\left\{C_{1}, C_{2}, \ldots, C_{i}\right\}$	is satisfiable
then	$\left\{C_{1}, C_{2}, \ldots, C_{i}, C_{i+1}\right\}$	is satisfiable

- $C_{t}=\perp$
- Resolution rule preserves solutions:

$$
\bigwedge_{1 \leq j \leq i} C_{j} \Longrightarrow C_{i+1}
$$

Clausal Proof Example

\(\left.\begin{array}{cccc}Step \& Clause \& Antecedents \& Formula

1 \& {[\bar{v} \vee w]} \& \& v \rightarrow w

2 \& {[\bar{v} \vee \bar{w}]} \& \& v \rightarrow \bar{w}

3 \& {[v]} \& \& v

4 \& {[\bar{v}]} \& 1,2 \& \bar{v}

5 \& \perp \& 3,4 \& v \wedge \bar{v}\end{array}\right\}\)| |
| :--- |
| |

- Prove conjunction of input clauses unsatisfiable
- Add derived clauses
- Provide list of antecedent clauses that resolve to new clause
- Finish with empty clause
- Proof is series of inferences leading to contradiction

Extended Resolution

- Tseitin, 1967

Can introduce extension variables

- Variable e that has not yet occurred in proof
- Must introduce defining clauses
- Clauses creating constraint of form $e \leftrightarrow F$
- Boolean formula F over input and earlier extension variables

Extension variable becomes shorthand for larger formula

- Through repeated application, can have exponentially smaller proof

Extended Resolution Example

Example: Prove following set of constraints unsatisfiable

Constraint	Clauses
$u \wedge v \rightarrow w$	$[\bar{u} \vee \bar{v} \vee w]$
$u \wedge v \rightarrow \bar{w}$	$[\bar{u} \vee \bar{v} \vee \bar{w}]$
$u \wedge v$	$[u]$
	$[v]$

- Strategy: Introduce extension variable e such that $e \leftrightarrow u \wedge v$

Constraint	Clauses
$u \wedge v \rightarrow e$	$[e \vee \bar{u} \vee \bar{v}]$
$e \rightarrow u$	$[\bar{e} \vee u]$
$e \rightarrow v$	$[\bar{e} \vee v]$

ER Proof

Step	Clause	Antecedents	Formula	
1	$[\bar{u} \vee \bar{v} \vee w]$		$u \wedge v \rightarrow w$	Input clauses
2	$[\bar{u} \vee \bar{v} \vee \bar{w}]$		$u \wedge v \rightarrow \bar{w}$	
3	[u]		u	
4	[v]		v	
5	$[e \vee \bar{u} \vee \bar{v}]$		$u \wedge v \rightarrow e$	Defining clauses
6	$[\bar{e} \vee u]$		$e \rightarrow u$	
7	$[\bar{e} \vee v]$		$e \rightarrow v$	
8	$[\bar{e} \vee \bar{v} \vee w]$	1, 6	$e \wedge v \rightarrow w$	
9	$[\bar{e} \vee w]$	7, 8	$e \rightarrow w$	
10	$[\bar{e} \vee \bar{v} \vee \bar{w}]$	2, 6	$e \wedge v \rightarrow \bar{w}$	
11	$[\bar{e} \vee \bar{w}]$	7, 10	$e \rightarrow \bar{w}$	Derived clauses
12	[$e \vee \bar{v}$]	3, 5	$v \rightarrow e$	
13	[e]	4, 12	e	
14	[$\overline{\text {] }}$	9, 11	\bar{e}	
15	\perp	13, 14	$e \wedge \bar{e}$	

ER Proof

Step	Clause	Antecedents	Formula
1	$[\bar{u} \vee \bar{v} \vee w]$	$u \wedge v \rightarrow w$	
2	$[\bar{u} \vee \bar{v} \vee \bar{w}]$	$u \wedge v \rightarrow \bar{w}$	
3	$[u]$	u	
4	$[v]$	v	
5	$[e \vee \bar{u} \vee \bar{v}]$		
6	$[\bar{e} \vee u]$	$e \rightarrow u$	
7	$[\bar{e} \vee v]$	$e \rightarrow v$	
8	$[\bar{e} \vee \bar{v} \vee w]$	1,6	$e \wedge v \rightarrow w$
9	$[\bar{e} \vee w]$	7,8	$e \rightarrow w$
10	$[\bar{e} \vee \bar{v} \vee \bar{w}]$	2,6	$e \wedge v \rightarrow \bar{w}$
11	$[\bar{e} \vee \bar{w}]$	7,10	$e \rightarrow \bar{w}$
12	$[e \vee \bar{v}]$	3,5	$v \rightarrow e$
13	$[e]$	4,12	e
14	$[\bar{e}]$	9,11	\bar{e}
15	\perp	13,14	$e \wedge \bar{e}$

Proof Complexity Hierarchy

The Power of (Extended) Resolution

Resolution

- Very weak

Implications for CDCL Solvers

- (Almost) every inference step can be expressed as polynomial number of resolution proof steps
- Exception: Bounded variable addition requires extension variables

Extended Resolution

- Can simulate all other known propositional proof systems
- No known class of formulas with superpolynomial lower bound

Parity Benchmark

- Chew and Heule, SAT 2020
- For random permtuation π :

$$
\begin{array}{cccccccccl}
x_{1} & \oplus & x_{2} & \oplus & \cdots & \oplus & x_{n} & = & 1 & \text { Odd parity } \\
x_{\pi(1)} & \oplus & x_{\pi(2)} & \oplus & \cdots & \oplus & x_{\pi(n)} & = & 0 & \text { Even parity }
\end{array}
$$

- Encode each equation in CNF
- $n-3$ auxiliary variables
- Linear sequence of 3 -argument parity constraints
- Conjunction unsatisfiable
- Very challenging for CDCL solvers

Chew-Heule Parity Benchmark Proof Sizes

- KISSAT: State-of-the-art CDCL solver
- 3 different seeds for each value of n
- Cannot get beyond $n=42$ within 600 seconds

A Perspective on the State of SAT Solving

A Perspective on the State of SAT Solving

A Perspective on the State of SAT Solving

Reduced, Ordered Binary Decision Diagrams (BDDs)

- Bryant [Bry-1986]

Representation

- Canonical representation of Boolean function
- Compact for many useful cases

Proof-Generating SAT Solvers Based on BDDs

Implementations

- EBDDRES: Sinz, Biere, Jussila, 2006
[SinBie-2006, JusSinBie-2006]
- PGBDD: Bryant, Heule, 2021 [BryHeu-2021]
- TBUDDY: Bryant [Bry-2022]

Extended-Resolution Proof Generation

- Introduce extension variable for each BDD node
- Proof steps based on recursive structure of BDD algorithms
- Proof is (very) detailed justification of each BDD operation

BDD Apply Algorithm

- u, v, w BDD root nodes representing

$\mathbf{w} \leftarrow \mathbf{u} \odot \mathbf{v}$ Boolean functions

- \odot binary Boolean operator
- E.g., \wedge, \vee, \oplus

Apply Algorithm Recursion

Apply Algorithm Recursion

Recursion
$\operatorname{Apply}\left(\mathbf{u}_{1}, \mathbf{v}_{1}, \wedge\right) \rightarrow$

$\operatorname{Apply}\left(\mathbf{u}_{0}, \mathbf{v}_{0}, \wedge\right) \rightarrow$

Apply Algorithm Recursion

Recursion

Result

Generating Extended Resolution Proofs

- Extension variable u for each node \mathbf{u} in BDD

- Defining clauses encode constraint $u \leftrightarrow \operatorname{ITE}\left(x, u_{1}, u_{0}\right)$

Clause name	Formula	Clausal form
HD(u)	$x \rightarrow\left(u \rightarrow u_{1}\right)$	$\left[\bar{x} \vee \bar{u} \vee u_{1}\right]$
$\operatorname{LD}(\mathbf{u})$	$\bar{x} \rightarrow\left(u \rightarrow u_{0}\right)$	$\left[x \vee \bar{u} \vee u_{0}\right]$
$\operatorname{HU}(\mathbf{u})$	$x \rightarrow\left(u_{1} \rightarrow u\right)$	$\left[\bar{x} \vee \bar{u}_{1} \vee u\right]$
$\operatorname{LU}(\mathbf{u})$	$\bar{x} \rightarrow\left(u_{0} \rightarrow u\right)$	$\left[x \vee \bar{u}_{0} \vee u\right]$

Proof-Generating Apply Operation

Integrate Proof Generation into Apply Operation

- Apply $(\mathbf{u}, \mathbf{v}, \wedge)$ returns w
- Also generate proof $u \wedge v \rightarrow w$

Key Idea:
Proof follows recursion of the Apply algorithm

Apply Algorithm Recursion

$\operatorname{Apply}(\mathbf{u}, \mathbf{v}, \wedge)$

Result

Apply Algorithm Recursion

Recursion
$\operatorname{Apply}\left(\mathbf{u}_{1}, \mathbf{v}_{1}, \wedge\right) \rightarrow$ $u_{1} \wedge v_{1} \rightarrow w_{1}$

$\underset{u_{0} \wedge v_{0} \rightarrow w_{0}}{\operatorname{Apply}\left(\mathbf{u}_{0}, \mathbf{v}_{0}, \wedge\right)} \rightarrow \bigcup_{u_{0}}^{\mathbf{w}_{0}}$
Result

Apply Proof Structure

Defining Clauses

Clause	Formula	Clause	Formula
$\mathrm{HD}(\mathbf{u})$	$x \rightarrow\left(u \rightarrow u_{1}\right)$	$\mathrm{LD}(\mathbf{u})$	$\bar{x} \rightarrow\left(u \rightarrow u_{0}\right)$
$\mathrm{HD}(\mathbf{v})$	$x \rightarrow\left(v \rightarrow v_{1}\right)$	$\mathrm{LD}(\mathbf{v})$	$\bar{x} \rightarrow\left(v \rightarrow v_{0}\right)$
$\mathrm{HU}(\mathbf{w})$	$x \rightarrow\left(w_{1} \rightarrow w\right)$	$\mathrm{LU}(\mathbf{w})$	$\bar{x} \rightarrow\left(w_{0} \rightarrow w\right)$

Resolution Steps

$x \rightarrow\left(u \rightarrow u_{1}\right)$		$\bar{x} \rightarrow\left(u \rightarrow u_{0}\right)$	
$x \rightarrow\left(v \rightarrow v_{1}\right)$		$\bar{x} \rightarrow\left(v \rightarrow v_{0}\right)$	
$x \rightarrow\left(w_{1} \rightarrow w\right)$	$u_{1} \wedge v_{1} \rightarrow w_{1}$	$\bar{x} \rightarrow\left(w_{0} \rightarrow w\right)$	$u_{0} \wedge v_{0}$
$x \rightarrow(u \wedge v \rightarrow w)$		$\bar{x} \rightarrow(u \wedge v \rightarrow w)$	

Chew-Heule Parity Benchmark Proof Sizes

- Generate BDD representations of clauses
- Systematically form conjunctions and quantify out variables
- Each recursive step generates up to 6 proof clauses
- Unsatisfiable formula generates BDD leaf node \perp

CDCL Proofs vs. BDD Proofs

- CDCL proof step indicates reduction in search space
- BDD proof steps justify algorithmic steps

Pseudo-Boolean (PB) Formulas

- Integer Equations

$$
\sum_{1 \leq i \leq n} a_{i} x_{i}=b
$$

- a_{i}, b : integer constants
- x_{i} : 0-1 valued variables
- Ordering Constraints

$$
\sum_{1 \leq i \leq n} a_{i} x_{i} \geq b
$$

- Modular Equations

$$
\sum_{1 \leq i \leq n} a_{i} x_{i} \equiv b \quad(\bmod r)
$$

- r : constant modulus
- Parity constraint: $r=2$

Representing PB Ordering Constraints with BDDs

- Example constraint:

$$
\begin{aligned}
& +x_{1}+x_{3}+x_{5}+x_{7}+x_{9} \\
& -x_{2}-x_{4}-x_{6}-x_{8}-x_{10} \geq 0
\end{aligned}
$$

- BDD size $\leq a_{\max } \cdot n^{2}$

$$
a_{\max }=\max _{1 \leq i \leq n}\left|a_{i}\right|
$$

- Independent of variable ordering

Representing PB Modular Equations with BDDs

- Example equation:

$$
\begin{aligned}
& +x_{1}+x_{3}+x_{5}+x_{7}+x_{9} \\
& -x_{2}-x_{4}-x_{6}-x_{8}-x_{10}
\end{aligned} \equiv 0 \quad(\bmod 3)
$$

- BDD size $\leq n \cdot r$
- Independent of variable ordering

(Un)satisfiability with a Pseudo-Boolean Sover

Pseudo-Boolean Reasoning Methods

- (Modular) Equations
- Gaussian elimination
- Ordering Constraints
- Cutting planes
- Fourier-Motzkin elimination

(Un)satisfiability with a Pseudo-Boolean Sover

Pseudo-Boolean Reasoning Methods

- (Modular) Equations
- Gaussian elimination
- Ordering Constraints
- Cutting planes
- Fourier-Motzkin elimination

Integrating Pseudo-Boolean Reasoning into

 Proof-Generating SAT Solver [BryBieHeu-2022]

- Overall flow same as SAT solver
- PB solver does all of the reasoning
- BDDs serve only as mechanism for generating clausal proof

Validating Solver Steps

Individual Solver Step

- Given constraints p_{i} and p_{j}, compute new constraint p_{k} :

$$
p_{k} \leftarrow p_{i} \odot p_{j}
$$

- E.g., $\odot=+$

Validation

- Maintain $\operatorname{BDD}(p)$ for each constraint p
- When generate p_{k}, also generate proof:

$$
\operatorname{BDD}\left(p_{i}\right) \wedge \operatorname{BDD}\left(p_{j}\right) \quad \Longrightarrow \operatorname{BDD}\left(p_{k}\right)
$$

- Complexity $O\left(m_{i} \cdot m_{j} \cdot m_{k}\right)$
- for BDDs of size m_{i}, m_{j}, and m_{k}

Chew-Heule Parity Benchmark Proof Sizes

- Upper limit: $n=699,051$
- Node data structure sets limit of $2^{21}-1$ BDD variables
- CNF file has 2,097,147 variables and 5,592,392 clauses
- Some failures for large values of n due to poor pivot selection

A Perspective on the State of SAT Solving

A Perspective on the State of SAT Solving

A Perspective on the State of SAT Solving

Proof Generation for $\operatorname{CDCL}(\mathrm{T})$

- Solvers coordinate in unit propagation and conflict detection
- Proof generation: Each solver justifies its propagations \& conflicts
- CryptoMiniSAT
- Gauss-Jordan elimination for parity constraints
- Can use BDDs to justify each elimination step [SooBry-22]

Knowledge Compilation

- Darwiche [DarMar-2002]

Convert CNF Formula into More Tractable Representation
Sample Query

- Model Counting: How many satisfying assignments does the formula have?

Challenging Problem

- \#SAT more difficult than SAT

Knowledge Compilation

- Darwiche [DarMar-2002]

Convert CNF Formula into More Tractable Representation

Sample Query

- Model Counting: How many satisfying assignments does the formula have?

Challenging Problem

- \#SAT more difficult than SAT

Questions

- How do I know the generated representation is logically equivalent to the input formula?
- How do I know if the computed query values are correct?

Algebraic Formulation

- Kimmig et al. [KimVdbDra-2017]

Definitions

- Input variables $x_{1}, x_{2}, \ldots, x_{n}$
- Assignment: $\alpha=\left\{\ell_{1}, \ell_{2}, \ldots, \ell_{n}\right\}$ with each $\ell_{i} \in\left\{x_{i}, \bar{x}_{i}\right\}$
- Models: $\mathcal{M}(\phi)$ is set of satisfying assignments for formula ϕ

Ring Evaluation

- Commutative ring \mathcal{R}
- Assign weight $w\left(x_{i}\right) \in \mathcal{R}$ to each input variable x_{i}
- Define $w\left(\bar{x}_{i}\right)=1-w\left(x_{i}\right)$
- Ring evaluation $\mathbf{R}(\phi, w)$ of formula ϕ :

$$
\mathbf{R}(\phi, w)=\sum_{\alpha \in \mathcal{M}(\phi)} \prod_{\ell_{i} \in \alpha} w\left(\ell_{i}\right)
$$

Ring Evaluation Examples

Model Counting

- Let $w\left(x_{i}\right)=w\left(\bar{x}_{i}\right)=1 / 2$ for all i
- $\mathbf{R}(\phi, w)$ gives density of function
- Fraction of assignments that satisfy ϕ
- Scale by 2^{n} to get model count

Probabilistic Inference

- Each input variable x_{i} is true with probability $p\left(x_{i}\right)$.
- $\mathbf{R}(\phi, p)$ is probability that formula is true

Partitioned-Operation Formulas

Allowed Operations

- Product: $\quad \phi_{1} \wedge^{\mathrm{p}} \phi_{2}$, where $\mathcal{D}\left(\phi_{1}\right) \cap \mathcal{D}\left(\phi_{2}\right)=\emptyset$
- $\mathcal{D}(\phi)$: Set of all variables occuring in ϕ
- Sum: $\quad \phi_{1} \vee^{\mathrm{p}} \phi_{2}$, where $\mathcal{M}\left(\phi_{1}\right) \cap \mathcal{M}\left(\phi_{2}\right)=\emptyset$
- Negation: $\neg \phi$

Ring Evaluation of Partitioned Formula

$$
\begin{aligned}
\mathbf{R}\left(\phi_{1} \wedge^{\mathrm{p}} \phi_{2}, w\right) & =\mathbf{R}\left(\phi_{1}, w\right) \cdot \mathbf{R}\left(\phi_{2}, w\right) \\
\mathbf{R}\left(\phi_{1} \vee^{\mathrm{p}} \phi_{2}, w\right) & =\mathbf{R}\left(\phi_{1}, w\right)+\mathbf{R}\left(\phi_{2}, w\right) \\
\mathbf{R}(\neg \phi, w) & =1-\mathbf{R}(\phi, w)
\end{aligned}
$$

Partitioned-Operation Graphs (POGs)

- Directed graph representation of formula
- Leaf nodes: Input variables
- Operation nodes: Partitioned product and sum
- Each edge can be negated
- Can encode other compiled representations

Certifying Toolchain

- Joint work with Wojciech Nawrocki, Jeremy Avigad, and Marijn Heule

- Knowledge Compiler (D4 [LagMar-2017]): Convert CNF into representation using only partitioned operations
- Proof Generator: Generate file combining POG definition + equivalence proof
- Proof Checker: Validate proof file
- Ring Evaluator: Compute standard or weighted model count

Trusting the Trusted Code

Within Lean 4 Proof Framework [DemUlr-2021]

- Soundness of proof system
- Helped us identify some weaknesses in our proof rules
- Verified checker
- Around $6 \times$ slower than one implemented in C
- Ring Evaluator: Over rationals

CPOG Declaration + Proof

Input Formula ϕ_{I}

POG Declaration θ_{P}

- Extension variable u for each operation node \mathbf{u}
- Node \mathbf{u} with k children characterized by $k+1$ defining clauses
- Children indicated by literals
- Positive or negated arguments
- Input variables or results from other operation
- Unit clause [r] for root node \mathbf{r}

Proof Objective

$$
\phi_{I} \Longleftrightarrow \theta_{P}
$$

CPOG Proof Structure

Forward Implication Proof

$$
\phi_{I} \Longrightarrow \theta_{P}
$$

- Add clauses by resolution
- Terminating with unit clause $[r]$
- Any assignment satisfying ϕ_{I} causes the POG formula to evaluate to true

Reverse Implication Proof

$$
\theta_{P} \quad \Longrightarrow \phi_{I}
$$

- Delete clauses by resolution
- Deleted clause implied by remaining ones
- Including each of the input clauses
- Any assignment falsifying the input clause causes the POG formula to evaluate to false

Experimental Results: CPOG Generation and Checking

- 180 benchmark files from 2022 model checking competitions
- D4 completed 124 with 4000-second time limit
- Generated complete proofs for 108 with 10,000-second time limit
- Reverse implications for 9
- No proofs for 7

Experimental Results: CPOG Sizes

Recap: Important Principle

Proof-Generating Tools

- Formally verifying a large, complex program is impractical
- Instead, certify individual executions of the program

Important Concepts

Checkable Proofs of Program Executions

- Very habit forming
- Many research possibilities

Clausal Proof Frameworks

- Well understood set of principles
- Can build on existing infrastructure
- E.g., our CPOG proof generator uses CaDiCal and Drat-trim
- Not just for refutation proofs

Extended Resolution

- Can reason about other representations of Boolean formulas
- Can introduce intermediate proof structures
- E.g., CPOG proof generator uses lemmas to control recursion
- Validation for each shared POG node generated once and used multiple times

References \#1

Bry-1986 R. E. Bryant, "Graph-based algorithms for Boolean function manipulation," IEEE Trans. Computers, 1986

BryHeu-2021 R. E. Bryant and M. J. H. Heule, "Generating extended resolution proofs with a BDD-based SAT solver," TACAS, 2021. Extended version on ArXiv

Bry-2022 R. E. Bryant, "TBUDDY: A Proof-generating BDD package," FMCAD, 2022
BryBieHeu-2022 R. E. Bryant, A. Biere, and M. J. H. Heule, "Clausal proofs from pseudo-Boolean reasoning," TACAS, 2022
SooBry-2022 M. Soos and R. E. Bryant, "Proof generation for CDCL solvers using Gauss-Jordan elimination" Pragmatics of SAT Workshop, 2022.

References \#2

CheHeu-2020 L. Chew and M. J. H. Heule, "Sorting parity encodings by reusing variables," SAT, 2020.
DarMar-2002 A. Darwiche and P. Marquis, "A Knowledge Compilation Map," JAIR, 2002
DemUlr-2021 L. de Moura and S. Ulrich, "The Lean 4 theorem prover and programming language," CADE, 2021
GolNov-2003 E. I. Goldberg and Y. Novikov, "Verification of proofs of unsatisfiability for CNF formulas," DATE, 2003
JusSinBie-2006 T. Jussila, C. Sinz and A. Biere, "Extended resolution proofs for symbolic SAT solving with quantification," SAT, 2006
KimVdbDra-2017 Angelika Kimmig, Guy Van den Broeck, and Luc De Raedt, "Algebraic model counting," J. Applied Logic, 2017
LagMar-2017 J.-M. Lagniez and P. Marquis, "An improved decision-DNNF compiler," IJCAI, 2017
SinBie-2006 C. Sinz and A. Biere, "Extended resolution proofs for conjoining BDDs," Constraint Programming, 2006.

HeuHunWet-2013 M. J. H. Heule, W. A. Hunt, Jr., N. Wetzler, "Trimming while checking clausal proofs," FMCAD, 2013.
ZhaMal-2003 L. Zhang and S. Malik, "Validating SAT solvers using an independent resolution-based checker,"' DATE, 2003

