
The Power of
Extended Resolution

A Practitioner’s Perspective

Randal E. Bryant

Simons Institute, 2023

http://www.cs.cmu.edu/~bryant
1 / 53

http://www.cs.cmu.edu/~bryant

Background: My Research in “Formal” Verification

1990 Formal Verification of Digital Circuits Using Symbolic Ternary
System Models

1991 Formal Hardware Verification by Symbolic Simulation

1991 Formal Verification of Memory Circuits by Switch-Level
Simulation

1994 Formally Verifying a Microprocessor using a Simulation
Methodology

1996 Formal Verification of PowerPC(TM) Arrays using Symbolic
Trajectory Evaluation

1997 Formal Verification of a Superscalar Execution Unit

1998 Formal Verification of Pipelined Processors

1999 Formal Verification of an ARM Processor

2006 Formal Verification of Infinite State Systems Using Boolean
Methods

2 / 53

Automated Reasoning Programs

Formalized
Problem

Reasoning

Tool Outcome

3 / 53

Automated Reasoning Programs

Formalized
Problem

Reasoning

Tool Outcome

Standard Tools

▶ Lingering doubt about whether result can be trusted

▶ If find bug in tool, must rerun all prior verifications

3 / 53

Automated Reasoning Programs

Formalized
Problem

Reasoning

Tool Outcome

Standard Tools

▶ Lingering doubt about whether result can be trusted

▶ If find bug in tool, must rerun all prior verifications

Formally Verified Tools

▶ Hard to develop

▶ Hard to make scalable

3 / 53

Proof-Generating Automated Reasoning Programs

Formalized
Problem

Reasoning

Tool

Proof

Outcome

Checker

Proof-Generating Tools

▶ Only need to prove individual executions, not entire program

▶ Can have bugs in tool but still trust result

4 / 53

Proof-Generating Automated Reasoning Programs

Formalized
Problem

Reasoning

Tool

Proof

Outcome

Checker

Proof-Generating Tools

▶ Only need to prove individual executions, not entire program

▶ Can have bugs in tool but still trust result
▶ Can we trust the checker?

• Simple algorithms and implementation
• Possibly formally verified

4 / 53

Boolean Satisfiability Solvers

Boolean
formula

SAT

solver

solution
satisfiable

5 / 53

Boolean Satisfiability Solvers

Boolean
formula

SAT

solver

solution
satisfiable

Solution
Checker

5 / 53

Boolean Satisfiability Solvers

Boolean
formula

SAT

solver ?
unsatisfiable

5 / 53

Proof Generating Solvers

Boolean
formula

SAT

solver unsatisfiability
proof

unsatisfiable

Proof
Checker

6 / 53

Adoption of Proof Checking by SAT Community

Some History

2003 Proof generation added to zChaff [ZhaMal-2003] and BerkMin
[GolNov-2003]

2013 Proof framework and checker well matched to CDCL solvers
[HeuHunWet-2013]

2016 Proof generation mandatory for SAT competition main track

7 / 53

Adoption of Proof Checking by SAT Community

Some History

2003 Proof generation added to zChaff [ZhaMal-2003] and BerkMin
[GolNov-2003]

2013 Proof framework and checker well matched to CDCL solvers
[HeuHunWet-2013]

2016 Proof generation mandatory for SAT competition main track

Impact
▶ 2022 SAT Competition

• No main track entrant reported UNSAT on satisfiable problem
• Even on new benchmark formulas

▶ Tool developers alerted to bugs early in development

▶ Has enabled implementation of more complex & risky
optimizations

7 / 53

Talk Overview

Add Proof Support to Other Forms of Automated Reasoning

Basics

▶ (Extended) resolution

▶ Clausal proofs

Binary Decision Diagrams (BDDs) and Proof Generation

▶ BDDs and extended resolution

▶ Supporting other Boolean reasoning methods

Certified Knowledge Compilation

▶ Partitioned-Operation Graphs (POGs)

▶ Equivalence proofs

8 / 53

Basics

Clauses

▶ [u ∨ v ∨ w] Disjunction of literals

▶ ⊥ Empty clause (False)

Resolution Principle

▶ Robinson, 1965

u ∨ v ∨ w w ∨ x ∨ z
(u ∨ v) ∨ (x ∨ z)

(u ∧ v)→ w w → (x ∨ z)

(u ∧ v)→ (x ∨ z)

9 / 53

Basics

Clauses

▶ [u ∨ v ∨ w] Disjunction of literals

▶ ⊥ Empty clause (False)

Resolution Principle

▶ Robinson, 1965

u ∨ v ∨ w w ∨ x ∨ z
(u ∨ v) ∨ (x ∨ z)

(u ∧ v)→ w w → (x ∨ z)

(u ∧ v)→ (x ∨ z)

9 / 53

Basics

Clauses

▶ [u ∨ v ∨ w] Disjunction of literals

▶ ⊥ Empty clause (False)

Resolution Principle

▶ Robinson, 1965

u ∨ v ∨ w w ∨ x ∨ z
(u ∨ v) ∨ (x ∨ z)

(u ∧ v)→ w w → (x ∨ z)

(u ∧ v)→ (x ∨ z)

9 / 53

Clausal Proof Systems

Input Formula: Set of Clauses

C1,C2, . . . ,Cm

Clausal Proof (of Unsatisfiability):

Cm+1,Cm+2, . . . ,Ct

▶ Preserves satisfiability: For i ≥ m:

If {C1,C2, . . . ,Ci} is satisfiable

then {C1,C2, . . . ,Ci ,Ci+1} is satisfiable

▶ Ct = ⊥

10 / 53

Clausal Proof Systems

Input Formula: Set of Clauses

C1,C2, . . . ,Cm

Clausal Proof (of Unsatisfiability):

Cm+1,Cm+2, . . . ,Ct

▶ Preserves satisfiability: For i ≥ m:

If {C1,C2, . . . ,Ci} is satisfiable

then {C1,C2, . . . ,Ci ,Ci+1} is satisfiable

▶ Ct = ⊥
▶ Resolution rule preserves solutions:∧

1≤j≤i

Cj =⇒ Ci+1

10 / 53

Clausal Proof Example

Step Clause Antecedents Formula

1 [v ∨ w] v → w

2 [v ∨ w] v → w

3 [v] v

4 [v] 1, 2 v

5 ⊥ 3, 4 v ∧ v

Input
clauses

Derived
clauses

▶ Prove conjunction of input clauses unsatisfiable
▶ Add derived clauses

• Provide list of antecedent clauses that resolve to new clause

▶ Finish with empty clause
• Proof is series of inferences leading to contradiction

11 / 53

Extended Resolution

▶ Tseitin, 1967

Can introduce extension variables

▶ Variable e that has not yet occurred in proof
▶ Must introduce defining clauses

• Clauses creating constraint of form e ↔ F
• Boolean formula F over input and earlier extension variables

Extension variable becomes shorthand for larger formula

▶ Through repeated application, can have exponentially smaller
proof

12 / 53

Extended Resolution Example

Example: Prove following set of constraints unsatisfiable

Constraint Clauses

u ∧ v → w [u ∨ v ∨ w]
u ∧ v → w [u ∨ v ∨ w]

u ∧ v [u]
[v]

▶ Strategy: Introduce extension variable e such that e ↔ u ∧ v

Constraint Clauses

u ∧ v → e [e ∨ u ∨ v]
e → u [e ∨ u]
e → v [e ∨ v]

13 / 53

ER Proof

Step Clause Antecedents Formula

1 [u ∨ v ∨ w] u ∧ v → w
2 [u ∨ v ∨ w] u ∧ v → w
3 [u] u
4 [v] v
5 [e ∨ u ∨ v] u ∧ v → e
6 [e ∨ u] e → u
7 [e ∨ v] e → v
8 [e ∨ v ∨ w] 1, 6 e ∧ v → w
9 [e ∨ w] 7, 8 e → w
10 [e ∨ v ∨ w] 2, 6 e ∧ v → w
11 [e ∨ w] 7, 10 e → w
12 [e ∨ v] 3, 5 v → e
13 [e] 4, 12 e
14 [e] 9, 11 e
15 ⊥ 13, 14 e ∧ e

Input
clauses

Defining
clauses

Derived
clauses

14 / 53

ER Proof

Step Clause Antecedents Formula

1 [u ∨ v ∨ w] u ∧ v → w
2 [u ∨ v ∨ w] u ∧ v → w
3 [u] u
4 [v] v
5 [e ∨ u ∨ v] u ∧ v → e
6 [e ∨ u] e → u
7 [e ∨ v] e → v
8 [e ∨ v ∨ w] 1, 6 e ∧ v → w
9 [e ∨ w] 7, 8 e → w
10 [e ∨ v ∨ w] 2, 6 e ∧ v → w
11 [e ∨ w] 7, 10 e → w
12 [e ∨ v] 3, 5 v → e
13 [e] 4, 12 e
14 [e] 9, 11 e
15 ⊥ 13, 14 e ∧ e

Input
clauses

Defining
clauses

Derived
clauses

u ∧ v
replaced
by e

14 / 53

Proof Complexity Hierarchy

Truth tables

Nullstellensatz Tree resolution DPLL

Polynomial calc. Resolution CDCL

PCR AC0 Frege Cutting planes

Frege

Extended Frege ≡ Extended Resolution

15 / 53

The Power of (Extended) Resolution

Resolution

▶ Very weak

Implications for CDCL Solvers

▶ (Almost) every inference step can be expressed as polynomial
number of resolution proof steps

▶ Exception: Bounded variable addition requires extension
variables

Extended Resolution

▶ Can simulate all other known propositional proof systems

▶ No known class of formulas with superpolynomial lower bound

16 / 53

Parity Benchmark

▶ Chew and Heule, SAT 2020

▶ For random permtuation π:

x1 ⊕ x2 ⊕ · · · ⊕ xn = 1 Odd parity
xπ(1) ⊕ xπ(2) ⊕ · · · ⊕ xπ(n) = 0 Even parity

▶ Encode each equation in CNF

• n − 3 auxiliary variables
• Linear sequence of 3-argument parity constraints

▶ Conjunction unsatisfiable

▶ Very challenging for CDCL solvers

17 / 53

Chew-Heule Parity Benchmark Proof Sizes

10 100 1,000 10,000 100,000 1,000,000

102

103

104

105

106

107

108

n

cl
au
se
s

KISSAT

▶ KISSAT: State-of-the-art CDCL solver

▶ 3 different seeds for each value of n

▶ Cannot get beyond n = 42 within 600 seconds

18 / 53

A Perspective on the State of SAT Solving

Hard

Easy

Mathematical

Tractability

CDCL TractabilityEasy Hard

19 / 53

A Perspective on the State of SAT Solving

Hard

Easy

Mathematical

Tractability

CDCL TractabilityEasy Hard

NP-hard probs

Math proofs

19 / 53

A Perspective on the State of SAT Solving

Hard

Easy

Mathematical

Tractability

CDCL TractabilityEasy Hard

NP-hard probs

Math proofs

Pigeonhole

Mut. Chess

Parity Equations

19 / 53

Reduced, Ordered Binary Decision Diagrams (BDDs)

▶ Bryant [Bry-1986]

Representation

▶ Canonical representation of
Boolean function

▶ Compact for many useful cases

20 / 53

Proof-Generating SAT Solvers Based on BDDs

Implementations

▶ EBDDRES: Sinz, Biere, Jussila, 2006

[SinBie-2006, JusSinBie-2006]

▶ PGBDD: Bryant, Heule, 2021 [BryHeu-2021]

▶ TBUDDY: Bryant [Bry-2022]

Extended-Resolution Proof Generation

▶ Introduce extension variable for each BDD node

▶ Proof steps based on recursive structure of BDD algorithms

▶ Proof is (very) detailed justification of each BDD operation

21 / 53

BDD Apply Algorithm

w ← u⊙ v

▶ u, v, w BDD root nodes representing
Boolean functions

▶ ⊙ binary Boolean operator
▶ E.g., ∧, ∨, ⊕

u

a

b

c

d

⊥ >

F1

F2

F6

F3

F4 F5

∨
v

a

c

d

⊥ >

G1

G5

G2

G3 G4

→

w = u ∨ v

a

b

c

d

⊥ >

22 / 53

Apply Algorithm Recursion

Apply(u, v,∧)

xu

u0 u1

xv

v0 v1

Recursion

Apply(u1, v1,∧) →
w1

Apply(u0, v0,∧) →
w0

Result

xw

w0 w1

23 / 53

Apply Algorithm Recursion

Apply(u, v,∧)

xu

u0 u1

xv

v0 v1

Recursion

Apply(u1, v1,∧) →
w1

Apply(u0, v0,∧) →
w0

Result

xw

w0 w1

23 / 53

Apply Algorithm Recursion

Apply(u, v,∧)

xu

u0 u1

xv

v0 v1

Recursion

Apply(u1, v1,∧) →
w1

Apply(u0, v0,∧) →
w0

Result

xw

w0 w1

23 / 53

Generating Extended Resolution Proofs

▶ Extension variable u for each node u in BDD

xu

u0 u1

▶ Defining clauses encode constraint u ↔ ITE (x , u1, u0)

Clause name Formula Clausal form

HD(u) x → (u → u1) [x ∨ u ∨ u1]
LD(u) x → (u → u0) [x ∨ u ∨ u0]
HU(u) x → (u1 → u) [x ∨ u1 ∨ u]
LU(u) x → (u0 → u) [x ∨ u0 ∨ u]

24 / 53

Proof-Generating Apply Operation

Integrate Proof Generation into Apply Operation

▶ Apply(u, v,∧) returns w
▶ Also generate proof u ∧ v → w

Key Idea:
Proof follows recursion of the Apply algorithm

25 / 53

Apply Algorithm Recursion

Apply(u, v,∧)

xu

u0 u1

xv

v0 v1

Recursion

Result

u ∧ v → w
xw

w0 w1

26 / 53

Apply Algorithm Recursion

Apply(u, v,∧)

xu

u0 u1

xv

v0 v1

Recursion

Apply(u1, v1,∧) →
u1 ∧ v1 → w1

w1

Apply(u0, v0,∧) →
u0 ∧ v0 → w0

w0

Result

xw

w0 w1

26 / 53

Apply Proof Structure

Defining Clauses

Clause Formula Clause Formula
HD(u) x → (u → u1) LD(u) x → (u → u0)
HD(v) x → (v → v1) LD(v) x → (v → v0)
HU(w) x → (w1 → w) LU(w) x → (w0 → w)

Resolution Steps

x → (u → u1)

x → (v → v1)

x → (w1 → w) u1 ∧ v1 → w1

x → (u ∧ v → w)

x → (u → u0)

x → (v → v0)

x → (w0 → w) u0 ∧ v0 → w0

x → (u ∧ v → w)

u ∧ v → w

27 / 53

Chew-Heule Parity Benchmark Proof Sizes

10 100 1,000 10,000 100,000 1,000,000

102

103

104

105

106

107

108

109

n

cl
au
se
s

KISSAT
TBSAT, Bucket

Bucket Elimination

▶ Generate BDD representations of clauses
▶ Systematically form conjunctions and quantify out variables

• Each recursive step generates up to 6 proof clauses

▶ Unsatisfiable formula generates BDD leaf node ⊥

28 / 53

CDCL Proofs vs. BDD Proofs

104 105 106 107 108 109
0.1

1.0

10.0

100.0

Proof clauses

T
im

e/
cl
au
se

(µ
s)

kissat

No Quantification

Bucket-Input

Bucket-Random

Linear

Column Scan

▶ CDCL proof step indicates reduction in search space
▶ BDD proof steps justify algorithmic steps

29 / 53

Pseudo-Boolean (PB) Formulas

▶ Integer Equations ∑
1≤i≤n

ai xi = b (mod r)

• ai , b: integer constants
• xi : 0-1 valued variables

▶ Ordering Constraints∑
1≤i≤n

ai xi ≥ b (mod r)

▶ Modular Equations∑
1≤i≤n

ai xi ≡ b (mod r)

• r : constant modulus
• Parity constraint: r = 2

30 / 53

Representing PB Ordering Constraints with BDDs

>

▶ Example constraint:

+x1 + x3 + x5 + x7 + x9
−x2 − x4 − x6 − x8 − x10

≥ 0

▶ BDD size ≤ amax · n2

amax = max
1≤i≤n

|ai |

▶ Independent of variable
ordering

31 / 53

Representing PB Modular Equations with BDDs

>

▶ Example equation:

+x1 + x3 + x5 + x7 + x9
−x2 − x4 − x6 − x8 − x10

≡ 0 (mod 3)

▶ BDD size ≤ n · r
▶ Independent of variable ordering

32 / 53

(Un)satisfiability with a Pseudo-Boolean Sover

Boolean
Formula
(CNF)

PB Formula

Infeasible

PB
Extractor

PB
Solver

Pseudo-Boolean Reasoning Methods
▶ (Modular) Equations

• Gaussian elimination

▶ Ordering Constraints

• Cutting planes
• Fourier-Motzkin elimination

33 / 53

(Un)satisfiability with a Pseudo-Boolean Sover

Boolean
Formula
(CNF)

PB Formula

Infeasible

PB
Extractor

PB
Solver

Where’s the proof?

Pseudo-Boolean Reasoning Methods
▶ (Modular) Equations

• Gaussian elimination

▶ Ordering Constraints

• Cutting planes
• Fourier-Motzkin elimination

33 / 53

Integrating Pseudo-Boolean Reasoning into
Proof-Generating SAT Solver [BryBieHeu-2022]

Boolean
Formula
(CNF)

PB Formula

Steps

UNSAT
Proof

PB
Extractor

PB
Solver

PB Step

Validation

Boolean-PB
Validation

BDD-Based
Proof Generator

▶ Overall flow same as SAT solver

▶ PB solver does all of the reasoning

▶ BDDs serve only as mechanism for generating clausal proof

34 / 53

Validating Solver Steps

Individual Solver Step

▶ Given constraints pi and pj , compute new constraint pk :

pk ← pi ⊙ pj

▶ E.g., ⊙ = +

Validation

▶ Maintain BDD(p) for each constraint p

▶ When generate pk , also generate proof:

BDD(pi) ∧ BDD(pj) =⇒ BDD(pk)

▶ Complexity O(mi ·mj ·mk)

• for BDDs of size mi , mj , and mk

35 / 53

Chew-Heule Parity Benchmark Proof Sizes

10 100 1,000 10,000 100,000 1,000,000

102

103

104

105

106

107

108

109

n

cl
au
se
s

KISSAT
TBSAT, Bucket
TBSAT, Gauss

▶ Upper limit: n = 699,051

• Node data structure sets limit of 221 − 1 BDD variables
• CNF file has 2,097,147 variables and 5,592,392 clauses

▶ Some failures for large values of n due to poor pivot selection

36 / 53

A Perspective on the State of SAT Solving

Hard

Easy

Mathematical

Tractability

CDCL TractabilityEasy Hard

NP-hard probs

Math proofs

Pigeonhole

Mut. Chess

Parity Equations

37 / 53

A Perspective on the State of SAT Solving

Hard

Easy

Mathematical

Tractability

CDCL TractabilityEasy Hard

NP-hard probs

Math proofs

BDDs can help

Pigeonhole

Mut. Chess

Parity Equations

37 / 53

A Perspective on the State of SAT Solving

Hard

Easy

Mathematical

Tractability

CDCL TractabilityEasy Hard

NP-hard probs

Math proofs

BDDs can help

Pigeonhole

Mut. Chess

Parity Equations

Can we get here?

37 / 53

Proof Generation for CDCL(T)

Coordinator

Clausal
Solver

Parity

Solver
T

Solver

Unit clauses
& Conflicts

Proof steps

▶ Solvers coordinate in unit propagation and conflict detection

▶ Proof generation: Each solver justifies its propagations &
conflicts

▶ CryptoMiniSAT

• Gauss-Jordan elimination for parity constraints
• Can use BDDs to justify each elimination step [SooBry-22]

38 / 53

Knowledge Compilation

▶ Darwiche [DarMar-2002]

Convert CNF Formula into More Tractable Representation

Sample Query

▶ Model Counting: How many satisfying assignments does the
formula have?

Challenging Problem

▶ #SAT more difficult than SAT

39 / 53

Knowledge Compilation

▶ Darwiche [DarMar-2002]

Convert CNF Formula into More Tractable Representation

Sample Query

▶ Model Counting: How many satisfying assignments does the
formula have?

Challenging Problem

▶ #SAT more difficult than SAT

Questions

▶ How do I know the generated representation is logically
equivalent to the input formula?

▶ How do I know if the computed query values are correct?

39 / 53

Algebraic Formulation

▶ Kimmig et al. [KimVdbDra-2017]

Definitions

▶ Input variables x1, x2, . . . , xn
▶ Assignment: α = {ℓ1, ℓ2, . . . , ℓn} with each ℓi ∈ {xi , x i}
▶ Models: M(ϕ) is set of satisfying assignments for formula ϕ

Ring Evaluation

▶ Commutative ring R
▶ Assign weight w(xi) ∈ R to each input variable xi
▶ Define w(x i) = 1− w(xi)

▶ Ring evaluation R(ϕ,w) of formula ϕ:

R(ϕ,w) =
∑

α∈M(ϕ)

∏
ℓi∈α

w(ℓi)

40 / 53

Ring Evaluation Examples

Model Counting

▶ Let w(xi) = w(x i) = 1/2 for all i
▶ R(ϕ,w) gives density of function

• Fraction of assignments that satisfy ϕ

▶ Scale by 2n to get model count

Probabilistic Inference

▶ Each input variable xi is true with probability p(xi).

▶ R(ϕ, p) is probability that formula is true

41 / 53

Partitioned-Operation Formulas

Allowed Operations

▶ Product: ϕ1 ∧p ϕ2, where D(ϕ1) ∩ D(ϕ2) = ∅
• D(ϕ): Set of all variables occuring in ϕ

▶ Sum: ϕ1 ∨p ϕ2, whereM(ϕ1) ∩M(ϕ2) = ∅
▶ Negation: ¬ϕ

Ring Evaluation of Partitioned Formula

R(ϕ1 ∧p ϕ2, w) = R(ϕ1,w) · R(ϕ2,w)

R(ϕ1 ∨p ϕ2, w) = R(ϕ1,w) + R(ϕ2,w)

R(¬ϕ, w) = 1− R(ϕ,w)

42 / 53

Partitioned-Operation Graphs (POGs)

r

x1

x2

x3

x4

∨p

∧p ∧p

∨p

∧p ∧p

▶ Directed graph representation of
formula

• Leaf nodes: Input variables
• Operation nodes: Partitioned

product and sum
• Each edge can be negated

▶ Can encode other compiled
representations

43 / 53

Certifying Toolchain

• Joint work with Wojciech Nawrocki, Jeremy Avigad, and Marijn Heule

Knowledge
Compiler

Proof
Generator

Proof
Checker

Ring
Evaluator

Trusted CodeϕI
.cnf

.ddnnf .cpog OK /
Not OK

R(ϕI ,w)

▶ Knowledge Compiler (D4 [LagMar-2017]): Convert CNF into
representation using only partitioned operations

▶ Proof Generator: Generate file combining POG definition +
equivalence proof

▶ Proof Checker: Validate proof file

▶ Ring Evaluator: Compute standard or weighted model count
44 / 53

Trusting the Trusted Code

Knowledge
Compiler

Proof
Generator

Proof
Checker

Ring
Evaluator

Trusted CodeϕI
.cnf

.ddnnf .cpog OK /
Not OK

R(ϕI ,w)

Within Lean 4 Proof Framework [DemUlr-2021]

▶ Soundness of proof system

• Helped us identify some weaknesses in our proof rules

▶ Verified checker

• Around 6× slower than one implemented in C

▶ Ring Evaluator: Over rationals

45 / 53

CPOG Declaration + Proof

Input Formula ϕI

POG Declaration θP
▶ Extension variable u for each operation node u

▶ Node u with k children characterized by k + 1 defining clauses
▶ Children indicated by literals

• Positive or negated arguments
• Input variables or results from other operation

▶ Unit clause [r] for root node r

Proof Objective

ϕI ⇐⇒ θP

46 / 53

CPOG Proof Structure

Forward Implication Proof

ϕI =⇒ θP

▶ Add clauses by resolution

▶ Terminating with unit clause [r]

▶ Any assignment satisfying ϕI causes the POG formula to
evaluate to true

Reverse Implication Proof

θP =⇒ ϕI

▶ Delete clauses by resolution
• Deleted clause implied by remaining ones

▶ Including each of the input clauses

▶ Any assignment falsifying the input clause causes the POG
formula to evaluate to false

47 / 53

Experimental Results: CPOG Generation and Checking

0.01 0.1 1.0 10 100 1,000
0.01

0.1

1.0

10

100

1,000

10,000

0.1×1×

10×

100×

1000×

D4 runtime (seconds)

C
P
O
G
ge
n
er
at
io
n
an
d
ch
ec
ki
n
g
ru
n
ti
m
e
(s
ec
on

d
s)

Full validation

Reverse implication

No validation

• 180 benchmark
files from 2022
model checking
competitions

• D4 completed 124
with 4000-second
time limit

• Generated
complete proofs
for 108 with
10,000-second
time limit

• Reverse
implications for 9

• No proofs for 7

48 / 53

Experimental Results: CPOG Sizes

102 103 104 105 106 107 108 109 1010
102

103

104

105

106

107

108

109

1×

10×

100×

1,000×

10,000×

Defining Clauses

P
ro
of

C
la
u
se
s

Full validation

Reverse implication

No validation

• 108 problems
fully verified

• CPOG files
up to 160 GB

• Reverse
implications
for 9

• No proofs for
7

49 / 53

Recap: Important Principle

Formalized
Problem

Reasoning

Tool

Proof

Outcome

Checker

Proof-Generating Tools

▶ Formally verifying a large, complex program is impractical

▶ Instead, certify individual executions of the program

50 / 53

Important Concepts

Checkable Proofs of Program Executions

▶ Very habit forming

▶ Many research possibilities

Clausal Proof Frameworks

▶ Well understood set of principles
▶ Can build on existing infrastructure

• E.g., our CPOG proof generator uses CaDiCal and Drat-trim

▶ Not just for refutation proofs

Extended Resolution

▶ Can reason about other representations of Boolean formulas
▶ Can introduce intermediate proof structures

• E.g., CPOG proof generator uses lemmas to control recursion
• Validation for each shared POG node generated once and used

multiple times
51 / 53

References #1

Filler

Bry-1986 R. E. Bryant, “Graph-based algorithms for Boolean function
manipulation,” IEEE Trans. Computers, 1986

BryHeu-2021 R. E. Bryant and M. J. H. Heule, “Generating extended
resolution proofs with a BDD-based SAT solver,” TACAS, 2021.
Extended version on ArXiv

Bry-2022 R. E. Bryant, “TBUDDY: A Proof-generating BDD package,”
FMCAD, 2022

BryBieHeu-2022 R. E. Bryant, A. Biere, and M. J. H. Heule, “Clausal proofs
from pseudo-Boolean reasoning,” TACAS, 2022

SooBry-2022 M. Soos and R. E. Bryant, “Proof generation for CDCL solvers
using Gauss-Jordan elimination” Pragmatics of SAT Workshop,
2022.

52 / 53

https://www.cs.cmu.edu/~bryant/pubdir/ieeetc86.pdf
https://www.cs.cmu.edu/~bryant/pubdir/ieeetc86.pdf
https://www.cs.cmu.edu/~bryant/pubdir/tacas21.pdf
https://www.cs.cmu.edu/~bryant/pubdir/tacas21.pdf
https://arxiv.org/abs/2105.00885
https://www.cs.cmu.edu/~bryant/pubdir/fmcad22.pdf
https://www.cs.cmu.edu/~bryant/pubdir/tacas22-bbh.pdf
https://www.cs.cmu.edu/~bryant/pubdir/tacas22-bbh.pdf
https://www.cs.cmu.edu/~bryant/pubdir/pos22.pdf
https://www.cs.cmu.edu/~bryant/pubdir/pos22.pdf

References #2

Filler

CheHeu-2020 L. Chew and M. J. H. Heule, “Sorting parity encodings by reusing
variables,” SAT, 2020.

DarMar-2002 A. Darwiche and P. Marquis, “A Knowledge Compilation Map,”
JAIR, 2002

DemUlr-2021 L. de Moura and S. Ulrich, “The Lean 4 theorem prover and
programming language,” CADE, 2021

GolNov-2003 E. I. Goldberg and Y. Novikov, “Verification of proofs of
unsatisfiability for CNF formulas,” DATE, 2003

JusSinBie-2006 T. Jussila, C. Sinz and A. Biere, “Extended resolution proofs for
symbolic SAT solving with quantification,” SAT, 2006

KimVdbDra-2017 Angelika Kimmig, Guy Van den Broeck, and Luc De Raedt,
“Algebraic model counting,” J. Applied Logic, 2017

LagMar-2017 J.-M. Lagniez and P. Marquis, “An improved decision-DNNF
compiler,” IJCAI, 2017

SinBie-2006 C. Sinz and A. Biere, “Extended resolution proofs for conjoining
BDDs,” Constraint Programming, 2006.

HeuHunWet-2013 M. J. H. Heule, W. A. Hunt, Jr., N. Wetzler, “Trimming while
checking clausal proofs,” FMCAD, 2013.

ZhaMal-2003 L. Zhang and S. Malik, “Validating SAT solvers using an independent
resolution-based checker,”’ DATE, 2003

53 / 53

