The Power of Extended Resolution

A Practitioner's Perspective

Randal E. Bryant

Carnegie Mellon University

Simons Institute, 2023

http://www.cs.cmu.edu/~bryant

Background: My Research in "Formal" Verification

- 1990 Formal Verification of Digital Circuits Using Symbolic Ternary System Models
- 1991 Formal Hardware Verification by Symbolic Simulation
- 1991 *Formal* Verification of Memory Circuits by Switch-Level Simulation
- 1994 *Formally* Verifying a Microprocessor using a Simulation Methodology
- 1996 *Formal* Verification of PowerPC(TM) Arrays using Symbolic Trajectory Evaluation
- 1997 Formal Verification of a Superscalar Execution Unit
- 1998 Formal Verification of Pipelined Processors
- 1999 Formal Verification of an ARM Processor
- 2006 Formal Verification of Infinite State Systems Using Boolean Methods

Automated Reasoning Programs

Automated Reasoning Programs

Standard Tools

- Lingering doubt about whether result can be trusted
- If find bug in tool, must rerun all prior verifications

Automated Reasoning Programs

Standard Tools

- Lingering doubt about whether result can be trusted
- If find bug in tool, must rerun all prior verifications

Formally Verified Tools

- Hard to develop
- Hard to make scalable

Proof-Generating Automated Reasoning Programs

Proof-Generating Tools

- Only need to prove individual executions, not entire program
- Can have bugs in tool but still trust result

Proof-Generating Automated Reasoning Programs

Proof-Generating Tools

- Only need to prove individual executions, not entire program
- Can have bugs in tool but still trust result
- Can we trust the checker?
 - Simple algorithms and implementation
 - Possibly formally verified

Boolean Satisfiability Solvers

Boolean Satisfiability Solvers

Adoption of Proof Checking by SAT Community

Some History

- 2003 Proof generation added to zChaff [ZhaMal-2003] and BerkMin [GolNov-2003]
- 2013 Proof framework and checker well matched to CDCL solvers [HeuHunWet-2013]
- 2016 Proof generation mandatory for SAT competition main track

Adoption of Proof Checking by SAT Community

Some History

- 2003 Proof generation added to zChaff [ZhaMal-2003] and BerkMin [GolNov-2003]
- 2013 Proof framework and checker well matched to CDCL solvers [HeuHunWet-2013]
- 2016 Proof generation mandatory for SAT competition main track

Impact

- 2022 SAT Competition
 - No main track entrant reported UNSAT on satisfiable problem
 - Even on new benchmark formulas
- Tool developers alerted to bugs early in development
- Has enabled implementation of more complex & risky optimizations

Talk Overview

Add Proof Support to Other Forms of Automated Reasoning

Basics

- (Extended) resolution
- Clausal proofs

Binary Decision Diagrams (BDDs) and Proof Generation

- BDDs and extended resolution
- Supporting other Boolean reasoning methods

Certified Knowledge Compilation

- Partitioned-Operation Graphs (POGs)
- Equivalence proofs

Basics

Clauses

- $[\overline{u} \lor v \lor w]$ Disjunction of literals
- ► ⊥ Empty clause (False)

Resolution Principle

▶ Robinson, 1965

$$\frac{\overline{u} \lor v \lor w}{(\overline{u} \lor v) \lor (x \lor \overline{z})}$$

Basics

Clauses

- $[\overline{u} \lor v \lor w]$ Disjunction of literals
- ► ⊥ Empty clause (False)

Resolution Principle

▶ Robinson, 1965

$$(u \wedge \overline{v}) \rightarrow w$$
 $w \rightarrow (x \vee \overline{z})$

$$\frac{\overline{u} \lor v \lor w}{(\overline{u} \lor v) \lor (x \lor \overline{z})}$$

Basics

Clauses

- $[\overline{u} \lor v \lor w]$ Disjunction of literals
- ► ⊥ Empty clause (False)

Resolution Principle

▶ Robinson, 1965

$$(u \wedge \overline{v}) \rightarrow w \qquad \qquad w \rightarrow (x \vee \overline{z})$$

$$\frac{\overline{u} \lor v \lor w}{(\overline{u} \lor v) \lor (x \lor \overline{z})}$$

$$(u \land \overline{v}) \to (x \lor \overline{z})$$

Clausal Proof Systems

Input Formula: Set of Clauses

 C_1, C_2, \ldots, C_m

Clausal Proof (of Unsatisfiability):

$$C_{m+1}, C_{m+2}, \ldots, C_t$$

Clausal Proof Systems

Input Formula: Set of Clauses

 C_1, C_2, \ldots, C_m

Clausal Proof (of Unsatisfiability):

$$C_{m+1}, C_{m+2}, \ldots, C_t$$

Resolution rule preserves solutions:

$$\bigwedge_{1 \leq j \leq i} C_j \implies C_{i+1}$$

Clausal Proof Example

Step	Clause	Antecedents	Formula	
1	$[\overline{v} \lor w]$		v ightarrow w	
2	$[\overline{v} \lor \overline{w}]$		$v ightarrow \overline{w}$	{ Input
3	[<i>v</i>]		V	
4	$[\overline{v}]$	1,2	\overline{V}	Derived
5	\perp	3,4	$v \wedge \overline{v}$	∫ clauses

Prove conjunction of input clauses unsatisfiable

- Add derived clauses
 - Provide list of antecedent clauses that resolve to new clause
- Finish with empty clause
 - Proof is series of inferences leading to contradiction

Extended Resolution

Tseitin, 1967

Can introduce extension variables

- Variable e that has not yet occurred in proof
- Must introduce defining clauses
 - Clauses creating constraint of form $e \leftrightarrow F$
 - Boolean formula F over input and earlier extension variables

Extension variable becomes shorthand for larger formula

 Through repeated application, can have exponentially smaller proof

Extended Resolution Example

Example: Prove following set of constraints unsatisfiable

Constraint	Clauses
$u \wedge v \rightarrow w$	$[\overline{u} \lor \overline{v} \lor w]$
$u \wedge v \rightarrow \overline{w}$	$[\overline{u} \lor \overline{v} \lor \overline{w}]$
$u \wedge v$	[<i>u</i>]
	[v]

• Strategy: Introduce extension variable e such that $e \leftrightarrow u \wedge v$

Constraint	Clauses
$u \wedge v \rightarrow e$	$[e \lor \overline{u} \lor \overline{v}]$
e ightarrow u	$[\overline{e} \lor u]$
e ightarrow v	$[\overline{e} \lor v]$

ER Proof

Step	Clause	Antecedents	Formula	
1	$[\overline{u} \lor \overline{v} \lor w]$		$u \wedge v \rightarrow w$)
2	$[\overline{u} \lor \overline{v} \lor \overline{w}]$		$u \wedge v \rightarrow \overline{w}$	Input
3	[<i>u</i>]		и	clauses
4	[v]		V	J
5	$[e \lor \overline{u} \lor \overline{v}]$		$u \wedge v \rightarrow e$	
6	$[\overline{e} \lor u]$		e ightarrow u	Defining
7	$[\overline{e} \lor v]$		e ightarrow v	clauses
8	$[\overline{e} \lor \overline{v} \lor w]$	1,6	$e \wedge v \rightarrow w$	í
9	$[\overline{e} \lor w]$	7, 8	e ightarrow w	
10	$[\overline{e} \lor \overline{v} \lor \overline{w}]$	2, 6	$e \wedge v \rightarrow \overline{w}$	
11	$[\overline{e} \lor \overline{w}]$	7,10	$e ightarrow \overline{w}$	Derived
12	$[e \lor \overline{v}]$	3, 5	$v \rightarrow e$	clauses
13	[<i>e</i>]	4, 12	е	
14	[e]	9, 11	ē	
15	\perp	13, 14	$e \wedge \overline{e}$	J

ER Proof

Step	Clause	Antecedents	Formula	
1	$[\overline{u} \lor \overline{v} \lor w]$		$u \wedge v \rightarrow w$	
2	$[\overline{u} \lor \overline{v} \lor \overline{w}]$		$u \wedge v \rightarrow \overline{w}$	Input
3	[<i>u</i>]		и	clauses
4	[v]		V	ļ
5	$[e \lor \overline{u} \lor \overline{v}]$		$u \wedge v \rightarrow e$	
6	$[\overline{e} \lor u]$		e ightarrow u	
7	$[\overline{e} \lor v]$		e ightarrow v	clauses
8	$[\overline{e} \lor \overline{v} \lor w]$	1,6	$e \wedge v \rightarrow w$	$u \wedge v$
9	$[\overline{e} \lor w]$	7, 8	$e \rightarrow w$	replaced
10	$[\overline{e} \lor \overline{v} \lor \overline{w}]$	2,6	$e \wedge v \rightarrow \overline{w}$	by e
11	$[\overline{e} \lor \overline{w}]$	7,10	$e \rightarrow \overline{w}$	Derived
12	$[e \lor \overline{v}]$	3, 5	$v \rightarrow e$	clauses
13	[<i>e</i>]	4, 12	e	
14	[<u>e</u>]	9, 11	ē	
15	Ť	13, 14	$e \wedge \overline{e}$	J

Proof Complexity Hierarchy

The Power of (Extended) Resolution

Resolution

Very weak

Implications for CDCL Solvers

- (Almost) every inference step can be expressed as polynomial number of resolution proof steps
- Exception: Bounded variable addition requires extension variables

Extended Resolution

- Can simulate all other known propositional proof systems
- ▶ No known class of formulas with superpolynomial lower bound

Parity Benchmark

- Chew and Heule, SAT 2020
- For random permtuation π :

- Encode each equation in CNF
 - *n* 3 auxiliary variables
 - Linear sequence of 3-argument parity constraints
- Conjunction unsatisfiable
- Very challenging for CDCL solvers

Chew-Heule Parity Benchmark Proof Sizes

- KISSAT: State-of-the-art CDCL solver
- 3 different seeds for each value of n
- Cannot get beyond n = 42 within 600 seconds

A Perspective on the State of SAT Solving

A Perspective on the State of SAT Solving

A Perspective on the State of SAT Solving

Reduced, Ordered Binary Decision Diagrams (BDDs)

Bryant [Bry-1986]

Representation

- Canonical representation of Boolean function
- Compact for many useful cases

Proof-Generating SAT Solvers Based on BDDs

Implementations

EBDDRES: Sinz, Biere, Jussila, 2006

[SinBie-2006, JusSinBie-2006]

- ▶ PGBDD: Bryant, Heule, 2021 [BryHeu-2021]
- ► TBUDDY: Bryant [Bry-2022]

Extended-Resolution Proof Generation

- Introduce extension variable for each BDD node
- Proof steps based on recursive structure of BDD algorithms
- Proof is (very) detailed justification of each BDD operation

BDD Apply Algorithm

 $\mathbf{w} \leftarrow \mathbf{u} \odot \mathbf{v}$

 u, v, w BDD root nodes representing Boolean functions

▶ ⊙ binary Boolean operator

▶ E.g., ∧, ∨, ⊕

Apply Algorithm Recursion

Apply Algorithm Recursion

 $\begin{array}{ccc} \text{Recursion} \\ \text{Apply}(\mathbf{u}_1,\mathbf{v}_1,\wedge) & \rightarrow & & & & \\ \text{Apply}(\mathbf{u}_0,\mathbf{v}_0,\wedge) & \rightarrow & & & & & \\ \end{array}$

23 / 53
Apply Algorithm Recursion

Recursion Apply($\mathbf{u}, \mathbf{v}, \wedge$) \mathbf{w}_1 $\mathsf{Apply}(\textbf{u}_1,\textbf{v}_1,\wedge) \ \rightarrow$ u \mathbf{u}_0 \mathbf{u}_1 **w**₀ $\mathsf{Apply}(\textbf{u}_0,\textbf{v}_0,\wedge) \ \rightarrow$ Result v w **v**₀ \mathbf{v}_1 \mathbf{w}_1 **w**₀

Generating Extended Resolution Proofs

Extension variable *u* for each node **u** in BDD

• Defining clauses encode constraint $u \leftrightarrow ITE(x, u_1, u_0)$

Clause name	Formula	Clausal form
HD(u)	$x ightarrow (u ightarrow u_1)$	$[\overline{x} \lor \overline{u} \lor u_1]$
LD(u)	$\overline{x} \rightarrow (u \rightarrow u_0)$	$[x \lor \overline{u} \lor u_0]$
HU(u)	$x \rightarrow (u_1 \rightarrow u)$	$[\overline{x} \lor \overline{u}_1 \lor u]$
$LU(\mathbf{u})$	$\overline{x} \rightarrow (u_0 \rightarrow u)$	$[x \lor \overline{u}_0 \lor u]$

Proof-Generating Apply Operation

Integrate Proof Generation into Apply Operation

- ▶ Apply(u, v, ∧) returns w
- Also generate proof $u \land v \to w$

Key Idea:

Proof follows recursion of the Apply algorithm

Apply Algorithm Recursion

 $\mathsf{Apply}(\mathbf{u},\mathbf{v},\wedge)$

Apply Algorithm Recursion

Apply Proof Structure

Defining Clauses

Clause	Formula	Clause	Formula
$HD(\mathbf{u})$	$x ightarrow (u ightarrow u_1)$	$LD(\mathbf{u})$	$\overline{x} ightarrow (u ightarrow u_0)$
$HD(\mathbf{v})$	$x ightarrow (v ightarrow v_1)$	$LD(\mathbf{v})$	$\overline{x} ightarrow (v ightarrow v_0)$
$HU(\mathbf{w})$	$x \rightarrow (w_1 \rightarrow w)$	$LU(\mathbf{w})$	$\overline{x} ightarrow (w_0 ightarrow w)$

Resolution Steps

_

$$\begin{array}{cccc} x \to (u \to u_1) & \overline{x} \to (u \to u_0) \\ x \to (v \to v_1) & \overline{x} \to (v \to v_0) \\ x \to (w_1 \to w) & u_1 \wedge v_1 \to w_1 \\ \hline x \to (u \wedge v \to w) & \overline{x} \to (w_0 \to w) & u_0 \wedge v_0 \to w_0 \\ \hline u \wedge v \to w & \overline{x} \to (u \wedge v \to w) \\ \hline \end{array}$$

Chew-Heule Parity Benchmark Proof Sizes

- Generate BDD representations of clauses
- Systematically form conjunctions and quantify out variables
 - Each recursive step generates up to 6 proof clauses
- \blacktriangleright Unsatisfiable formula generates BDD leaf node \perp

CDCL Proofs vs. BDD Proofs

CDCL proof step indicates reduction in search space
 BDD proof steps justify algorithmic steps

Pseudo-Boolean (PB) Formulas

Integer Equations

$$\sum_{1\leq i\leq n}a_i\,x_i = b$$

- *a_i*, *b*: integer constants
- x_i: 0-1 valued variables

Ordering Constraints

$$\sum_{1 \le i \le n} a_i x_i \ge b$$

Modular Equations

$$\sum_{1 \le i \le n} a_i x_i \equiv b \pmod{r}$$

- r: constant modulus
- Parity constraint: r = 2

Representing PB Ordering Constraints with BDDs

Example constraint:

$$\begin{array}{rl} +x_1 + x_3 + x_5 + x_7 + x_9 \\ -x_2 - x_4 - x_6 - x_8 - x_{10} \end{array} \geq 0$$

► BDD size
$$\leq a_{\max} \cdot n^2$$

$$a_{\max} = \max_{1 \le i \le n} |a_i|$$

 Independent of variable ordering

Representing PB Modular Equations with BDDs

Example equation:

- $\begin{array}{rcl} +x_1+x_3+x_5+x_7+x_9\\ -x_2-x_4-x_6-x_8-x_{10} \end{array} \equiv 0 \pmod{3}$
- ▶ BDD size $\leq n \cdot r$
 - Independent of variable ordering

(Un)satisfiability with a Pseudo-Boolean Sover

Pseudo-Boolean Reasoning Methods

- (Modular) Equations
 - Gaussian elimination
- Ordering Constraints
 - Cutting planes
 - Fourier-Motzkin elimination

(Un)satisfiability with a Pseudo-Boolean Sover

Pseudo-Boolean Reasoning Methods

- (Modular) Equations
 - Gaussian elimination
- Ordering Constraints
 - Cutting planes
 - Fourier-Motzkin elimination

Integrating Pseudo-Boolean Reasoning into Proof-Generating SAT Solver [BryBieHeu-2022]

- Overall flow same as SAT solver
- PB solver does all of the reasoning
- BDDs serve only as mechanism for generating clausal proof

Validating Solver Steps

Individual Solver Step

▶ Given constraints *p_i* and *p_j*, compute new constraint *p_k*:

$$p_k \leftarrow p_i \odot p_j$$

► E.g., ⊙ = +

Validation

- Maintain BDD(p) for each constraint p
- When generate p_k , also generate proof:

$$BDD(p_i) \land BDD(p_j) \implies BDD(p_k)$$

• Complexity
$$O(m_i \cdot m_j \cdot m_k)$$

• for BDDs of size m_i , m_j , and m_k

Chew-Heule Parity Benchmark Proof Sizes

Upper limit: n = 699,051

- Node data structure sets limit of $2^{21} 1$ BDD variables
- CNF file has 2,097,147 variables and 5,592,392 clauses

Some failures for large values of n due to poor pivot selection

A Perspective on the State of SAT Solving

A Perspective on the State of SAT Solving

A Perspective on the State of SAT Solving

Proof Generation for CDCL(T)

- Solvers coordinate in unit propagation and conflict detection
- Proof generation: Each solver justifies its propagations & conflicts
- CryptoMiniSAT
 - Gauss-Jordan elimination for parity constraints
 - Can use BDDs to justify each elimination step [SooBry-22]

Knowledge Compilation

Darwiche [DarMar-2002]

Convert CNF Formula into More Tractable Representation

Sample Query

Model Counting: How many satisfying assignments does the formula have?

Challenging Problem

#SAT more difficult than SAT

Knowledge Compilation

Darwiche [DarMar-2002]

Convert CNF Formula into More Tractable Representation

Sample Query

Model Counting: How many satisfying assignments does the formula have?

Challenging Problem

#SAT more difficult than SAT

Questions

- How do I know the generated representation is logically equivalent to the input formula?
- ▶ How do I know if the computed query values are correct?

Algebraic Formulation

Kimmig et al. [KimVdbDra-2017]

Definitions

- Input variables x₁, x₂, ..., x_n
- Assignment: $\alpha = \{\ell_1, \ell_2, \dots, \ell_n\}$ with each $\ell_i \in \{x_i, \overline{x}_i\}$
- Models: $\mathcal{M}(\phi)$ is set of satisfying assignments for formula ϕ

Ring Evaluation

- Commutative ring \mathcal{R}
- Assign weight $w(x_i) \in \mathcal{R}$ to each input variable x_i
- Define $w(\overline{x}_i) = 1 w(x_i)$
- Ring evaluation $\mathbf{R}(\phi, w)$ of formula ϕ :

$$\mathbf{R}(\phi, w) = \sum_{\alpha \in \mathcal{M}(\phi)} \prod_{\ell_i \in \alpha} w(\ell_i)$$

Ring Evaluation Examples

Model Counting

- Let $w(x_i) = w(\overline{x}_i) = 1/2$ for all i
- **R**(ϕ , w) gives *density* of function
 - Fraction of assignments that satisfy ϕ
- Scale by 2ⁿ to get model count

Probabilistic Inference

- Each input variable x_i is true with probability $p(x_i)$.
- $\mathbf{R}(\phi, p)$ is probability that formula is true

Partitioned-Operation Formulas

Allowed Operations

• **Product:** $\phi_1 \wedge^{\mathsf{p}} \phi_2$, where $\mathcal{D}(\phi_1) \cap \mathcal{D}(\phi_2) = \emptyset$

• $\mathcal{D}(\phi)$: Set of all variables occuring in ϕ

▶ Sum:
$$\phi_1 \vee^p \phi_2$$
, where $\mathcal{M}(\phi_1) \cap \mathcal{M}(\phi_2) = \emptyset$

Negation: $\neg \phi$

Ring Evaluation of Partitioned Formula

$$\begin{aligned} \mathbf{R}(\phi_1 \wedge^{\mathsf{p}} \phi_2, w) &= \mathbf{R}(\phi_1, w) \cdot \mathbf{R}(\phi_2, w) \\ \mathbf{R}(\phi_1 \vee^{\mathsf{p}} \phi_2, w) &= \mathbf{R}(\phi_1, w) + \mathbf{R}(\phi_2, w) \\ \mathbf{R}(\neg \phi, w) &= 1 - \mathbf{R}(\phi, w) \end{aligned}$$

Partitioned-Operation Graphs (POGs)

- Directed graph representation of formula
 - Leaf nodes: Input variables
 - Operation nodes: Partitioned product and sum
 - Each edge can be negated
- Can encode other compiled representations

Certifying Toolchain

• Joint work with Wojciech Nawrocki, Jeremy Avigad, and Marijn Heule

- Knowledge Compiler (D4 [LagMar-2017]): Convert CNF into representation using only partitioned operations
- Proof Generator: Generate file combining POG definition + equivalence proof
- Proof Checker: Validate proof file
- ▶ *Ring Evaluator*: Compute standard or weighted model count

Trusting the Trusted Code

Within Lean 4 Proof Framework [DemUlr-2021]

- Soundness of proof system
 - Helped us identify some weaknesses in our proof rules
- Verified checker
 - Around $6 \times$ slower than one implemented in C
- Ring Evaluator: Over rationals

CPOG Declaration + Proof

Input Formula ϕ_I

POG Declaration θ_P

- Extension variable *u* for each operation node **u**
- ▶ Node **u** with k children characterized by k + 1 defining clauses
- Children indicated by literals
 - Positive or negated arguments
 - Input variables or results from other operation
- ▶ Unit clause [r] for root node r

Proof Objective

$$\phi_I \iff \theta_P$$

CPOG Proof Structure

Forward Implication Proof

$$\phi_I \implies \theta_P$$

- Add clauses by resolution
- Terminating with unit clause [r]
- Any assignment satisfying φ₁ causes the POG formula to evaluate to true

Reverse Implication Proof

$$\theta_P \implies \phi_I$$

- Delete clauses by resolution
 - Deleted clause implied by remaining ones
- Including each of the input clauses
- Any assignment falsifying the input clause causes the POG formula to evaluate to false

Experimental Results: CPOG Generation and Checking

- 180 benchmark files from 2022 model checking competitions
- D4 completed 124 with 4000-second time limit
 - Generated complete proofs for 108 with 10,000-second time limit
- Reverse implications for 9
- No proofs for 7

Experimental Results: CPOG Sizes

- 108 problems fully verified
- CPOG files up to 160 GB
- Reverse implications for 9
- No proofs for
 7

Recap: Important Principle

Proof-Generating Tools

- Formally verifying a large, complex program is impractical
- Instead, certify individual executions of the program

Important Concepts

Checkable Proofs of Program Executions

- Very habit forming
- Many research possibilities

Clausal Proof Frameworks

- Well understood set of principles
- Can build on existing infrastructure
 - E.g., our CPOG proof generator uses CaDiCal and Drat-trim
- Not just for refutation proofs

Extended Resolution

- Can reason about other representations of Boolean formulas
- Can introduce intermediate proof structures
 - E.g., CPOG proof generator uses lemmas to control recursion
 - Validation for each shared POG node generated once and used multiple times

References #1

- Bry-1986 R. E. Bryant, "Graph-based algorithms for Boolean function manipulation," *IEEE Trans. Computers*, 1986
- BryHeu-2021 R. E. Bryant and M. J. H. Heule, "Generating extended resolution proofs with a BDD-based SAT solver," *TACAS*, 2021. Extended version on ArXiv
 - Bry-2022 R. E. Bryant, "TBUDDY: A Proof-generating BDD package," FMCAD, 2022
- BryBieHeu-2022 R. E. Bryant, A. Biere, and M. J. H. Heule, "Clausal proofs from pseudo-Boolean reasoning," *TACAS*, 2022
 - SooBry-2022 M. Soos and R. E. Bryant, "Proof generation for CDCL solvers using Gauss-Jordan elimination" *Pragmatics of SAT Workshop*, 2022.

References #2

- CheHeu-2020 L. Chew and M. J. H. Heule, "Sorting parity encodings by reusing variables," *SAT*, 2020.
- DarMar-2002 A. Darwiche and P. Marquis, "A Knowledge Compilation Map," JAIR, 2002
- DemUlr-2021 L. de Moura and S. Ulrich, "The Lean 4 theorem prover and programming language," *CADE*, 2021
- GolNov-2003 E. I. Goldberg and Y. Novikov, "Verification of proofs of unsatisfiability for CNF formulas," *DATE*, 2003
- JusSinBie-2006 T. Jussila, C. Sinz and A. Biere, "Extended resolution proofs for symbolic SAT solving with quantification," *SAT*, 2006
- KimVdbDra-2017 Angelika Kimmig, Guy Van den Broeck, and Luc De Raedt, "Algebraic model counting," J. Applied Logic, 2017
 - LagMar-2017 J.-M. Lagniez and P. Marquis, "An improved decision-DNNF compiler," *IJCAI*, 2017
 - SinBie-2006 C. Sinz and A. Biere, "Extended resolution proofs for conjoining BDDs," *Constraint Programming*, 2006.
- HeuHunWet-2013 M. J. H. Heule, W. A. Hunt, Jr., N. Wetzler, "Trimming while checking clausal proofs," *FMCAD*, 2013.
 - ZhaMal-2003 L. Zhang and S. Malik, "Validating SAT solvers using an independent resolution-based checker,"' DATE, 2003