( intelﬁ) Look Inside;

CDCL SAT Solving and
Applications to Optimization Problems

Alexander Nadel, Intel & Technion, Israel
April 17,2023

Satisfiability: Theory, Practice, and Beyond Workshop
Simons Institute, UC Berkeley, Berkeley, CA, USA




Agenda

1. Core CDCL SAT Solving

= Review of the foundations

2. Solving Complex Optimization Problems with SAT

= QOpportunity for the future
= based on my own industrial experience

> (<) ..



clause #1 clause #2

Introduction FE@vhaGavabye)
SAT: determine if a Boolean formula in Conjunctive Normal Form (CNF) satisfiable
The original NP-Complete problem: the famous Cook-Levin theorem (early 70s)

SAT has exponential complexity unless P = NP -- whether or not P = NP is frequently
called the most important outstanding question in CS | |

» Check a solution is easy =2 is it also easy to solve?

SAT is an unresolved mystery

Yet, SAT solvers are scalable widely used tools, how come?!

4/17/2023



SAT Fundamentals: Backtrack Search

The baseline algorithm in modern SAT solvers is backtrack search

Called DPLL or DLL

Davis, Martin; Logemann, George; Loveland, Donald: "A Machine Program for Theorem
Proving". Communications of the ACM. 5 (7): 394-397. (1961).

Davis, Martin; Putnam, Hilary: A computing procedure for quantification theory. Journal of the ACM 7 (1960)

4/17/2023


https://archive.org/details/machineprogramfo00davi
https://en.wikipedia.org/wiki/Communications_of_the_ACM

From Enumeration to DPLL

clause #1 clause #2
F=(avb)A(-av-bvc)

\\Litera'ls//

a Apply the unit clause rule till a
Stop when a clause Carry out backtrack search. 0 fixed-point aka Boolean 0
turns UNSAT Stop when a model is found @ Constraint Propagation (BCP) @
- > 0 1 Implied in parent clause #1: 1
O (o)
0 0

The unit clause rule: the unassigned literal in a unit clause must be 1

A unit clause -- one unassigned, rest falsified: C, c, C3

The unassigned literal c, must be implied
A

y

¢ C C3

4/17/2023 Falsified literal: Satisfied literal: Unassigned literal: M




The Mystery of SAT Solver Scalability

DPLL could handle formulas with <2,000 clauses
Modern SAT solvers cope with industrial instances of 100,000,000’s clauses

The introduction of Conflict-Driven-Clause-Learning (CDCL) or, simply,
Conflict-driven Solving was the birth of modern highly-scalable SAT solving

4/17/2023
"'I/t;D 6/16



CDCL: the Intuitive Principles

Learning and pruning

» Block already explored sub-spaces

Locality
= Focus the search on the relevant data

= |Learn strong clauses from the local context

Well-engineered data structures

= Extremely fast Boolean Constraint Propagation (BCP)

Beyond CDCL

= |nprocessing
= |Local search integration

4/17/2023 @



Today’s Focus for the 15t Part of the Talk

In-depth dive into the “core of the core”

= Conflict analysis loop

= Boolean Constraint Propagation (BCP)




Conflict-driven SAT Solving: Seminal Work

1996: GRASP by Joao P. Marques-Silva and Karem A. Sakallah
Joéo P. Marques Silva, Karem A. Sakallah: GRASP - a new search algorithm for satisfiability. [CCAD 1996: 220-227

2001: Chaff by Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang and Sharad Malik

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, Sharad Malik: Chaff: Engineering an Efficient SAT
Solver. DAC 2001: 530-535

CAV Award

ERBE Abstract The 2009 CAV (Computer-Aided Verification) award was presented to seven in-

RS dividuals who made major advances in creating high-performance Boolean satisfiability

;::{3};5:?‘»” solvers. This annual award recognizes a specific fundamental contribution or series of out-
7 o~y standing contributions to the CAV field.

Ying Ihao
-~
St e ¢ —— - e

i
L e

.



https://dblp.org/db/conf/iccad/iccad1996.html#SilvaS96
https://dblp.org/db/conf/dac/dac2001.html#MoskewiczMZZM01

Boolean Constraint Propagation (BCP) Essentials

BCP consumes 80-90% of SAT run-time

What?
= |dentify and propagate in unit clauses (performance)

¢ ) C3
v
C ) C3

» |dentify and report any conflicts (correctness)

¢ ) C3

How?
= Every literal [ holds a Watch List -- WL(l) with all the clauses where [ is watched
= When literal | is falsified, visit all the clauses in WL(—l)

Falsified literal: Satisfied literal: Unassigned literal: M




Efficient Data Structure for BCP

- GRASP watched all the literals

It is sufficient to watch two non-falsified literals: SATO'’s Head/Tail!
/ \

C, C, C3 Cy Cs Co c,

Hantao Zhang: SATO: An Efficient Propositional Prover. CADE 1997: 272-275

%

Chaff's 2WL: watching the first two literals — no need to visit during backtracking!
N,

&) c, (o Cy Cs Co c,

- as long as: decision-level(falsified watch) = decision-level(falsified non-watch)

- Caching one literal inside the watches & inlining binary clauses

Sérensson, N., Eén, N.: MiniSAT 2.1 and MiniSAT++ 1.0 - SAT race Editions. SAT, Competitive Event Booklet (2008) (caching one literal)
Geoffrey Chu, Aaron Harwood, Peter J. Stuckey: Cache Conscious Data Structures for Boolean Satisfiability Solvers. |. Satisf. Boolean Model.
Comput. 6(1-3): 99-120 (2009) (caching one literal & inlining binary clauses)

Falsified literal: Satisfied literal: Unknown literal:

4/17/2023

Unassigned literal: Non-satisfied literal:

Non-falsified literal:



https://dblp.org/db/conf/cade/cade97.html#Zhang97
https://dblp.org/db/journals/jsat/jsat6.html#ChuHS09

Conflict Analysis Loop in Chaff

Ci=—avfvg Decision variable/literal ——> a@l - Decision Level 1 a@1 a@1
C=—avfv—g —— Decision Level 2 b@2 f@1(C,)
Ci=—cv—fvg - Decision Level 3 c@3 NCB to 1

d@4 / /

C4= —bv —fv-—-g - Decision Levelj{f@?)(CG)

C=—evVvf e@5 NCB to 3 g@3(C,)

f@5(Cs) - Decision Level 5 >< C,=fv—a
' a@1 ¢, 1UIP

Implication graph g@5(C,)| ’ g@3
c@3 C6=—|fV—|CV—|b>< )
G "\ Right-hand side: the confi N\
I ight-hand side: the con ||5@
: .g@S Left-hand side: the reason, mfm; {@e% r| htr ost Unigue Implication Point (UIP) of the last level
e@5 f@5 CI

- Learn a falsified asserting clause C=[c,®°, c,®F<°, c,@<F, ..., ¢|,®=F]

|
‘/r - 1UIP clause in Chaff
C, i

b@2 I - Backtrack to level B: called Non-Chronological Backtracking (NCB) in Chaff > C becomes unit

- Flip & imply c, in its parent C and run BCP I



Conflict Analysis Loop in GRASP

C=—avfvg a@1 a@1 a@1f
C=—-avfv—g b@2 b2 CB to 2 b@2
C;=—cv—fvg c@3 c@3

é Backtrack to —f@ 1(C8)
C,=—bv-—fv—g d@4/ conflict level 3
Co=—e v f c@5/ cBrod ~f@3(C)

— In GRASP, f is a special kind of a “flipped”
Cg=—fv—cv—b f@5(Cs) 8@3(Cy) >< decision variable at level 5, but GRASP
c@3 — " @3 | —8@3
1

learns as if —f were implied at level 3

A Y
S 2UIP C9=ﬁCVﬁbVﬁa

Backtrack to the conflict level o: called NCB in GRASP

Learn a falsified asserting 1UIP clause C=[c,®°, c,®P<°, ¢;@<F, ..., ¢ ®=F]

Learn a clause per every other UIP of the last level

Backtrack to level 0-1: called Chronological Backtracking (CB) in later literature!
Flip & imply c, in its parent C and run BCP

C7=—|E\/—|C\/—|b

H



Up-to-date Conflict Analysis Loop Algorithm
Covers GRASP & Chaff & Modern Solvers

1. Backtrack before conflict analysis: backtrack to the conflict level ¢, if required
= Required in GRASP and called Non-Chronological Backtracking (NCB) in GRASP

= Not required in Chaff: current decision level = conflict level
2. Learn an asserting clause C=[c,@°, c,@P<, c;@@<F, ..., @@=, ..., ¢\ @]
= TUIP clause in both GRASP & Chaff

3. Optionally, learn other clauses

= GRASP: a clause for every other UIP of the conflict decision level

4. Backtrack: backtrack to a levelin [B, f+1, ..., 8-1] -- makes the asserting clause unit
= GRASP -- always 6-1: Chronological Backtracking (CB) in today’s terminology
» Chaff -- always B: Non-Chronological Backtracking (NCB) in today’s terminology

5. Flip ¢, by implying itin C and run BCP

H



Conflict Analysis Loop Evolvement

1996 2001 2018 2019

GRASP Chaff Chaff’s alg. (one 1UIP cls. & NCB) is the state-of-the-art [

noBT

Maple_LCM_Dist_ ChronoBT (MapleCB): the return of Chronological Backtracking (CB)
Alexander Nadel, Vadim Ryvchin: Chronological Backtracking. SAT 2018: 111-121

= A backtracking heuristic choosing between CB and NCB
» Today: Maple-based solvers, Cryptominisat, Kissat alter between CB and NCB

» (CBalgorithm is similar to GRASP’s

» [Integrating CB with post-GRASP data structures for BCP (Watch Lists) turned out to be highly non-trivial
» Because of simultaneous propagation at several levels
= BCP must be adjusted to prevent correctness & performance issues
» Useful BCP invariants are still violated

Cadical'19: custom (score-based) backtracking

Sibylle Mdhle, Armin Biere: Backing Backtracking. SAT 2019: 250-266

» Backtrack to the decision level with the highest variable score

» Applied by Cadical & IntelSAT

CB & BCP integration: implemented, but not discussed

> (<) ..


https://dblp.org/db/conf/sat/sat2018.html#NadelR18
https://dblp.org/db/conf/sat/sat2019.html#MohleB19

Falsified literal:

Integrating CB and BCP

Example of a necessary adjustment

= —C,and —¢, are assighed @1 < max_level(C)

Satisfied literal:

Unassigned literal:

= Can't happen with NCB, where the assigned level is always > max_level(C)

= Must swap lit's & update WL's to watch two highest falsified lit's

= Essential for correctness —in order not to miss conflicts after backtracking!

Useful invariants are still violated even with the adjustments:

= lowest implication: no assigned literal can be implied at a lower level X

= lowest conflict: every conflict, BCP returns a clause
falsified at the lowest possible level —

Intel® SAT Solver (IntelSAT): lowest implication & lowest conflict ensured!

a
—

Cy c, @20 @30 ‘
@1 @1 @20 @30 ‘
@30 | @20 @1 @1
@20 @10 @10
@30 | @30 @1 @1
@20 @20 @1 @1

H


https://docs.google.com/presentation/d/1jH3BxFodO-hb4dP-pSNyN-FvuXXgCYn0/edit?usp=share_link&ouid=107586845464385955619&rtpof=true&sd=true
https://www.youtube.com/watch?v=ZF-fvMfPYGs
https://jakobnordstrom.github.io/miao-seminars/

Intel® SAT Solver (IntelSAT)

An open-source CDCL solver written from scratch in C++20
= Alexander Nadel: Introducing Intel® SAT Solver. SAT 2022.

» Alexander Nadel, “Introducing Intel® SAT Solver” [video], MIAO Seminars. February
2023.

License: MIT (free)

Public repository: https://github.com/alexander-nadel/intel _sat_solver

Tuned towards incremental applications with mostly SAT queries
= Paper: anytime unweighted MaxSAT

= @Intel: optimization problems — placement, scheduling, etc.

4/17/2023 m


https://docs.google.com/presentation/d/1jH3BxFodO-hb4dP-pSNyN-FvuXXgCYn0/edit?usp=share_link&ouid=107586845464385955619&rtpof=true&sd=true
https://www.youtube.com/watch?v=ZF-fvMfPYGs
https://jakobnordstrom.github.io/miao-seminars/
https://github.com/alexander-nadel/intel_sat_solver

Optimization in SAT

OptSAT(F, v): given a propositional formula F in CNF and a Pseudo-Boolean
objective function vy, return a model to F which minimizes vy

» A Pseudo-Boolean (PB) function: a mapping from every full assignment to a real
number

Example: F=(a+b) (a+—c) (—-a+c)
F has 3 models:

- M;={a=0, b=1, c=0}
- Mzz{azl, b:O, Czl}\
1,b=1,c

~
%))

L =, B, O O O O
) B, O O »r LB O O
~r O P O P O L O

(Y

4/17/2023




Optimization in SAT

OptSAT(F, v): given a propositional formula F in CNF and a Pseudo-Boolean
objective function vy, return a model to F which minimizes vy

» A Pseudo-Boolean (PB) function: a mapping from every full assignment to a real
number

Example: F=(a+b) (a+—c) (—-a+c)

F has 3 models:
- M,;={a=0, b=1, c=0}
- M,={a=1, b=0, czl}\
- M;={a=1, b=1, c=1}

~
%))

L =, B, O O O O
) B, O O »r LB O O
~r O P O P O L O

(Y

4/17/2023




Solving OptSAT(F, y) Instances in Real-life

Is v is a linear PB function: y = w,_;*t_; + ... + w *t; + ... + wy*t,?
= t's are Boolean variables

= w,'s are strictly positive integer coefficients

= Example: y = 2*t, + 5*t, + 7*t,

Yes No

MaxSAT: a rich well- Scarce research
established field! Our contribution

= Polosat algorithm: simulate local search with SAT (Nadel, FMCAD'20)
= Very efficient and simple to implement
* |nfocus today

= High-level local search with SAT/Polosat as an oracle
(Cohen&Nadel&Ryvchin, TACAS'22)

4/17/2023 e
intel)




Polosat: Black-Box Optimization in SAT

Polosat: minimize a black-function y(V), given the SAT formula F(V)

How to use Polosat:
1. Similarly to SAT, create the CNF formula by adding clauses

2. Callthe SAT solver (possibly under assumptions), but also provide y as a callback function
= The solver will query y, when all the variables are assigned
= The solver expects to get back a number

No need to bit-blast y into clauses: calculate y in the callback instead!

In practice:
=  depends only on observables B={b_ 4, ..., bg} =V, and

=y is strictly monotone in B: b,eB flipped from 1 to O = vy is decreased
= Example: MaxSAT, wherey =w,_;*b,; + ... + w;*b, + ... + wy*b,

= these restrictions can be lifted

I (< ...



Polosat Algorithm: Simulate Local Search with SAT

Polosat (F, v, T)
= M:=SAT(F)

= External loop: run the following internal loop until M is not improved anymore

» [nternal loop: go over all the bad observables (bad: never assigned 0 in any model)
— Try to flip the current bad observable b:
» M':=SAT(F, {—b}) (=t is an assumption)
— If (satisfiable and w(M’) < w(M)) M := M’

= Return M
No model can be rediscovered by construction

Making Polosat work in practice:

= Apply polarity-fixing in all the SAT invocations to simulate local search
= TORC heuristic: fix the observables to O and the rest to the best model so far M

= Use a conflict threshold N (N=1000): limit every SAT call (except for the 15t one) by N conflicts
» |nitial boost to the VSIDS scores of the observables can also be useful

4/17/2023



Polosat: Incomplete vs. Complete

Polosat is an incomplete algorithm

Polosat can be integrated into a high-level complete algorithm by
replacing SAT queries to Polosat queries




Cell Placement without Optimization: Input Cell Placement w/o Opt.: Output

: - The cells are placed
The grid where to place the cells The cells to be placed @ - Already NP-complete!

8 8
-«

4/17/2023



Cell Placement Input

The grid where to place the cells The cells to be placed

8 C
nl

0 8

N nets: n;={c,,¢;,cs}; n,={c,,c3}; nyo3={c3.¢4)

4/17/2023




Cell Placement Input

- Netsize |n;| of n;: the perimeter of
The grid where to place the cells The cells to be placed n;'s bounding box B,

8 C
nl

0 8

N nets: n;={c,,¢;,cs}; n,={c,,c3}; nyo3={c3.¢4)

4/17/2023




Cell Placement |nput Cell Placement with Opt. Output

- Netsize |n;| of n;: the perimeter of

The grid where to place the cells The cells to be placed n’s bounding box B,
: -  Minimize placement size: the sum of

8 c, ... all the net sizes

0 8

N nets: n;={c,,¢;,cs}; n,={c,,c3}; nyo3={c3.¢4)

Industrial practice: additional constraints!

4/17/2023




Cell Placement - BV/SAT : Constraints

c'4th . the constant width

A
! |

height
— Ci 9

: the constant height

—
(cVest, c5OUth): two bit-vectors, representing the bottom-most corner

(widths’ determination is skipped here)

To find a solution: ensure there is no overlap between each pair of cells

and all the cells are placed inside the grid (skipped here)
Vi ] 1<i <] < N: (Cwest > Ceast) V (Cwest > Ceast)v (Csouth > C]north)v (Csouth > Cnorth)

~
~
~

4/17/2023 mft;D



Solving Placement with Optimization Modulo Bitvectors (OBV)

c'4th . the constant width

A
! |

height
— Ci 9

: the constant height

—

(clest, c7OUt™): two bit-vectors, representing the bottom-most corner for each cell

A BV variable for the net size for each net: n;, = (maX c¢t — min Cwe“) + (max c™orth — min ¢south)
ceni . c eni

c Eni c ENi

The OBV target T = n;+n,+...+ny

OBV goal: minimize T

4/17/2023




Solving OBV(F,T) with SAT-based Linear Search

1: solver.Assert(F); pu := solver.Sat()
2: while 1 1s a solution do

3:
4
5

solver.Assert(T < pu(T))
u = solver.Sat()

: return u

+ Complete anytime algorithm
e anytime algorithm: finds better and better solutions, the longer it keeps running

+ Outperforms other OBV algorithms (binary-search-based)
- Still, gets stuck far from the optimum on industrial placement instances

bit-vector addition (in the target) is too heavy

4/17/2023

> assert F' and find the first solution

> while there 1s still a solution

> block all the solutions with cost > u(7")
> can we improve our solution?

> 1 18 guaranteed to be 7'-minimal




Polosat for Placement

Integration: Polosat invocations replace SAT invocations inside linear search
v simply returns the value of T under the current model

Observables B = all the bits of {n,, n,, ..., ny}; v is monotone in B

1: solver.Assert(F); u := solver.Sat() > assert I and find the first solution
2: while v 1s a solution do > while there 1s still a solution
3: solver.Assert(T < u(T)) > block all the solutions with cost > u(T)
4 p = solver.Sat() > can we improve our solution?
5: return p > 1 1s guaranteed to be 7-minimal

A BV variable for the net size for each net: n; = (max cest — min CWG“) + (max c™°rth — min csouth)
CEN . c Eni

c Eni c eEni

The OBV target T = nj+n,+...+ny




Experimental Results: Industrial Cell Placement
Benchmarks (our TACAS'22 paper)

- 1200 proprietary industrial designs of various sizes and complexities.

- Algorithmes:

- {OBV with Binary search, OBV with Linear search, LSSO} x {SAT, Polosat}
- LSSO: Local Search with SAT/Polosat as an Oracle (our TACAS'22 paper)

Maximal timeout: 600 sec.
- Intermediate timeouts: 50, 100, 150, 200, 250, 300, 350, 400, 450, 500

- Score = best X(net-sizes) / my X(net-sizes)
- normalized to [0, 1] for every timeout
- T:the absolutely best result within the timeout (the virtual best)

- the closer to 1 the better

4/17/2023




- Polosat impact
- Linear search with SAT (ls_no_polosat) -, S
outperforms binary search with SAT - |
(bs_no_polosat) 4 4 5 g
- Linear search with Polosat (ls) ‘
outperforms linear search with SAT ’ | | | |
(Is_no_polosat) ; | | 5 |
0 I A A e

- LSSO with SAT/Polosatasan Oracle g8 -°°[ e : '

il I A S :

R l

8.725 | rjf ]

/o bs_no_polosat
8.7 1 ls —— 7
. . OUtperforms ¥ ls_no_polosat —#%—
the linear search with Polosat i B.675 nany_env_spec —=— |
. nany_env_spec_hill_clnb =
""" 8.6 L | | | nang_enu spec_hill_clnb_no_polosat —&— 7
- Outtool has been successfully 0.625 b g | g g m:;’l'g-gg": :g:::::g "
productized at Intel! : : : : : virtual_best
B..,Bd 1 1 1 1 1 1 1 1 1 1
he 1608 158 200 250 300 350 400 4508 500 600

Tine

4/17/2023



Polosat for MaxSAT: our FMCAD’'20 Paper

Integrated into the anytime MaxSAT solver TT-Open-WBO-Inc
= Winner of MSE'19 in both the weighted, incomplete categories

Integration: replaced SAT invocations by Polosat invocations

Used adaptive strategy to stop Polosat forever, when it gets too slow
= Gets too slow: generates less than 1 new model per second

4/17/2023




Polosat for MaxSAT: Results

8,875 T T T T T T
: Benchmarks: 297 MSE’19 benchmarks in
5 weighted, incomplete categories
8.85 ‘ """"" H """"" =g 9 Timeout: 1800 sec.
o Score: [0, 1]: 1 is the best
e " n i1 Solvers:
0-929 R e e S """ ____. Polosat

e - NoComb: A Polosat variation
T —fer////é_ ] NoCC: A Polosat variation
: MSE’19 winner
NoAdapt: No adaptive strategy
Loandra: MSE’19 runner-up
Main Observation:

Score
@
*
@

¥/ i Polosat substantially improves TT-
B.75 /i Polosat —+— |

5 NoAdapt —>— Open-WBO-Inc!

1/ | NoCC —*—

d.fl : NoConb —&—

TT-0pen-HBO=-Inc —©
lpandra —a— l

a 725 1 I 1 1

i 360 6808 9680 1200 15600 1860
Tine 'i'n tel)  .on



Polosat: Status

Polosat is an enabler for solving industrial optimization problems at Intel

Polosat was used by the winner of the MaxSAT Evaluation 2022 in all the
iIncomplete categories

» NuWLS-c: preprocessing with local search + TT-Open-WBO-Inc

= Categories: {weighted,unweighted} X {60 sec. to, 300 sec. to}




Solving Complex (Non-Linear) Optimization Problems is
an Opportunity for the SAT Community!

Currently, SAT-based verification comprises SAT's heaviest industrial usage

CAV 2022 PROGRAM

Harnessing the Power of Formal Verification for the $Trillion Chip Design Industry (abstract)

Invited Talk: A Billion SMT Queries a Day (Neha Rungta)
But what about industrial optimization problems?

Alternative: mixed-integer nonlinear programming (MINP)

= Might not work in the presence of complex Boolean constraints, where SAT-based solutions are
expected to be a better fit (similarly to MaxSAT vs. ILP in linear case)

= Optimizing black-box functions in MINP is not explored

A SAT-based solution is already productized @ Intel for placement and scheduling!

> (<) ..



Solving Complex Optimization Problems with SAT:
ldeas for Future Research

Classic (hon-SAT-based) local search
Dedicated algorithms for sub-classes of optimization functions

Going beyond SAT constraints (Pseudo-Boolean)

Finding more applications




Backup




SAT Application Examples e

Computer generated math proof is largest

CAV 2022 PROGRERAM ever at 200 terabytes

Ziyad Hanna ,, i
Harnessing the Power of Formal Verification for the $Trillion Chip Design Industry (abstract) :

Invited Talk: A Billion SMT Queries a Day (Neha Rungta)

System
:|:|—> Specification
v

—

z
s

) Architectural Partitioning :
ENTITY test Deiign i
porta:in;
end ENTITY; . : .
T FU:CIt_'O"'_a| ges_lgn Floorplanning Credit: Victorgrigas/Wikideia/ CC BY-SA 3.0
and Logic Design
v (Phys.org)—A trio of researchers has solved a single math problem by using a
ED Circuit Design Placement supercomputer to grind through over a trillion color combination possibilities, and in
v SAT@ the process has generated the largest math proof ever—the text of it is 200
100 : Physical Design . te.rabytes in. size'. In their paper'uploaded to thg preprint server.arXi\./, Marijn Heule
Clock Tree Synthesis with the University of Texas, Oliver Kullmann with Swansea University and Victor

Marek with the University of Kentucky outline the math problem, the means by which

v Physical Verification
DRG y and Signoff \ a supercomputer was programmed to solve it, and the answer which the proof was
Lvs Signal Routin -
i v g g asked to provide.
¥ Fabrication '
_— The math problem has been named the boolean Pythagorean Triples problem and
{ ) > ; Timing Closure was flrstroosed back in the 1980's by mathematician Ronald Graham. In lookin
X 7 Packaging prop y ; g
v and Testing

L7
@ Chip

4/17/2023




IntelSAT Concepts

Incremental Lazy Backtracking (ILB)

* [n-between incremental queries, backtrack only when necessary and to the highest possible level
» Other solvers backtrack all the way to level O

Reimplication: new core SAT algorithm

= Reimplies assigned literals at lower levels without backtracking
= EnablesILB

* |ndependently of ILB, restores the two core BCP invariants, broken by Chronological Backtracking (CB)

Trail implemented as doubly-linked list (rather than stack) to facilitate CB & reimplication

= No pointers, efficient array-based implementation
New heuristics (query-driven tuning, subsumption-based flipped clause filtering, incr. score reboot)

No heavy algorithms, such as, inprocessing and vivification

4/17/2023



