
PEG PDS DDI
1/11

CDCL SAT Solving and
Applications to Optimization Problems

Alexander Nadel, Intel & Technion, Israel

April 17, 2023

Satisfiability: Theory, Practice, and Beyond Workshop

Simons Institute, UC Berkeley, Berkeley, CA, USA

1

PEG PDS DDI
2/11

Agenda

1. Core CDCL SAT Solving

▪ Review of the foundations

2. Solving Complex Optimization Problems with SAT

▪ Opportunity for the future

▪ based on my own industrial experience

PEG PDS DDI
3/11

Introduction

4/17/2023
3

SAT: determine if a Boolean formula in Conjunctive Normal Form (CNF) satisfiable

The original NP-Complete problem: the famous Cook-Levin theorem (early 70s)

SAT has exponential complexity unless P = NP -- whether or not P = NP is frequently
called the most important outstanding question in CS

▪ Check a solution is easy → is it also easy to solve?

▪ One of the 7 Clay Millennium Prize Problems – worth $1,000,000

SAT is an unresolved mystery

Yet, SAT solvers are scalable widely used tools, how come?!

F = (a  b)  (a  b  c)
clause #1 clause #2

Literals

PEG PDS DDI
4/11

SAT Fundamentals: Backtrack Search

4/17/2023
4

The baseline algorithm in modern SAT solvers is backtrack search

Called DPLL or DLL

Davis, Martin; Logemann, George; Loveland, Donald: "A Machine Program for Theorem
Proving". Communications of the ACM. 5 (7): 394–397. (1961).

Davis, Martin; Putnam, Hilary: A computing procedure for quantification theory. Journal of the ACM 7 (1960)

https://archive.org/details/machineprogramfo00davi
https://en.wikipedia.org/wiki/Communications_of_the_ACM

PEG PDS DDI
5/11

Apply the unit clause rule till
fixed-point aka Boolean
Constraint Propagation (BCP)

0

10

Carry out backtrack search.
Stop when a model is found

0

The unassigned literal c1 must be implied

From Enumeration to DPLL

4/17/2023
5

F = (a  b)  (a  b  c)
clause #1 clause #2

Literals

a

b b

c c c c

0 1

0 0

00 001

1 1

1 1 1

a

b b

c c c

0 1

0 0

0 00

1 1

1 1 1

a

b

c

Stop when a clause
turns UNSAT

c2c1 c3

c2c1 c3

Falsified literal: Satisfied literal: Unassigned literal:

A unit clause -- one unassigned, rest falsified:

1

a

b

c

0

0

The unit clause rule: the unassigned literal in a unit clause must be 1

Implied in parent clause #1:

PEG PDS DDI
6/11

The Mystery of SAT Solver Scalability

4/17/2023

6

DPLL could handle formulas with <2,000 clauses

Modern SAT solvers cope with industrial instances of 100,000,000’s clauses

The introduction of Conflict-Driven-Clause-Learning (CDCL) or, simply,
Conflict-driven Solving was the birth of modern highly-scalable SAT solving

Learn from conflicts to drive & prune backtrack search

a

b b

c c c c

0 1

0 0

00 001

1 1

1 1 1

PEG PDS DDI
7/11

CDCL: the Intuitive Principles

4/17/2023
7

Learning and pruning

▪ Block already explored sub-spaces

Locality

▪ Focus the search on the relevant data

▪ Learn strong clauses from the local context

Well-engineered data structures

▪ Extremely fast Boolean Constraint Propagation (BCP)

Beyond CDCL

▪ Inprocessing

▪ Local search integration

PEG PDS DDI
8/11

Today’s Focus for the 1st Part of the Talk

In-depth dive into the “core of the core”

▪ Conflict analysis loop

▪ Boolean Constraint Propagation (BCP)

PEG PDS DDI
9/11

Conflict-driven SAT Solving: Seminal Work
1996: GRASP by Joao P. Marques-Silva and Karem A. Sakallah

João P. Marques Silva, Karem A. Sakallah: GRASP - a new search algorithm for satisfiability. ICCAD 1996: 220-227

2001: Chaff by Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang and Sharad Malik

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, Sharad Malik: Chaff: Engineering an Efficient SAT
Solver. DAC 2001: 530-535

https://dblp.org/db/conf/iccad/iccad1996.html#SilvaS96
https://dblp.org/db/conf/dac/dac2001.html#MoskewiczMZZM01

PEG PDS DDI
10/11

Boolean Constraint Propagation (BCP) Essentials

BCP consumes 80-90% of SAT run-time

What?

▪ Identify and propagate in unit clauses (performance)

▪ Identify and report any conflicts (correctness)

How?

▪ Every literal l holds a Watch List -- WL(l) with all the clauses where l is watched

▪ When literal l is falsified, visit all the clauses in WL(l)

c2c1 c3

c2c1 c3

c2c1 c3

Falsified literal: Satisfied literal: Unassigned literal:

PEG PDS DDI
11/11

Efficient Data Structure for BCP

- GRASP watched all the literals

- It is sufficient to watch two non-falsified literals: SATO’s Head/Tail!

- Watching: visiting during BCP

Hantao Zhang: SATO: An Efficient Propositional Prover. CADE 1997: 272-275

- Chaff’s 2WL: watching the first two literals – no need to visit during backtracking!

- as long as: decision-level(falsified watch) ≥ decision-level(falsified non-watch)

- Caching one literal inside the watches & inlining binary clauses

Sörensson, N., Eén, N.: MiniSAT 2.1 and MiniSAT++ 1.0 - SAT race Editions. SAT, Competitive Event Booklet (2008) (caching one literal)
Geoffrey Chu, Aaron Harwood, Peter J. Stuckey: Cache Conscious Data Structures for Boolean Satisfiability Solvers. J. Satisf. Boolean Model.

Comput. 6(1-3): 99-120 (2009) (caching one literal & inlining binary clauses)

4/17/2023

c4 c5 c7c2c1 c3 c6

Falsified literal: Satisfied literal:

Unassigned literal:

Unknown literal:

Non-falsified literal: Non-satisfied literal:

c4 c5 c7c3c2 c6c1

https://dblp.org/db/conf/cade/cade97.html#Zhang97
https://dblp.org/db/journals/jsat/jsat6.html#ChuHS09

PEG PDS DDI
12/11

Right-hand side: the conflict
Left-hand side: the reason, including the rightmost Unique Implication Point (UIP) of the last level

f@5(C5)

Decision Level 4

f@1(C7)
c@3

Conflict Analysis Loop in Chaff

f@3(C6)

C1= a  f  g

C2= a  f  g

C3= c  f  g

C4= b  f  g

C5= e  f

a@1

b@2

c@3

d@4

e@5

g@5

g@5

f@5e@5

c@3

b@2

1UIP

C6 =f  c  b

a@1

b@2

C3

C3

C4

C5 C4

g@3

g@3

a@1

f@3

C1

C1

C2

C2

1UIP

C7 = f  a

a@1

c@3

b@2

- Learn a falsified asserting clause C=[c1
@, c2

@< , c3
@ , … , c|C|

@ ]
- 1UIP clause in Chaff

- Backtrack to level : called Non-Chronological Backtracking (NCB) in Chaff → C becomes unit
- Flip & imply c1 in its parent C and run BCP

NCB to 3

NCB to 1

Decision Level 1

Decision Level 2

Decision Level 3

Decision Level 5

Decision variable/literal

Implication graph g@5(C3)

g@3(C1)

PEG PDS DDI
13/11

b@2

a@1

g@3

Conflict Analysis Loop in GRASP
a@1

b@2

c@3

d@4

e@5

f@5(C5)

g@5

g@5

f@5e@5

c@3
1UIP

C6 =f  c  b

C3

C3

C4

C5 C4

2UIP

C7 =e  c  b

f@3(C6)

a@1

b@2

c@3

d@4 f@1(C8)a@1

f@3

C1

C1

C2

C2

1UIP

c@3

b@2
2UIP

C1= a  f  g

C2= a  f  g

C3= c  f  g

C4= b  f  g

C5= e  f

b@2

C9 =c  b  a

C8 = f a

- Backtrack to the conflict level : called NCB in GRASP
- Learn a falsified asserting 1UIP clause C=[c1

@, c2
@< , c3

@ , … , c|C|
@ ]

- Learn a clause per every other UIP of the last level
- Backtrack to level -1: called Chronological Backtracking (CB) in later literature!
- Flip & imply c1 in its parent C and run BCP

CB to 4

g@3

Backtrack to
conflict level 3

CB to 2

In GRASP, f is a special kind of a “flipped”
decision variable at level 5, but GRASP
learns as if f were implied at level 3

g@5(C3)

g@3(C1)

PEG PDS DDI
14/11

Up-to-date Conflict Analysis Loop Algorithm
Covers GRASP & Chaff & Modern Solvers
1. Backtrack before conflict analysis: backtrack to the conflict level , if required

▪ Required in GRASP and called Non-Chronological Backtracking (NCB) in GRASP

▪ Not required in Chaff: current decision level  conflict level

2. Learn an asserting clause C=[c1
@, c2

@<, c3@@, …, ci@
@, …, c|C|

@]

▪ 1UIP clause in both GRASP & Chaff

3. Optionally, learn other clauses

▪ GRASP: a clause for every other UIP of the conflict decision level

4. Backtrack: backtrack to a level in [, +1, …, -1] -- makes the asserting clause unit

▪ GRASP -- always -1: Chronological Backtracking (CB) in today’s terminology

▪ Chaff -- always : Non-Chronological Backtracking (NCB) in today’s terminology

5. Flip c1 by implying it in C and run BCP

PEG PDS DDI
15/11

Conflict Analysis Loop Evolvement
1996

GRASP

2001

Chaff

Maple_LCM_Dist_ChronoBT (MapleCB): the return of Chronological Backtracking (CB)

Alexander Nadel, Vadim Ryvchin: Chronological Backtracking. SAT 2018: 111-121

▪ A backtracking heuristic choosing between CB and NCB

▪ Today: Maple-based solvers, Cryptominisat, Kissat alter between CB and NCB

▪ CB algorithm is similar to GRASP’s

▪ Integrating CB with post-GRASP data structures for BCP (Watch Lists) turned out to be highly non-trivial

▪ Because of simultaneous propagation at several levels

▪ BCP must be adjusted to prevent correctness & performance issues

▪ Useful BCP invariants are still violated

Cadical’19: custom (score-based) backtracking

Sibylle Möhle, Armin Biere: Backing Backtracking. SAT 2019: 250-266

▪ Backtrack to the decision level with the highest variable score

▪ Applied by Cadical & IntelSAT

CB & BCP integration: implemented, but not discussed

2018

Maple_LCM
_Dist_Chro
noBT

2019

Cadical’19Chaff’s alg. (one 1UIP cls. & NCB) is the state-of-the-art

https://dblp.org/db/conf/sat/sat2018.html#NadelR18
https://dblp.org/db/conf/sat/sat2019.html#MohleB19

PEG PDS DDI
16/11

Example of a necessary adjustment

▪ c1 and c2 are assigned @1 < max_level(C)

▪ Can’t happen with NCB, where the assigned level is always  max_level(C)

▪ Must swap lit’s & update WL’s to watch two highest falsified lit’s

▪ Essential for correctness – in order not to miss conflicts after backtracking!

Useful invariants are still violated even with the adjustments:

▪ lowest implication: no assigned literal can be implied at a lower level

▪ lowest conflict: every conflict, BCP returns a clause
falsified at the lowest possible level

Intel® SAT Solver (IntelSAT): lowest implication & lowest conflict ensured!

Alexander Nadel: Introducing Intel® SAT Solver. SAT 2022.

Alexander Nadel, “Introducing Intel® SAT Solver” [video], MIAO Seminars. February 2023.

Integrating CB and BCP
@30c2 @20c1

@30@1 @20@1

@1@20 @1@30

Falsified literal: Unassigned literal:

@10@20 @10

Satisfied literal:

@1@30 @1@30

@1@20 @1@20

https://docs.google.com/presentation/d/1jH3BxFodO-hb4dP-pSNyN-FvuXXgCYn0/edit?usp=share_link&ouid=107586845464385955619&rtpof=true&sd=true
https://www.youtube.com/watch?v=ZF-fvMfPYGs
https://jakobnordstrom.github.io/miao-seminars/

PEG PDS DDI
17/11

Intel® SAT Solver (IntelSAT)

4/17/2023
17

An open-source CDCL solver written from scratch in C++20

▪ Alexander Nadel: Introducing Intel® SAT Solver. SAT 2022.

▪ Alexander Nadel, “Introducing Intel® SAT Solver” [video], MIAO Seminars. February
2023.

License: MIT (free)

Public repository: https://github.com/alexander-nadel/intel_sat_solver

Tuned towards incremental applications with mostly SAT queries

▪ Paper: anytime unweighted MaxSAT

▪ @Intel: optimization problems – placement, scheduling, etc.

https://docs.google.com/presentation/d/1jH3BxFodO-hb4dP-pSNyN-FvuXXgCYn0/edit?usp=share_link&ouid=107586845464385955619&rtpof=true&sd=true
https://www.youtube.com/watch?v=ZF-fvMfPYGs
https://jakobnordstrom.github.io/miao-seminars/
https://github.com/alexander-nadel/intel_sat_solver

PEG PDS DDI
18/11

Optimization in SAT

4/17/2023
18

OptSAT(F, ): given a propositional formula F in CNF and a Pseudo-Boolean
objective function , return a model to F which minimizes 

▪ A Pseudo-Boolean (PB) function: a mapping from every full assignment to a real
number

Example: F = (a + b) (a + c) (a + c)

F has 3 models:

- M1={a=0, b=1, c=0}

- M2={a=1, b=0, c=1}

- M3={a=1, b=1, c=1}

a b c 

0 0 0 2.3

0 0 1 3.5

0 1 0 8

0 1 1 100.1

1 0 0 96.3

1 0 1 75

1 1 0 1.35

1 1 1 20.4

PEG PDS DDI
19/11

Optimization in SAT

4/17/2023
19

OptSAT(F, ): given a propositional formula F in CNF and a Pseudo-Boolean
objective function , return a model to F which minimizes 

▪ A Pseudo-Boolean (PB) function: a mapping from every full assignment to a real
number

Example: F = (a + b) (a + c) (a + c)

F has 3 models:

- M1={a=0, b=1, c=0}

- M2={a=1, b=0, c=1}

- M3={a=1, b=1, c=1}

a b c 

0 0 0 2.3

0 0 1 3.5

0 1 0 8

0 1 1 100.1

1 0 0 96.3

1 0 1 75

1 1 0 1.35

1 1 1 20.4

Best
model

PEG PDS DDI
20/11

Solving OptSAT(F, ) Instances in Real-life

4/17/2023
20

Is  is a linear PB function:  = wn-1*tn-1 + … + w1*t1 + … + w0*t0?

▪ ti’s are Boolean variables

▪ wi’s are strictly positive integer coefficients

▪ Example:  = 2*t2 + 5*t1 + 7*t0

Yes No

MaxSAT: a rich well-
established field!

Scarce research

Our contribution

▪ Polosat algorithm: simulate local search with SAT (Nadel, FMCAD’20)

▪ Very efficient and simple to implement

▪ In focus today

▪ High-level local search with SAT/Polosat as an oracle
(Cohen&Nadel&Ryvchin, TACAS’22)

PEG PDS DDI
21/11

Polosat: Black-Box Optimization in SAT

Polosat: minimize a black-function (V), given the SAT formula F(V)

How to use Polosat:

1. Similarly to SAT, create the CNF formula by adding clauses

2. Call the SAT solver (possibly under assumptions), but also provide  as a callback function
▪ The solver will query , when all the variables are assigned
▪ The solver expects to get back a number

No need to bit-blast  into clauses: calculate  in the callback instead!

In practice:

▪  depends only on observables B= {bn-1, … , b0}  V, and

▪  is strictly monotone in B: biB flipped from 1 to 0 →  is decreased
▪ Example: MaxSAT, where  = wn-1*bn-1 + … + w1*b1 + … + w0*b0

▪ these restrictions can be lifted

PEG PDS DDI
22/11

Polosat Algorithm: Simulate Local Search with SAT

4/17/2023
22

Polosat (F, , T)

▪ M := SAT(F)

▪ External loop: run the following internal loop until M is not improved anymore
▪ Internal loop: go over all the bad observables (bad: never assigned 0 in any model)

– Try to flip the current bad observable b:
» M’ := SAT(F, {b}) (t is an assumption)

– If (satisfiable and (M’) < (M)) M := M’

▪ Return M

No model can be rediscovered by construction

Making Polosat work in practice:

▪ Apply polarity-fixing in all the SAT invocations to simulate local search
▪ TORC heuristic: fix the observables to 0 and the rest to the best model so far M

▪ Use a conflict threshold N (N=1000): limit every SAT call (except for the 1st one) by N conflicts

▪ Initial boost to the VSIDS scores of the observables can also be useful

PEG PDS DDI
23/11

Polosat: Incomplete vs. Complete

Polosat is an incomplete algorithm

Polosat can be integrated into a high-level complete algorithm by
replacing SAT queries to Polosat queries

PEG PDS DDI
24/11

Cell Placement without Optimization: Input

4/17/2023
24

0 8

8

The grid where to place the cells The cells to be placed

c1

c2

c3

c4

c5 0 8

8

Cell Placement w/o Opt.: Output

- The cells are placed
- Already NP-complete!

PEG PDS DDI
25/11

Cell Placement Input

4/17/2023
25

n1

n2

n1

n2 n3
n1

0 8

8

The grid where to place the cells The cells to be placed

c1

c2

c3

c4

c5

N nets: n1={c1,c3,c5}; n2={c2,c3}; nN=3={c3,c4}

n3

PEG PDS DDI
26/11

Cell Placement Input

4/17/2023
26

n1

n2

n1

n2 n3
n1

0 8

8

The grid where to place the cells The cells to be placed

c1

c2

c3

c4

c5

N nets: n1={c1,c3,c5}; n2={c2,c3}; nN=3={c3,c4}

n3

0 8

8

n1

n1

n1

n2 n3

n2

n3

- Net size |ni| of ni: the perimeter of
ni’s bounding box Bi

B1

B2

B3

PEG PDS DDI
27/11

Cell Placement Input

4/17/2023
27

n1

n2

n1

n2 n3
n1

0 8

8

The grid where to place the cells The cells to be placed

c1

c2

c3

c4

c5

N nets: n1={c1,c3,c5}; n2={c2,c3}; nN=3={c3,c4}

n3

0 8

8

n1

n1

n1

n2 n3

n2

n3

Cell Placement with Opt. Output

- Net size |ni| of ni: the perimeter of
ni’s bounding box Bi

- Minimize placement size: the sum of
all the net sizes

B1

B2

B3

Industrial practice: additional constraints!

PEG PDS DDI
28/11

Cell Placement → BV/SAT : Constraints

4/17/2023
28

(𝑐𝑖
𝑤𝑒𝑠𝑡, 𝑐𝑖

𝑠𝑜𝑢𝑡ℎ): two bit-vectors, representing the bottom-most corner
(widths’ determination is skipped here)

i

𝑐𝑖
𝑤𝑖𝑑𝑡ℎ: the constant width

𝑐𝑖
ℎ𝑒𝑖𝑔ℎ𝑡

: the constant height

j i i j

i

j

j

i

To find a solution: ensure there is no overlap between each pair of cells
and all the cells are placed inside the grid (skipped here)

∀𝑖, 𝑗: 1 ≤ 𝑖 < 𝑗 ≤ 𝑁: (𝑐𝑖
𝑤𝑒𝑠𝑡 ≥ 𝑐𝑗

𝑒𝑎𝑠𝑡) ڀ (𝑐𝑗
𝑤𝑒𝑠𝑡 ≥ 𝑐𝑖

𝑒𝑎𝑠𝑡)ڀ (𝑐𝑖
𝑠𝑜𝑢𝑡ℎ ≥ 𝑐𝑗

𝑛𝑜𝑟𝑡ℎ)ڀ (𝑐𝑗
𝑠𝑜𝑢𝑡ℎ ≥ 𝑐𝑖

𝑛𝑜𝑟𝑡ℎ)

PEG PDS DDI
29/11

A BV variable for the net size for each net: 𝑛𝑖 = max
𝑐 ∈𝑛𝑖

𝑐𝑒𝑎𝑠𝑡 − min
𝑐 ∈𝑛𝑖

𝑐𝑤𝑒𝑠𝑡 + (max
𝑐 ∈𝑛𝑖

𝑐𝑛𝑜𝑟𝑡ℎ − min
𝑐 ∈𝑛𝑖

𝑐𝑠𝑜𝑢𝑡ℎ)

Solving Placement with Optimization Modulo Bitvectors (OBV)

4/17/2023
29

(𝑐𝑖
𝑤𝑒𝑠𝑡, 𝑐𝑖

𝑠𝑜𝑢𝑡ℎ): two bit-vectors, representing the bottom-most corner for each cell

i

𝑐𝑖
𝑤𝑖𝑑𝑡ℎ: the constant width

𝑐𝑖
ℎ𝑒𝑖𝑔ℎ𝑡

: the constant height

12
3

4

5
12

3

4

5
The OBV target T = n1+n2+…+nN

OBV goal: minimize T

PEG PDS DDI
30/11

Solving OBV(F,T) with SAT-based Linear Search

4/17/2023
30

+ Complete anytime algorithm
• anytime algorithm: finds better and better solutions, the longer it keeps running

+ Outperforms other OBV algorithms (binary-search-based)
- Still, gets stuck far from the optimum on industrial placement instances

• bit-vector addition (in the target) is too heavy

PEG PDS DDI
31/11

Polosat for Placement

Integration: Polosat invocations replace SAT invocations inside linear search

 simply returns the value of T under the current model

Observables B = all the bits of {n1, n2, …, nN};  is monotone in B

A BV variable for the net size for each net: 𝑛𝑖 = max
𝑐 ∈𝑛𝑖

𝑐𝑒𝑎𝑠𝑡 − min
𝑐 ∈𝑛𝑖

𝑐𝑤𝑒𝑠𝑡 + (max
𝑐 ∈𝑛𝑖

𝑐𝑛𝑜𝑟𝑡ℎ − min
𝑐 ∈𝑛𝑖

𝑐𝑠𝑜𝑢𝑡ℎ)

12
3

4

5
12

3

4

5

The OBV target T = n1+n2+…+nN

PEG PDS DDI
32/11

Experimental Results: Industrial Cell Placement
Benchmarks (our TACAS’22 paper)

4/17/2023
32

- 1200 proprietary industrial designs of various sizes and complexities.

- Algorithms:

- {OBV with Binary search, OBV with Linear search, LSSO} x {SAT, Polosat}

- LSSO: Local Search with SAT/Polosat as an Oracle (our TACAS’22 paper)

- Maximal timeout: 600 sec.

- Intermediate timeouts: 50, 100, 150, 200, 250, 300, 350, 400, 450, 500

- Score = best (net-sizes) / my (net-sizes)

- normalized to [0, 1] for every timeout

- 1: the absolutely best result within the timeout (the virtual best)

- the closer to 1 the better

PEG PDS DDI
33/11

4/17/2023
33

- Polosat impact

- Linear search with SAT (ls_no_polosat)
outperforms binary search with SAT
(bs_no_polosat)

- Linear search with Polosat (ls)
outperforms linear search with SAT
(ls_no_polosat)

- Linear search with Polosat (ls): the
best published result

- LSSO with SAT/Polosat as an Oracle

- Best LSSO with SAT
(many_env_spec_hill_clmb_no_polosat) is only
slightly outperformed by linear search
with Polosat (the previous best)

- Best LSSO with Polosat outperforms
the linear search with Polosat (the
previous best)

- Out tool has been successfully
productized at Intel!

- Each of the LSSO algorithms
contributes to the virtual best

- see the paper

PEG PDS DDI
34/11

Polosat for MaxSAT: our FMCAD’20 Paper

4/17/2023
34

Integrated into the anytime MaxSAT solver TT-Open-WBO-Inc

▪ Winner of MSE’19 in both the weighted, incomplete categories

Integration: replaced SAT invocations by Polosat invocations

Used adaptive strategy to stop Polosat forever, when it gets too slow

▪ Gets too slow: generates less than 1 new model per second

PEG PDS DDI
35/11

Polosat for MaxSAT: Results

4/17/2023
35

Benchmarks: 297 MSE’19 benchmarks in
weighted, incomplete categories
Timeout: 1800 sec.
Score: [0, 1]: 1 is the best
Solvers:

Polosat
NoComb: A Polosat variation
NoCC: A Polosat variation
TT-Open-WBO-Inc: MSE’19 winner
NoAdapt: No adaptive strategy
Loandra: MSE’19 runner-up

Main Observation:
Polosat substantially improves TT-
Open-WBO-Inc!

PEG PDS DDI
36/11

Polosat: Status

Polosat is an enabler for solving industrial optimization problems at Intel

Polosat was used by the winner of the MaxSAT Evaluation 2022 in all the
incomplete categories

▪ NuWLS-c: preprocessing with local search + TT-Open-WBO-Inc

▪ Categories: {weighted,unweighted} X {60 sec. to, 300 sec. to}

PEG PDS DDI
37/11

Solving Complex (Non-Linear) Optimization Problems is
an Opportunity for the SAT Community!

Currently, SAT-based verification comprises SAT’s heaviest industrial usage

But what about industrial optimization problems?

Alternative: mixed-integer nonlinear programming (MINP)

▪ Might not work in the presence of complex Boolean constraints, where SAT-based solutions are
expected to be a better fit (similarly to MaxSAT vs. ILP in linear case)

▪ Optimizing black-box functions in MINP is not explored

A SAT-based solution is already productized @ Intel for placement and scheduling!

PEG PDS DDI
38/11

Solving Complex Optimization Problems with SAT:
Ideas for Future Research

Classic (non-SAT-based) local search

Dedicated algorithms for sub-classes of optimization functions

Going beyond SAT constraints (Pseudo-Boolean)

Finding more applications

PEG PDS DDI
39/11

Backup

PEG PDS DDI
40/11

SAT Application Examples

4/17/2023
40

SAT@

PEG PDS DDI
41/11

IntelSAT Concepts

4/17/2023
41

Incremental Lazy Backtracking (ILB)

▪ In-between incremental queries, backtrack only when necessary and to the highest possible level

▪ Other solvers backtrack all the way to level 0

Reimplication: new core SAT algorithm

▪ Reimplies assigned literals at lower levels without backtracking

▪ Enables ILB

▪ Independently of ILB, restores the two core BCP invariants, broken by Chronological Backtracking (CB)

Trail implemented as doubly-linked list (rather than stack) to facilitate CB & reimplication

▪ No pointers, efficient array-based implementation

New heuristics (query-driven tuning, subsumption-based flipped clause filtering, incr. score reboot)

No heavy algorithms, such as, inprocessing and vivification

