My Collaboration with Toni

Weak Automat*ability

Maria Luisa Bonet

Propositional Proof System

Definition: A propositional proof system is a polynomial time computable function from $\{0,1\}^{*}$ onto TAUT.

A pps is a polynomial time proof-verification algorithm P . On input (x, F), if P accepts the pair (x, F), we say that x is a P-proof of F.

Questions:

- How big (in size) is the proof of a tautology in a given proof system?
- What is the cost (in time) of finding the (smallest) proof?

Automatizable Proof Systems

Definition [Bonet-Pitassi-Raz, 97] A proof system P is automatable if there exists an algorithm that takes as input a formula F and returns a proof p of F in the system P in poly time in the size of the shortest P -proof of F.

Variants of the Definition:

- quasy-poly time $n^{O(\log n)}$ automatizable
- A proof system P is Weakly Automatable if there is an automatable proof system that simulates P

Definition: Propositional proof system Q p-simulates P, if there is a polynomial-time function f such that $Q(f(x))=P(x)$ for all x.

Equivalences of Weak Automatability definitions

A pair (A, B) is a disjoint NP-pair if $A, B \in N P$ and $A \cap B=\emptyset$.
Definition [Razborov] Canonical NP-pair for a propositional proof system P is:

$$
\operatorname{Ref}(P)=\left\{\left(\phi, 1^{m}\right) \mid P \text { has a refutation of } \phi \text { of size } m\right\}
$$

$$
\text { SAT }=\left\{\left(\phi, 1^{m}\right) \mid \phi \text { is satisfiable }\right\}
$$

The following are equivalent:

- The canonical NP-pair for a pps P is polynomially separable.
- A system P is Weakly Automatable if there is an automatable system that simulates P
- P is Weakly Automatable if there exists an algorithm that takes as input a formula F and returns a proof p of F in poly time in the size of the shortest P -proof of F.

Interpolation [Krajicek]

Observation: If $F(\vec{x}, \vec{y}) \wedge G(\vec{x}, \vec{z})$ is unsatisfiable, then, given any assignment $\vec{\alpha}$ for \vec{x}, either $F(\vec{\alpha}, \vec{y})$ is unsatisfiable or $G(\vec{\alpha}, \vec{z})$ is unsatisfiable.

Interpolation Problem:
Given an unsatisfiable formula $F(\vec{x}, \vec{y}) \wedge G(\vec{x}, \vec{z})$ and an assignment α to the x variables, return 0 if $F(\vec{\alpha}, \vec{y})$ is unsatisfiable,
return 1 if $G(\vec{\alpha}, \vec{z})$ is unsatisfiable.

Definition: P has feasible interpolation if the Interpolation problem is solvable in polynomial time respect to the smallest P -refutation of $F \wedge G$.

Relationship between automatizability and interpolation

Theorem[Impagliazzo, Bonet-Pitassi-Raz] If P is automatizable, then P has feasible interpolation.

Proof Sketch
Let n be the size of the smallest P-refutation of $F(\vec{x}, \vec{y}) \wedge G(\vec{x}, \vec{z})$. Let α be an assignment on the x variables. Run the automatization algorithm on F for $p(n)$ steps. If it succeeds return 0 , otherwise return 1 .

Idea: Show P doesn't have feasible interpolation, under assumptions?

Idea goes back to [Krajicek-Pudlak] for Extended Frege.

Frege Proof Systems

Frege
A few axioms schemes like: $A \wedge B \rightarrow A$

$$
\begin{aligned}
& A \rightarrow(B \rightarrow A \wedge B) \\
& A \rightarrow(B \rightarrow A)
\end{aligned}
$$

plus the Modus Ponens rule of inference: $\frac{A \quad A \rightarrow B}{B}$

Bounded Depth Frege or $A C_{0}$-Frege

Frege where all formulas have a constant number of \wedge / \vee alternations, and connectives have unbounded degrees.
$T C_{0}$-Frege
Bounded Depth Frege + threshold and parity connectives and rules for them.

Diffie-Hellman Cryptographic Scheme

Alice and Bob want to establish secret shared key. large prime number P, generator g of Z_{p}^{*} (public)

Note: If $P=p_{1} p_{2}$ where p_{1} and p_{2} are primes, then breaking D-H is harder than factoring.

No feasible interpolation for Frege Proof Systems

Theorem [Bonet-Pitassi-Raz] Frege Systems and even $T C_{0}$-Frege Systems (refutational) do not have feasible interpolation, unless factoring is solvable in polynomial time.

Proof Sketch Let m be a number and g a generator of Z_{m}^{*}. Let $A_{0}(X, Y, a, b)$ be $X=g^{a} \bmod m$ and $Y=g^{b} \bmod m$ and last bit of $g^{a b} \bmod m$ is 0 and $A_{1}(X, Y, c, d)$ be $X=g^{c} \bmod m$ and $Y=g^{d} \bmod m$ and last bit of $g^{d c} \bmod m$ is 1
$A_{0} \wedge A_{1}$ is unsat. since
$g^{a b}=X^{b}=g^{c b}=g^{b c}=Y^{c}=g^{d c} \bmod m$.
and has small refutations in the Frege proof system.
Now, feasible interpolation would imply that Diffie-Hellman
Bit-Commitment is unsecure, and this implies that factoring is easy.

Non-automatability and non weak-automatability

Under the cryptographic assumption:

- Frege or even $T C_{0}$-Frege don't have feasible interpolation
- No system that simulates Frege or $T C_{0}$-Frege has feasible interpolation
- Frege or even $T C_{0}$-Frege are not automatizable
- Frege or even $T C_{0}$-Frege are not weakly automatizable

Non-automatizability for Bounded Depth Frege

Theorem [Bonet-Domingo-Gavaldà-Maciel-Pitassi] $A C_{0}$-Frege Systems do not have feasible interpolation, unless factoring can be computed in subexponential time.

- There exist $A C_{0}$ circuits (of depth $2 k$) of size polynomial in n to add $\log ^{k} n$ bits.
- $T C_{0}$-Frege proofs of size polynomial in n in which all the threshold and parity connectives have fan-in polylog n can be simulated by $A C_{0}$-Frege proofs of size polynomial in n.
- $A C_{0}$-Frege doesn't have feasible interpolation, unless factoring can be computed by sub-exponential size circuits.
- $A C_{0}$-Frege is not automatizable or weakly automatizable, under the same assumption.

Non Weakly Automatable proof systems under assumptions
[Krajicek-Pudlak] Extended Frege
[Bonet-Pitassi-Raz] Frege, $T C_{0}$ Frege
[Bonet-Domingo-Gavalda-Maciel-Pitassi] $A C_{0}$ Frege.
Non Automatable proof systems under assumptions
[Atserias-Müller, Alekhnovich-Razborov] Resolution.
[Garlik] Res(k).
[deRezende-Göös-Nordström-Pitassi-Robere-Sokolov]
Nullstallensatz and Polynomial Calculus.
[Göös-Koroth-Mertz-Pitassi] Cutting Planes.
[Grosser-Robere?] Sherali-Adams.
Open: Sum-of-Squares

Discussion

Thanks to Albert Atserias and Pavel Pudlak

Discussion

Given a simple graph game, deciding whether a player has a winning strategy is in $N P \cap$ coNP.
[Atserias-Maneva] If depth 2 Frege is weakly automatizable, mean payoff games can be decided in polynomial time.
[Pitassi-Huang] If depth 2 Frege is weakly automatizable, then simple stocastic games can be decided in polynomial time.
[Beckmann-Pudlak-Thapen] If resolution is weakly automatizable, then parity games can be decided in polynomial time.

But:
[Calude-Jain-Khoussainov-Li-Stephan] Quasi-polynomial time algorithm solving parity games.

Discussion

Dead ends in trying to show weak automatability of Resolution

- Proof systems like Polynomial Calculus, Sheraly-Adams, Sum-of-squares,... are stronger than Resolution.
- These systems are not automatable.
- They have efficient algorithms to find proofs of small degree (or small degree and polynomial coefficients).
- Could these algorithm be automatable procedures for Resolution?
- NO

Discussion

[Bonet-Galesi] The Ordering Principle requires high Resolution width, but it has small Resolution refutations.
[Galesi-Lauria] The graph ordering principle requires high degree for PC.
[Potechin]The ordering principle requires high degree to refute in SOS.

The Res(k) Resolution System

Clauses are disjunctions of conjunctions of up to k literals:

$$
\left(I_{1}^{1} \wedge \cdots \wedge I_{s_{1}}^{1}\right) \vee \cdots \vee\left(I_{1}^{r} \wedge \cdots \wedge l_{s_{r}}^{r}\right) \quad s_{1}, \ldots, s_{r} \leq k
$$

Rules of inference:

$$
\frac{A}{A \vee B} \quad \text { Weakening }
$$

$$
\begin{aligned}
& \frac{A \vee I_{1} \quad B \vee\left(I_{2} \wedge \cdots \wedge I_{s}\right)}{A \vee B \vee\left(I_{1} \wedge I_{2} \wedge \cdots \wedge I_{s}\right)} \quad \wedge \text {-Introduction } \\
& \frac{A \vee\left(I_{1} \wedge \cdots \wedge I_{s}\right) \quad B \vee \neg I_{1} \vee \cdots \vee \neg I_{s}}{A \vee B} \quad \text { Cut }
\end{aligned}
$$

Discussion

Reflexion Principle: $\operatorname{SAT}_{m}^{n}(x, z) \wedge R E F_{m, s}^{n}(x, y)$
[Pudlak] If the reflection principle of f has polynomial-size refutations in a proof system that has feasible interpolation, then f is weakly automatizable.
[Atserias-Bonet] Res(2) proves the reflexion principle of Resolution.
[Atserias-Bonet] If F has a $\operatorname{Res}(k)$ refutation of size S, then $F(k)$ has a Resolution refutation of size $\mathrm{O}(\mathrm{kS})$.
[Atserias-Bonet] For constatn $k>1$, quivalence between:
(i) Resolution is weakly automatizable
(ii) $\operatorname{Res}(\mathrm{k})$ is weakly automatizable
(iii) $\operatorname{Res}(k)$ has feasible interpolation.

Discussion

Does $\operatorname{Res}(2)$ have feasible interpolation?
[Esteban-Galesi-Messner] tree-like Res(2) has monotone feasible interpolation.
$\operatorname{Res}(2)$ does not have monotone feasible interpolation.
[Garlik] Res(k) doesn't have the feasible disjunction property.

Discussion

What about proof systems that have feasible interpolation? Could they prove the reflexion principle of Resolution?
[Bonet-Pitassi-Raz, Pudlak, Krajkcek] Cutting Planes has monotone feasible interpolation. But, CP requires exponential size refutations of the reflexion principle for Resolution [Pudlak]
[Fleming-Göös-Grosser-Robere] Sheraly-Adams has monotone feasible interpolation.
[Pudlak-Sgall, Hakoniemi] Polynomial Calculus has monotone feasible interpolation.
[Hakoniemi] Sum-of-Squares has feasible interpolation.
[M. Oliveira-Pudlak] Lovász-Schrijver monotone feasible interpolation.

