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The Success of Combinatorial Solving and Optimization
Rich field of math and computer science
Impact in other areas of science and also industry:

airline scheduling
logistics
hardware verification
donor-recipients matching for kidney transplants [MO12, BvdKM+21]

Typically very challenging problems (NP-complete or worse)
Lots of effort last couple of decades spent on developing sophisticated so-called
combinatorial solvers that often work surprisingly well in practice

Boolean satisfiability (SAT) solving [BHvMW21]
Constraint programming [RvBW06]
Mixed integer linear programming [AW13, BR07]
Satisfiability modulo theories (SMT) solving [BHvMW21]
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The Dirty Little Secret. . .

Solvers very fast, but sometimes wrong (even best commercial ones)
[BLB10, CKSW13, AGJ+18, GSD19, GS19, BMN22]

Even worse: No way of knowing for sure when errors happen

How to check the absence of solutions?

Or that a solution is optimal? (Even off-by-one mistakes can snowball into large
errors if solver used as subroutine)

And solvers even get feasibility of solutions wrong (though this should be
straightforward!)
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What Can Be Done About Solver Bugs?

Software testing
Hard to get good test coverage for sophisticated solvers
Inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to this level of complexity

Proof logging
Make solver certifying [ABM+11, MMNS11] by outputting

1 not only answer but also
2 simple, machine-verifiable proof that answer is correct
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Proof Logging with Certifying Solvers: Workflow

Checker

Input Answer
Solver

1 Run solver on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct
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Proof Logging with Certifying Solvers: Requirements

Proofs produced by certifying solver [ABM+11, MMNS11] should
be powerful enough to allow proof logging with minimal overhead
be simple enough to make proof checking very easy
not require knowledge of inner workings of solver

Con: Clear conflict expressivity vs. simplicity!

Pro: Does not prove solver correct, but proves solution correct
Proof checker can be simple enough to be formally verified
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The Sales Pitch for Proof Logging
1 Certifies correctness of solver output
2 Detects errors even if due to compiler bugs, hardware failures, or cosmic rays
3 Helps with debugging during development [EG21, GMM+20, KM21, BBN+23]
4 Facilitates performance analysis
5 Helps identify potential for further improvements
6 Enables auditability by third parties
7 Serves as stepping stone towards explainability

Success story for SAT solving: DRAT [HHW13a, HHW13b, WHH14],
GRIT [CMS17], LRAT [CHH+17], . . .

But has remained out of reach for stronger paradigms
And, in fact, even for some advanced SAT solving techniques
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This Talk

If we use

0–1 linear inequalities instead of clauses

cutting planes instead of resolution

well-chosen strengthening rules

we get general-purpose proof system for combinatorial optimization!

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 8/43



Outline of This Talk

1 Basic SAT Solving
CDCL by Example
Resolution
Extension Rules

2 Advanced SAT Techniques
Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

3 Beyond SAT
Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System
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Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

The SAT Problem
Variable x: takes value true (=1) or false (=0)
Literal ℓ: variable x or its negation x

Clause C = ℓ1 ∨ · · · ∨ ℓk: disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)
Conjunctive normal form (CNF) formula F = C1 ∧ · · · ∧ Cm: conjunction of
clauses

The SAT Problem
Given a CNF formula F , is it satisfiable?

For instance, what about:

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧
(x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)
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Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

A Quick Recap of Modern SAT Solving

DPLL method [DP60, DLL62]
Assign values to variables (in some smart way)
Backtrack when conflict with falsified clause

Conflict-driven clause learning (CDCL) [MS96, BS97, MMZ+01]
Analyse conflicts in more detail — add new clauses to formula
More efficient backtracking
Also let conflicts guide other heuristics
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Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Variable Assignments
Two kinds of assignments — illustrate on example formula:
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

Decision
Free choice to assign value to variable
Notation p

d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0
Notation u

p∨u= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide
Add to assignment trail
Until satisfying assignment or conflict
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Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Conflict Analysis
Time to analyse this conflict and learn from it!
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)
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decision
level 1

decision
level 2

decision
level 3

Could backtrack by removing last decision level &
flipping last decision
But want to learn from conflict and cut away as much
of search space as possible
Case analysis over z for last two clauses:

x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge clauses & remove z — must satisfy x ∨ y

Repeat until UIP clause with only 1 variable after last
decision — learn and backjump
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Complete Example of CDCL Execution
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Assertion level 1 (max for non-UIP literal in learned
clause) — trim trail to that level
Now UIP literal guaranteed to flip (assert) — but this is
a propagation, not a decision
Then continue as before. . .
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CDCL Reasoning and the Resolution Proof System

For CDCL proof logging, need proof system for unsatisfiable formulas
Focus on underlying method of reasoning

Resolution proof system [Bla37, Rob65]
Start with clauses of formula
Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨ D

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗

(*) Ignores pre- and inprocessing, but we will get there. . .
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Resolution Proofs from CDCL Executions
Obtain resolution proof. . . from our example CDCL execution by stringing together
conflict analyses:
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Extension Variables and Redundant Clauses

Say we want new, fresh variable a encoding

a ↔ (x ∧ y)

Introduce clauses
a ∨ x ∨ y a ∨ x a ∨ y

Should be in order if variable a doesn’t appear anywhere else

CDCL pre- and inprocessing techniques can do steps like this

But resolution proof system cannot certify such derivations (by definition)
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Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Redundance-Based Strengthening
C is redundant with respect to F if F and F ∧ C are equisatisfiable
Adding redundant clauses should be OK
Previous rules such as RAT [JHB12] and propagation redundancy [HKB17]

Redundance-based strengthening [BT19, GN21]
C is redundant with respect to F if and only if there is a substitution ω (mapping
variables to truth values or literals), called a witness, for which

F ∧ ¬C |= (F ∧ C)↾ω

Proof sketch for interesting direction: If α satisfies F but falsifies C, then α ◦ ω
satisfies F ∧ C

Implication should be efficiently verifiable (ω specified; derivations of clauses
in (F ∧ C)↾ω explicitly given or truly obvious)
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Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Deriving a ↔ (x ∧ y) Using the Redundance Rule
Want to derive

a ∨ x ∨ y a ∨ x a ∨ y

using redundance-based strengthening condition F ∧ ¬C |= (F ∧ C)↾ω

1 F ∧ ¬(a ∨ x ∨ y) |= (F ∧ (a ∨ x ∨ y))↾ω

Choose ω = {a 7→ 1} — F untouched; new clause satisfied

2 F ∧ (a ∨ x ∨ y) ∧ ¬(a ∨ x) |= (F ∧ (a ∨ x ∨ y) ∧ (a ∨ x))↾ω

Choose ω = {a 7→ 0} — F untouched; new clause satisfied
¬(a ∨ x) forces x 7→ 0 which satisfies a ∨ x ∨ y

3 F ∧ (a ∨ x ∨ y) ∧ (a ∨ x) ∧ ¬(a∨y) |= (F ∧ (a∨x∨y) ∧ (a∨x) ∧ (a∨y))↾ω

Choose ω = {a 7→ 0} — F untouched; new clause satisfied
ω = {a 7→ 0} also satisfies a ∨ x
¬(a ∨ y) forces y 7→ 0 which satisfies a ∨ x ∨ y
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Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Proof Logging for State-of-the-Art SAT Solving

Resolution + redundance rule is as strong as extended Frege proof system

Should be enough to provide proof logging for state-of-the-art CDCL SAT solvers!?

Except
really care about efficiency
for some advanced techniques don’t know efficient proof logging methods
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Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Reasoning with Cardinality Constraints
Given clauses

x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x4

x1 ∨ x3 ∨ x4

x2 ∨ x3 ∨ x4

can deduce that
x1 + x2 + x3 + x4 ≥ 2

How provide proof logging for reasoning with such cardinality constraints?

Can solve pigeonhole principle efficiently — exponentially hard for CDCL [Hak85, BKS04]

Implemented in Lingeling [Lin], but not with DRAT proof logging
Resolution + extension rule can do it in theory, but efficiently in practice?!

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 21/43
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Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Pseudo-Boolean Constraints

Pseudo-Boolean constraints are 0-1 integer linear inequalities∑
i

aiℓi ≥ A

ai, A ∈ Z

literals ℓi: xi or xi (where xi + xi = 1)

as before, variables xi take values 0 = false or 1 = true
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Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Some Types of Pseudo-Boolean Constraints

1 Clauses
x ∨ y ∨ z ⇔ x + y + z ≥ 1

2 Cardinality constraints
x1 + x2 + x3 + x4 ≥ 2

3 General pseudo-Boolean constraints

x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
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Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Literal axioms
ℓi ≥ 0

Linear combination
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(cAai + cBbi)ℓi ≥ cAA + cBB

[cA, cB ∈ N]

Division
∑

i caiℓi ≥ A∑
i aiℓi ≥ ⌈A/c⌉

[c ∈ N+]

Toy example:
w + 2x + 4y + 2z ≥ 5 w + 2x + y ≥ 2

Lin comb
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Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Literal axioms
ℓi ≥ 0

Linear combination
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(cAai + cBbi)ℓi ≥ cAA + cBB

[cA, cB ∈ N]

Division
∑

i caiℓi ≥ A∑
i aiℓi ≥ ⌈A/c⌉

[c ∈ N+]

Toy example:
w + 2x + 4y + 2z ≥ 5 w + 2x + y ≥ 2

Lin comb
(w + 2x + 4y + 2z) + 2 · (w + 2x + y) ≥ 5 + 2 · 2
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Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Literal axioms
ℓi ≥ 0

Linear combination
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(cAai + cBbi)ℓi ≥ cAA + cBB

[cA, cB ∈ N]

Division
∑

i caiℓi ≥ A∑
i aiℓi ≥ ⌈A/c⌉

[c ∈ N+]

Toy example:
w + 2x + 4y + 2z ≥ 5 w + 2x + y ≥ 2

Lin comb
3w + 6x + 6y + 2z ≥ 9
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∑
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Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Literal axioms
ℓi ≥ 0

Linear combination
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(cAai + cBbi)ℓi ≥ cAA + cBB

[cA, cB ∈ N]

Division
∑

i caiℓi ≥ A∑
i aiℓi ≥ ⌈A/c⌉

[c ∈ N+]

Toy example:
w + 2x + 4y + 2z ≥ 5 w + 2x + y ≥ 2

Lin comb
3w + 6x + 6y + 2z ≥ 9 z ≥ 0

Lin comb
3w + 6x + 6y + 2z + 2 · z ≥ 9 + 2 · 0
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Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Literal axioms
ℓi ≥ 0

Linear combination
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(cAai + cBbi)ℓi ≥ cAA + cBB

[cA, cB ∈ N]

Division
∑

i caiℓi ≥ A∑
i aiℓi ≥ ⌈A/c⌉

[c ∈ N+]

Toy example:
w + 2x + 4y + 2z ≥ 5 w + 2x + y ≥ 2

Lin comb
3w + 6x + 6y + 2z ≥ 9 z ≥ 0

Lin comb
3w + 6x + 6y + 2 ≥ 9
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Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Literal axioms
ℓi ≥ 0

Linear combination
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(cAai + cBbi)ℓi ≥ cAA + cBB

[cA, cB ∈ N]

Division
∑

i caiℓi ≥ A∑
i aiℓi ≥ ⌈A/c⌉

[c ∈ N+]

Toy example:
w + 2x + 4y + 2z ≥ 5 w + 2x + y ≥ 2

Lin comb
3w + 6x + 6y + 2z ≥ 9 z ≥ 0

Lin comb
3w + 6x + 6y ≥ 7
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Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Literal axioms
ℓi ≥ 0

Linear combination
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(cAai + cBbi)ℓi ≥ cAA + cBB

[cA, cB ∈ N]

Division
∑

i caiℓi ≥ A∑
i aiℓi ≥ ⌈A/c⌉

[c ∈ N+]

Toy example:
w + 2x + 4y + 2z ≥ 5 w + 2x + y ≥ 2

Lin comb
3w + 6x + 6y + 2z ≥ 9 z ≥ 0

Lin comb
3w + 6x + 6y ≥ 7

Div
w + 2x + 2y ≥ 21

3
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Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Recovering cardinality constraints from CNF
Clauses

x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x4

x1 ∨ x3 ∨ x4

x2 ∨ x3 ∨ x4

Pseudo-Boolean constraints

x1 + x2 + x3 ≥ 1
x1 + x2 + x4 ≥ 1
x1 + x3 + x4 ≥ 1
x2 + x3 + x4 ≥ 1

Add all up

3x1 + 3x2 + 3x3 + 3x4 ≥ 4

and divide by 3 to get

x1 + x2 + x3 + x4 ≥ 2

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 25/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Recovering cardinality constraints from CNF
Clauses

x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x4

x1 ∨ x3 ∨ x4

x2 ∨ x3 ∨ x4

Pseudo-Boolean constraints

x1 + x2 + x3 ≥ 1
x1 + x2 + x4 ≥ 1
x1 + x3 + x4 ≥ 1
x2 + x3 + x4 ≥ 1

Add all up

3x1 + 3x2 + 3x3 + 3x4 ≥ 4

and divide by 3 to get

x1 + x2 + x3 + x4 ≥ 2

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 25/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Extended Cutting Planes
Combine cutting planes method with redundance rule

Redundance-based strengthening [BT19, GN21]
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)↾ω

Cutting planes can do efficiently anything that resolution can do
Reverse unit propagation works also for 0-1 linear inequalities
RAT = redundance rule with witness flipping RAT literal

⇒ Strict extension of DRAT
Lifts reasoning from clauses to 0-1 inequalities
Implemented in proof checker VeriPB [Ver, GN21, BGMN22]
Yields surprisingly expressive proof logging system
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Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

CDCL Solvers on Pseudo-Boolean Inputs
Can re-encode to CNF and run CDCL:

MiniSat+ [ES06]
Open-WBO [MML14]
NaPS [SN15]

E.g., encode pseudo-Boolean constraint

x1 + x2 + x3 + x4 ≥ 2

to clauses with extension variables

si,k ⇔
∑i

j=1 xj ≥ k

s1,1 ∨ x1

s2,1 ∨ s1,1 ∨ x2

s2,2 ∨ s1,1

s2,2 ∨ x2

s3,1 ∨ s2,1 ∨ x3

s3,2 ∨ s2,1

s3,2 ∨ s2,2 ∨ x3

s4,1 ∨ s3,1 ∨ x4

s4,2 ∨ s3,1

s4,2 ∨ s3,2 ∨ x4

s4,2
How know translation correct?
VeriPB can certify pseudo-Boolean-to-CNF rewriting [GMNO22]
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Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Parity (XOR) Reasoning
Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and
y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive
x ∨ w

x ∨ w

This is just parity reasoning:

x + y + z = 1 (mod 2)
y + z + w = 1 (mod 2)

imply
x + w = 0 (mod 2)

Exponentially hard for CDCL [Urq87]
But used in CryptoMiniSat [Cry]

DRAT proof logging like [PR16] too inefficient in
practice!

Add XORs to proof language?
Prefer to keep things super-simple and verifiable. . .
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Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Pseudo-Boolean Proof Logging for XOR Reasoning
Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and
y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive
x ∨ w

x ∨ w

Use redundance rule with fresh variables a,b to
derive

x + y + z + 2a = 3
y + z + w + 2b = 3

(“=” syntactic sugar for “≥” plus “≤”)
Add to get

x + w + 2y + 2z + 2a + 2b = 6

From this can extract

x + w ≥ 1
x + w ≥ 1

VeriPB can certify XOR reasoning [GN21]
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Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Proof Logging for Graph Solving and Constraint Programming

Pseudo-Boolean proof logging can also certify reasoning in
graph solvers without knowing what a graph is [GMN20, GMM+20]
constraint programming solvers without knowing what an integer is
[EGMN20, GMN22]

Caveat: Input pre-translated into 0–1 integer linear program
This translation should be formally verified (work in progress)
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Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Integer Variables

Represent integer a as sum of bits
∑

i 2i · ai

Use redundance-based strengthening to introduce new variables

a≥k ⇔
∑

i

2i · ai ≥ k

a=k ⇔ (a≥k ∧ a≥k+1)

(definitions representable as 0–1 inequalities)

Go back and forth between representations to support efficient proof logging
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Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Constraint Programming Reasoning

Efficient proof logging support for
All-different propagators
Table constraints
Arrays
Problem reformulations
Backtracking during search
Et cetera. . .

Not at all trivial to implement
Lots of work left to get to full-fledged constraint programming solver
But so far everything has been possible to do [EGMN20, GMN22]
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The Challenge of Symmetries
Symmetries crucial for some optimization problems [AW13, GSVW14]
Show up also in hard SAT benchmarks

Symmetry breaking
Add clauses filtering out symmetric solutions [DBBD16]
DRAT proof logging for limited cases only [HHW15]

Symmetric learning
Allow to add all symmetric versions of learned clause [DBB17]
Recently proposed proof logging in [TD20]

1 Special-purpose, specific approach
2 Requires adding explicit concept of symmetries
3 Not compatible with preprocessing techniques

Better to keep proof system super-simple and verifiable. . .
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Formal Proof System

Optimization Problems
Deal with symmetries by switching focus to optimization

Pseudo-Boolean optimization
Minimize f =

∑
i wiℓi (for wi ∈ N) subject to constraints in F

Proof of optimality:
F satisfied by α

F ∧
(∑

i wiℓi <
∑

i wi · α(ℓi)
)

is infeasible

Note that
∑

i wiℓi <
∑

i wi · α(ℓi) means
∑

i wiℓi ≤ −1 +
∑

i wi · α(ℓi)

Spoiler alert:
For decision problem, nothing stops us from inventing objective function
(like lexicographic order

∑n
i=1 2i · xi)
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Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Proof Logging for Optimization Problems
How does proof system change?
Rules must preserve (at least one) optimal solution

1 Standard cutting planes rules OK — derive constraints that must hold for any
satisfying assignment

2 Once solution α has been found, allow constraint
∑

i wiℓi <
∑

i wi · α(ℓi) to force
search for better solutions

3 Redundance rule must not destroy good solutions

Redundance-based strengthening, optimization version [BGMN22]
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)↾ω ∧ f↾ω ≤ f
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Redundance and Dominance Rules

Redundance-based strengthening, optimization version [BGMN22]
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)↾ω ∧ f↾ω ≤ f

Can be more aggressive if witness ω strictly improves solution

Dominance-based strengthening (simplified) [BGMN22]
Add constraint D to formula F if exists witness substitution ω such that

F ∧ ¬D |= F↾ω ∧ f↾ω < f
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Soundness of Dominance Rule
Dominance-based strengthening (simplified) [BGMN22]
Add constraint D to formula F if exists witness substitution ω such that

F ∧ ¬D |= F↾ω ∧ f↾ω < f

Why is this sound?
1 Suppose α satisfies F but falsifies D (i.e., satisfies ¬D)
2 Then α ◦ ω satisfies F and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies D, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies F and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies D, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies F and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying F ∧ D
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Strength of Dominance Rule

Dominance-based strengthening (stronger, still simplified) [BGMN22]
If D1, D2, . . . , Dm−1 have been derived from F (maybe using dominance), then can
derive also Dm if exists witness substitution ω such that

F ∧
∧m−1

i=1 Di ∧ ¬Dm |= F↾ω ∧ f↾ω < f

Why is this sound?
Same inductive proof as before, but nested
Or just pick α satisfying F and minimizing f and argue by contradiction

Further extensions:
Define dominance rule w.r.t. order independent of objective function
Switch between different orders in same proof
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Why is this sound?
Same inductive proof as before, but nested
Or just pick α satisfying F and minimizing f and argue by contradiction

Further extensions:
Define dominance rule w.r.t. order independent of objective function
Switch between different orders in same proof
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Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Proof Configurations and Implicational Derivations

Slightly simplified version of proof system — see [BGMN22] for full details

Proof is sequence of configurations

Every configuration contains
set of core constraints C (≈ input formula)
set of derived constraints D
objective function / order f

Standard cutting planes rules applied to C ∪ D add new implied constraints to D

(Ignore rules for improving solutions here — focus on decision problems)
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Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Strengthening Rules
Redundance-based strengthening
Add constraint C to D if exists witness substitution ω such that

C ∪ D ∪ {¬C} ⊢ (C ∪ D ∪ {C})↾ω ∪ {f↾ω ≤ f}

Dominance-based strengthening
Add constraint D to D if exists witness substitution ω such that

C ∪ D ∪ {¬C} ⊢ C↾ω ∪ {f↾ω < f}

Witness ω should be explicitly specified
For all right-hand side proof targets derivations should be specified or be truly
obvious (e.g., by weakening)
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Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Deletion, Core Transfer, and Order Change

Deletion
No restrictions on deletions from derived set D
Delete C from C only if C can be derived from C \ {C} by

implicational rules or
redundance-based strengthening

Except possible to add special cases for decision problems — see [BGMN22]

Core transfer
Constraints from D can be moved to C

Change of order
Possible to change order if D = ∅

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 41/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Deletion, Core Transfer, and Order Change

Deletion
No restrictions on deletions from derived set D
Delete C from C only if C can be derived from C \ {C} by

implicational rules or
redundance-based strengthening

Except possible to add special cases for decision problems — see [BGMN22]

Core transfer
Constraints from D can be moved to C

Change of order
Possible to change order if D = ∅

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 41/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Deletion, Core Transfer, and Order Change

Deletion
No restrictions on deletions from derived set D
Delete C from C only if C can be derived from C \ {C} by

implicational rules or
redundance-based strengthening

Except possible to add special cases for decision problems — see [BGMN22]

Core transfer
Constraints from D can be moved to C

Change of order
Possible to change order if D = ∅

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 41/43



Directions for Future Research
Proof logging for combinatorial optimization

Pseudo-Boolean optimization and MaxSAT solving (work in [VDB22, BBN+23])
General constraint programming
Mixed integer linear programming (work in [CGS17, EG21])
Satisfiability modulo theories (SMT) solving

Proof complexity
Efficient symmetric learning and recycling of subproofs (substitution rules)
General symmetry breaking in extended Frege?
Analysis of power of cutting planes with strengthening rules

And more. . .
Lots of challenging problems and interesting ideas
We’re hiring! Talk to me to join the proof logging revolution!
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Summing up

Combinatorial solving and optimization is a true success story

But ensuring correctness is a crucial, and not yet satisfactorily addressed, concern

Certifying solvers producing machine-verifiable proofs of correctness seems like a
promising approach

Requires powerful but simple proof systems — need for “constructive proof
complexity”

Cutting planes with strengthening rules seems to hit a sweet spot

Raises new and interesting questions also in “standard proof complexity”

Thank you for your attention!
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[MMNS11] Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer. Certifying algorithms.
Computer Science Review, 5(2):119–161, May 2011.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff:
Engineering an efficient SAT solver. In Proceedings of the 38th Design Automation Conference
(DAC ’01), pages 530–535, June 2001.

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 53/43

http://fmv.jku.at/lingeling/


References XI

[MO12] David F. Manlove and Gregg O’Malley. Paired and altruistic kidney donation in the UK:
Algorithms and experimentation. In Proceedings of the 11th International Symposium on
Experimental Algorithms (SEA ’12), volume 7276 of Lecture Notes in Computer Science, pages
271–282. Springer, June 2012.

[MS96] João P. Marques-Silva and Karem A. Sakallah. GRASP—a new search algorithm for satisfiability.
In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design
(ICCAD ’96), pages 220–227, November 1996.

[PR16] Tobias Philipp and Adrián Rebola-Pardo. DRAT proofs for XOR reasoning. In Proceedings of the
15th European Conference on Logics in Artificial Intelligence (JELIA ’16), volume 10021 of
Lecture Notes in Computer Science, pages 415–429. Springer, November 2016.

[Rob65] John Alan Robinson. A machine-oriented logic based on the resolution principle. Journal of the
ACM, 12(1):23–41, January 1965.

[RvBW06] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint
Programming, volume 2 of Foundations of Artificial Intelligence. Elsevier, 2006.

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 54/43



References XII

[SN15] Masahiko Sakai and Hidetomo Nabeshima. Construction of an ROBDD for a PB-constraint in
band form and related techniques for PB-solvers. IEICE Transactions on Information and
Systems, 98-D(6):1121–1127, June 2015.

[TD20] Rodrigue Konan Tchinda and Clémentin Tayou Djamégni. On certifying the UNSAT result of
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