
Certifying Combinatorial Solving Using
Cutting Planes with Strengthening Rules

Jakob Nordström

University of Copenhagen
and Lund University

Proof Complexity and Meta-Mathematics
Simons Institute for the Theory of Computing

March 23, 2023

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 1/43



The Success of Combinatorial Solving and Optimization
Rich field of math and computer science
Impact in other areas of science and also industry:

airline scheduling
logistics
hardware verification
donor-recipients matching for kidney transplants [MO12, BvdKM+21]

Typically very challenging problems (NP-complete or worse)
Lots of effort last couple of decades spent on developing sophisticated so-called
combinatorial solvers that often work surprisingly well in practice

Boolean satisfiability (SAT) solving [BHvMW21]
Constraint programming [RvBW06]
Mixed integer linear programming [AW13, BR07]
Satisfiability modulo theories (SMT) solving [BHvMW21]

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 2/43



The Dirty Little Secret. . .

Solvers very fast, but sometimes wrong (even best commercial ones)
[BLB10, CKSW13, AGJ+18, GSD19, GS19, BMN22]

Even worse: No way of knowing for sure when errors happen

How to check the absence of solutions?

Or that a solution is optimal? (Even off-by-one mistakes can snowball into large
errors if solver used as subroutine)

And solvers even get feasibility of solutions wrong (though this should be
straightforward!)

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 3/43



What Can Be Done About Solver Bugs?

Software testing
Hard to get good test coverage for sophisticated solvers
Inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to this level of complexity

Proof logging
Make solver certifying [ABM+11, MMNS11] by outputting

1 not only answer but also
2 simple, machine-verifiable proof that answer is correct

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 4/43



What Can Be Done About Solver Bugs?

Software testing
Hard to get good test coverage for sophisticated solvers
Inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to this level of complexity

Proof logging
Make solver certifying [ABM+11, MMNS11] by outputting

1 not only answer but also
2 simple, machine-verifiable proof that answer is correct

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 4/43



What Can Be Done About Solver Bugs?

Software testing
Hard to get good test coverage for sophisticated solvers
Inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to this level of complexity

Proof logging
Make solver certifying [ABM+11, MMNS11] by outputting

1 not only answer but also
2 simple, machine-verifiable proof that answer is correct

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 4/43



Proof Logging with Certifying Solvers: Workflow

Checker

Input Answer
Solver

1 Run solver on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 5/43



Proof Logging with Certifying Solvers: Workflow

Checker
Proof

Input Answer
Solver

1 Run solver on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 5/43



Proof Logging with Certifying Solvers: Workflow

Proof

Input Answer
Solver

Checker

1 Run solver on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 5/43



Proof Logging with Certifying Solvers: Workflow

Proof

Input Answer
Solver

Checker
✓/✗

1 Run solver on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 5/43



Proof Logging with Certifying Solvers: Requirements

Proofs produced by certifying solver [ABM+11, MMNS11] should
be powerful enough to allow proof logging with minimal overhead
be simple enough to make proof checking very easy
not require knowledge of inner workings of solver

Con: Clear conflict expressivity vs. simplicity!

Pro: Does not prove solver correct, but proves solution correct
Proof checker can be simple enough to be formally verified

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 6/43



Proof Logging with Certifying Solvers: Requirements

Proofs produced by certifying solver [ABM+11, MMNS11] should
be powerful enough to allow proof logging with minimal overhead
be simple enough to make proof checking very easy
not require knowledge of inner workings of solver

Con: Clear conflict expressivity vs. simplicity!

Pro: Does not prove solver correct, but proves solution correct
Proof checker can be simple enough to be formally verified

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 6/43



Proof Logging with Certifying Solvers: Requirements

Proofs produced by certifying solver [ABM+11, MMNS11] should
be powerful enough to allow proof logging with minimal overhead
be simple enough to make proof checking very easy
not require knowledge of inner workings of solver

Con: Clear conflict expressivity vs. simplicity!

Pro: Does not prove solver correct, but proves solution correct
Proof checker can be simple enough to be formally verified

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 6/43



Proof Logging with Certifying Solvers: Requirements

Proofs produced by certifying solver [ABM+11, MMNS11] should
be powerful enough to allow proof logging with minimal overhead
be simple enough to make proof checking very easy
not require knowledge of inner workings of solver

Con: Clear conflict expressivity vs. simplicity!

Pro: Does not prove solver correct, but proves solution correct
Proof checker can be simple enough to be formally verified

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 6/43



The Sales Pitch for Proof Logging
1 Certifies correctness of solver output
2 Detects errors even if due to compiler bugs, hardware failures, or cosmic rays
3 Helps with debugging during development [EG21, GMM+20, KM21, BBN+23]
4 Facilitates performance analysis
5 Helps identify potential for further improvements
6 Enables auditability by third parties
7 Serves as stepping stone towards explainability

Success story for SAT solving: DRAT [HHW13a, HHW13b, WHH14],
GRIT [CMS17], LRAT [CHH+17], . . .

But has remained out of reach for stronger paradigms
And, in fact, even for some advanced SAT solving techniques

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 7/43



The Sales Pitch for Proof Logging
1 Certifies correctness of solver output
2 Detects errors even if due to compiler bugs, hardware failures, or cosmic rays
3 Helps with debugging during development [EG21, GMM+20, KM21, BBN+23]
4 Facilitates performance analysis
5 Helps identify potential for further improvements
6 Enables auditability by third parties
7 Serves as stepping stone towards explainability

Success story for SAT solving: DRAT [HHW13a, HHW13b, WHH14],
GRIT [CMS17], LRAT [CHH+17], . . .

But has remained out of reach for stronger paradigms
And, in fact, even for some advanced SAT solving techniques

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 7/43



The Sales Pitch for Proof Logging
1 Certifies correctness of solver output
2 Detects errors even if due to compiler bugs, hardware failures, or cosmic rays
3 Helps with debugging during development [EG21, GMM+20, KM21, BBN+23]
4 Facilitates performance analysis
5 Helps identify potential for further improvements
6 Enables auditability by third parties
7 Serves as stepping stone towards explainability

Success story for SAT solving: DRAT [HHW13a, HHW13b, WHH14],
GRIT [CMS17], LRAT [CHH+17], . . .

But has remained out of reach for stronger paradigms
And, in fact, even for some advanced SAT solving techniques

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 7/43



The Sales Pitch for Proof Logging
1 Certifies correctness of solver output
2 Detects errors even if due to compiler bugs, hardware failures, or cosmic rays
3 Helps with debugging during development [EG21, GMM+20, KM21, BBN+23]
4 Facilitates performance analysis
5 Helps identify potential for further improvements
6 Enables auditability by third parties
7 Serves as stepping stone towards explainability

Success story for SAT solving: DRAT [HHW13a, HHW13b, WHH14],
GRIT [CMS17], LRAT [CHH+17], . . .

But has remained out of reach for stronger paradigms
And, in fact, even for some advanced SAT solving techniques

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 7/43



This Talk

If we use

0–1 linear inequalities instead of clauses

cutting planes instead of resolution

well-chosen strengthening rules

we get general-purpose proof system for combinatorial optimization!

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 8/43



Outline of This Talk

1 Basic SAT Solving
CDCL by Example
Resolution
Extension Rules

2 Advanced SAT Techniques
Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

3 Beyond SAT
Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 9/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

The SAT Problem
Variable x: takes value true (=1) or false (=0)
Literal ℓ: variable x or its negation x

Clause C = ℓ1 ∨ · · · ∨ ℓk: disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)
Conjunctive normal form (CNF) formula F = C1 ∧ · · · ∧ Cm: conjunction of
clauses

The SAT Problem
Given a CNF formula F , is it satisfiable?

For instance, what about:

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧
(x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 10/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

A Quick Recap of Modern SAT Solving

DPLL method [DP60, DLL62]
Assign values to variables (in some smart way)
Backtrack when conflict with falsified clause

Conflict-driven clause learning (CDCL) [MS96, BS97, MMZ+01]
Analyse conflicts in more detail — add new clauses to formula
More efficient backtracking
Also let conflicts guide other heuristics

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 11/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

A Quick Recap of Modern SAT Solving

DPLL method [DP60, DLL62]
Assign values to variables (in some smart way)
Backtrack when conflict with falsified clause

Conflict-driven clause learning (CDCL) [MS96, BS97, MMZ+01]
Analyse conflicts in more detail — add new clauses to formula
More efficient backtracking
Also let conflicts guide other heuristics

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 11/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

A Quick Recap of Modern SAT Solving

DPLL method [DP60, DLL62]
Assign values to variables (in some smart way)
Backtrack when conflict with falsified clause

Conflict-driven clause learning (CDCL) [MS96, BS97, MMZ+01]
Analyse conflicts in more detail — add new clauses to formula
More efficient backtracking
Also let conflicts guide other heuristics

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 11/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Variable Assignments
Two kinds of assignments — illustrate on example formula:
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

Decision
Free choice to assign value to variable
Notation p

d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0
Notation u

p∨u= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide
Add to assignment trail
Until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 12/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Variable Assignments
Two kinds of assignments — illustrate on example formula:
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

Decision
Free choice to assign value to variable
Notation p

d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0
Notation u

p∨u= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide
Add to assignment trail
Until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 12/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Variable Assignments
Two kinds of assignments — illustrate on example formula:
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0 Decision

Free choice to assign value to variable
Notation p

d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0
Notation u

p∨u= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide
Add to assignment trail
Until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 12/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Variable Assignments
Two kinds of assignments — illustrate on example formula:
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0 Decision

Free choice to assign value to variable
Notation p

d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0
Notation u

p∨u= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide
Add to assignment trail
Until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 12/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Variable Assignments
Two kinds of assignments — illustrate on example formula:
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

Decision
Free choice to assign value to variable
Notation p

d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0
Notation u

p∨u= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide
Add to assignment trail
Until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 12/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Variable Assignments
Two kinds of assignments — illustrate on example formula:
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

Decision
Free choice to assign value to variable
Notation p

d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0
Notation u

p∨u= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide
Add to assignment trail
Until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 12/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Variable Assignments
Two kinds of assignments — illustrate on example formula:
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

Decision
Free choice to assign value to variable
Notation p

d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0
Notation u

p∨u= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide
Add to assignment trail
Until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 12/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Variable Assignments
Two kinds of assignments — illustrate on example formula:
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

Decision
Free choice to assign value to variable
Notation p

d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0
Notation u

p∨u= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide
Add to assignment trail
Until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 12/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Variable Assignments
Two kinds of assignments — illustrate on example formula:
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

Decision
Free choice to assign value to variable
Notation p

d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0
Notation u

p∨u= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide
Add to assignment trail
Until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 12/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Variable Assignments
Two kinds of assignments — illustrate on example formula:
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

Decision
Free choice to assign value to variable
Notation p

d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0
Notation u

p∨u= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide
Add to assignment trail
Until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 12/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Variable Assignments
Two kinds of assignments — illustrate on example formula:
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

Decision
Free choice to assign value to variable
Notation p

d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0
Notation u

p∨u= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide
Add to assignment trail
Until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 12/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Variable Assignments
Two kinds of assignments — illustrate on example formula:
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

Decision
Free choice to assign value to variable
Notation p

d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0
Notation u

p∨u= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide
Add to assignment trail
Until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 12/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Variable Assignments
Two kinds of assignments — illustrate on example formula:
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

decision
level 1

decision
level 2

decision
level 3

Decision
Free choice to assign value to variable
Notation p

d= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0
Notation u

p∨u= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide
Add to assignment trail
Until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 12/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Conflict Analysis
Time to analyse this conflict and learn from it!
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

decision
level 1

decision
level 2

decision
level 3

Could backtrack by removing last decision level &
flipping last decision
But want to learn from conflict and cut away as much
of search space as possible
Case analysis over z for last two clauses:

x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge clauses & remove z — must satisfy x ∨ y

Repeat until UIP clause with only 1 variable after last
decision — learn and backjump

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 13/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Conflict Analysis
Time to analyse this conflict and learn from it!
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

decision
level 1

decision
level 2

decision
level 3

Could backtrack by removing last decision level &
flipping last decision
But want to learn from conflict and cut away as much
of search space as possible
Case analysis over z for last two clauses:

x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge clauses & remove z — must satisfy x ∨ y

Repeat until UIP clause with only 1 variable after last
decision — learn and backjump

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 13/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Conflict Analysis
Time to analyse this conflict and learn from it!
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

decision
level 1

decision
level 2

decision
level 3

Could backtrack by removing last decision level &
flipping last decision
But want to learn from conflict and cut away as much
of search space as possible
Case analysis over z for last two clauses:

x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge clauses & remove z — must satisfy x ∨ y

Repeat until UIP clause with only 1 variable after last
decision — learn and backjump

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 13/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Conflict Analysis
Time to analyse this conflict and learn from it!
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

Could backtrack by removing last decision level &
flipping last decision
But want to learn from conflict and cut away as much
of search space as possible
Case analysis over z for last two clauses:

x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge clauses & remove z — must satisfy x ∨ y

Repeat until UIP clause with only 1 variable after last
decision — learn and backjump

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 13/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Conflict Analysis
Time to analyse this conflict and learn from it!
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

Could backtrack by removing last decision level &
flipping last decision
But want to learn from conflict and cut away as much
of search space as possible
Case analysis over z for last two clauses:

x ∨ y ∨ z wants z = 1
y ∨ z wants z = 0
Merge clauses & remove z — must satisfy x ∨ y

Repeat until UIP clause with only 1 variable after last
decision — learn and backjump

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 13/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

Assertion level 1 (max for non-UIP literal in learned
clause) — trim trail to that level
Now UIP literal guaranteed to flip (assert) — but this is
a propagation, not a decision
Then continue as before. . .

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 14/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

Assertion level 1 (max for non-UIP literal in learned
clause) — trim trail to that level
Now UIP literal guaranteed to flip (assert) — but this is
a propagation, not a decision
Then continue as before. . .

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 14/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

Assertion level 1 (max for non-UIP literal in learned
clause) — trim trail to that level
Now UIP literal guaranteed to flip (assert) — but this is
a propagation, not a decision
Then continue as before. . .

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 14/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

Assertion level 1 (max for non-UIP literal in learned
clause) — trim trail to that level
Now UIP literal guaranteed to flip (assert) — but this is
a propagation, not a decision
Then continue as before. . .

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 14/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥Assertion level 1 (max for non-UIP literal in learned
clause) — trim trail to that level
Now UIP literal guaranteed to flip (assert) — but this is
a propagation, not a decision
Then continue as before. . .

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 14/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

Assertion level 1 (max for non-UIP literal in learned
clause) — trim trail to that level
Now UIP literal guaranteed to flip (assert) — but this is
a propagation, not a decision
Then continue as before. . .

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 14/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

Assertion level 1 (max for non-UIP literal in learned
clause) — trim trail to that level
Now UIP literal guaranteed to flip (assert) — but this is
a propagation, not a decision
Then continue as before. . .

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 14/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

Assertion level 1 (max for non-UIP literal in learned
clause) — trim trail to that level
Now UIP literal guaranteed to flip (assert) — but this is
a propagation, not a decision
Then continue as before. . .

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 14/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

p
p∨u
= 1

Assertion level 1 (max for non-UIP literal in learned
clause) — trim trail to that level
Now UIP literal guaranteed to flip (assert) — but this is
a propagation, not a decision
Then continue as before. . .

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 14/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

p
p∨u
= 1

p∨u

⊥

Assertion level 1 (max for non-UIP literal in learned
clause) — trim trail to that level
Now UIP literal guaranteed to flip (assert) — but this is
a propagation, not a decision
Then continue as before. . .

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 14/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

p
p∨u
= 1

p∨u

⊥

u

Assertion level 1 (max for non-UIP literal in learned
clause) — trim trail to that level
Now UIP literal guaranteed to flip (assert) — but this is
a propagation, not a decision
Then continue as before. . .

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 14/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

p
p∨u
= 1

p∨u

⊥

u

x

Assertion level 1 (max for non-UIP literal in learned
clause) — trim trail to that level
Now UIP literal guaranteed to flip (assert) — but this is
a propagation, not a decision
Then continue as before. . .

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 14/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Complete Example of CDCL Execution
Backjump: undo max #decisions while learned clause propagates
(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

p
p∨u
= 1

p∨u

⊥

u

x

⊥

Assertion level 1 (max for non-UIP literal in learned
clause) — trim trail to that level
Now UIP literal guaranteed to flip (assert) — but this is
a propagation, not a decision
Then continue as before. . .

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 14/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

CDCL Reasoning and the Resolution Proof System

For CDCL proof logging, need proof system for unsatisfiable formulas
Focus on underlying method of reasoning

Resolution proof system [Bla37, Rob65]
Start with clauses of formula
Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨ D

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗

(*) Ignores pre- and inprocessing, but we will get there. . .

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 15/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

CDCL Reasoning and the Resolution Proof System

For CDCL proof logging, need proof system for unsatisfiable formulas
Focus on underlying method of reasoning

Resolution proof system [Bla37, Rob65]
Start with clauses of formula
Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨ D

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗

(*) Ignores pre- and inprocessing, but we will get there. . .

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 15/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

CDCL Reasoning and the Resolution Proof System

For CDCL proof logging, need proof system for unsatisfiable formulas
Focus on underlying method of reasoning

Resolution proof system [Bla37, Rob65]
Start with clauses of formula
Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨ D

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗

(*) Ignores pre- and inprocessing, but we will get there. . .

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 15/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

CDCL Reasoning and the Resolution Proof System

For CDCL proof logging, need proof system for unsatisfiable formulas
Focus on underlying method of reasoning

Resolution proof system [Bla37, Rob65]
Start with clauses of formula
Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨ D

Done when contradiction ⊥ in form of empty clause derived

When run on unsatisfiable formula, CDCL generates resolution proof∗

(*) Ignores pre- and inprocessing, but we will get there. . .

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 15/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Resolution Proofs from CDCL Executions
Obtain resolution proof. . . from our example CDCL execution by stringing together
conflict analyses:

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 16/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Resolution Proofs from CDCL Executions
Obtain resolution proof from our example CDCL execution. . . by stringing together
conflict analyses:

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1
y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

p
p∨u
= 1

p∨u

⊥

u

x

⊥

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 16/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Resolution Proofs from CDCL Executions
Obtain resolution proof from our example CDCL execution by stringing together
conflict analyses:

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

u ∨ x ∨ y

x ∨ y ∨ z

y ∨ z

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

x ∨ z

x ∨ z

x

x
x
=0

u
u∨x
= 1

p ∨ u

p ∨ u

u

x

⊥

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 16/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Resolution Proofs from CDCL Executions
Obtain resolution proof from our example CDCL execution by stringing together
conflict analyses:

u ∨ x ∨ y

x ∨ y ∨ z

y ∨ z

x ∨ y

u ∨ x

x ∨ z

x ∨ z

x

p ∨ u

p ∨ u

u

x

⊥

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 16/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Extension Variables and Redundant Clauses

Say we want new, fresh variable a encoding

a ↔ (x ∧ y)

Introduce clauses
a ∨ x ∨ y a ∨ x a ∨ y

Should be in order if variable a doesn’t appear anywhere else

CDCL pre- and inprocessing techniques can do steps like this

But resolution proof system cannot certify such derivations (by definition)

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 17/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Extension Variables and Redundant Clauses

Say we want new, fresh variable a encoding

a ↔ (x ∧ y)

Introduce clauses
a ∨ x ∨ y a ∨ x a ∨ y

Should be in order if variable a doesn’t appear anywhere else

CDCL pre- and inprocessing techniques can do steps like this

But resolution proof system cannot certify such derivations (by definition)

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 17/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Extension Variables and Redundant Clauses

Say we want new, fresh variable a encoding

a ↔ (x ∧ y)

Introduce clauses
a ∨ x ∨ y a ∨ x a ∨ y

Should be in order if variable a doesn’t appear anywhere else

CDCL pre- and inprocessing techniques can do steps like this

But resolution proof system cannot certify such derivations (by definition)

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 17/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Extension Variables and Redundant Clauses

Say we want new, fresh variable a encoding

a ↔ (x ∧ y)

Introduce clauses
a ∨ x ∨ y a ∨ x a ∨ y

Should be in order if variable a doesn’t appear anywhere else

CDCL pre- and inprocessing techniques can do steps like this

But resolution proof system cannot certify such derivations (by definition)

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 17/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Extension Variables and Redundant Clauses

Say we want new, fresh variable a encoding

a ↔ (x ∧ y)

Introduce clauses
a ∨ x ∨ y a ∨ x a ∨ y

Should be in order if variable a doesn’t appear anywhere else

CDCL pre- and inprocessing techniques can do steps like this

But resolution proof system cannot certify such derivations (by definition)

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 17/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Redundance-Based Strengthening
C is redundant with respect to F if F and F ∧ C are equisatisfiable
Adding redundant clauses should be OK
Previous rules such as RAT [JHB12] and propagation redundancy [HKB17]

Redundance-based strengthening [BT19, GN21]
C is redundant with respect to F if and only if there is a substitution ω (mapping
variables to truth values or literals), called a witness, for which

F ∧ ¬C |= (F ∧ C)↾ω

Proof sketch for interesting direction: If α satisfies F but falsifies C, then α ◦ ω
satisfies F ∧ C

Implication should be efficiently verifiable (ω specified; derivations of clauses
in (F ∧ C)↾ω explicitly given or truly obvious)

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 18/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Redundance-Based Strengthening
C is redundant with respect to F if F and F ∧ C are equisatisfiable
Adding redundant clauses should be OK
Previous rules such as RAT [JHB12] and propagation redundancy [HKB17]

Redundance-based strengthening [BT19, GN21]
C is redundant with respect to F if and only if there is a substitution ω (mapping
variables to truth values or literals), called a witness, for which

F ∧ ¬C |= (F ∧ C)↾ω

Proof sketch for interesting direction: If α satisfies F but falsifies C, then α ◦ ω
satisfies F ∧ C

Implication should be efficiently verifiable (ω specified; derivations of clauses
in (F ∧ C)↾ω explicitly given or truly obvious)

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 18/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Redundance-Based Strengthening
C is redundant with respect to F if F and F ∧ C are equisatisfiable
Adding redundant clauses should be OK
Previous rules such as RAT [JHB12] and propagation redundancy [HKB17]

Redundance-based strengthening [BT19, GN21]
C is redundant with respect to F if and only if there is a substitution ω (mapping
variables to truth values or literals), called a witness, for which

F ∧ ¬C |= (F ∧ C)↾ω

Proof sketch for interesting direction: If α satisfies F but falsifies C, then α ◦ ω
satisfies F ∧ C

Implication should be efficiently verifiable (ω specified; derivations of clauses
in (F ∧ C)↾ω explicitly given or truly obvious)

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 18/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Deriving a ↔ (x ∧ y) Using the Redundance Rule
Want to derive

a ∨ x ∨ y a ∨ x a ∨ y

using redundance-based strengthening condition F ∧ ¬C |= (F ∧ C)↾ω

1 F ∧ ¬(a ∨ x ∨ y) |= (F ∧ (a ∨ x ∨ y))↾ω

Choose ω = {a 7→ 1} — F untouched; new clause satisfied

2 F ∧ (a ∨ x ∨ y) ∧ ¬(a ∨ x) |= (F ∧ (a ∨ x ∨ y) ∧ (a ∨ x))↾ω

Choose ω = {a 7→ 0} — F untouched; new clause satisfied
¬(a ∨ x) forces x 7→ 0 which satisfies a ∨ x ∨ y

3 F ∧ (a ∨ x ∨ y) ∧ (a ∨ x) ∧ ¬(a∨y) |= (F ∧ (a∨x∨y) ∧ (a∨x) ∧ (a∨y))↾ω

Choose ω = {a 7→ 0} — F untouched; new clause satisfied
ω = {a 7→ 0} also satisfies a ∨ x
¬(a ∨ y) forces y 7→ 0 which satisfies a ∨ x ∨ y

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 19/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Deriving a ↔ (x ∧ y) Using the Redundance Rule
Want to derive

a ∨ x ∨ y a ∨ x a ∨ y

using redundance-based strengthening condition F ∧ ¬C |= (F ∧ C)↾ω

1 F ∧ ¬(a ∨ x ∨ y) |= (F ∧ (a ∨ x ∨ y))↾ω

Choose ω = {a 7→ 1} — F untouched; new clause satisfied

2 F ∧ (a ∨ x ∨ y) ∧ ¬(a ∨ x) |= (F ∧ (a ∨ x ∨ y) ∧ (a ∨ x))↾ω

Choose ω = {a 7→ 0} — F untouched; new clause satisfied
¬(a ∨ x) forces x 7→ 0 which satisfies a ∨ x ∨ y

3 F ∧ (a ∨ x ∨ y) ∧ (a ∨ x) ∧ ¬(a∨y) |= (F ∧ (a∨x∨y) ∧ (a∨x) ∧ (a∨y))↾ω

Choose ω = {a 7→ 0} — F untouched; new clause satisfied
ω = {a 7→ 0} also satisfies a ∨ x
¬(a ∨ y) forces y 7→ 0 which satisfies a ∨ x ∨ y

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 19/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Deriving a ↔ (x ∧ y) Using the Redundance Rule
Want to derive

a ∨ x ∨ y a ∨ x a ∨ y

using redundance-based strengthening condition F ∧ ¬C |= (F ∧ C)↾ω

1 F ∧ ¬(a ∨ x ∨ y) |= (F ∧ (a ∨ x ∨ y))↾ω

Choose ω = {a 7→ 1} — F untouched; new clause satisfied

2 F ∧ (a ∨ x ∨ y) ∧ ¬(a ∨ x) |= (F ∧ (a ∨ x ∨ y) ∧ (a ∨ x))↾ω

Choose ω = {a 7→ 0} — F untouched; new clause satisfied
¬(a ∨ x) forces x 7→ 0 which satisfies a ∨ x ∨ y

3 F ∧ (a ∨ x ∨ y) ∧ (a ∨ x) ∧ ¬(a∨y) |= (F ∧ (a∨x∨y) ∧ (a∨x) ∧ (a∨y))↾ω

Choose ω = {a 7→ 0} — F untouched; new clause satisfied
ω = {a 7→ 0} also satisfies a ∨ x
¬(a ∨ y) forces y 7→ 0 which satisfies a ∨ x ∨ y

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 19/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Deriving a ↔ (x ∧ y) Using the Redundance Rule
Want to derive

a ∨ x ∨ y a ∨ x a ∨ y

using redundance-based strengthening condition F ∧ ¬C |= (F ∧ C)↾ω

1 F ∧ ¬(a ∨ x ∨ y) |= (F ∧ (a ∨ x ∨ y))↾ω

Choose ω = {a 7→ 1} — F untouched; new clause satisfied

2 F ∧ (a ∨ x ∨ y) ∧ ¬(a ∨ x) |= (F ∧ (a ∨ x ∨ y) ∧ (a ∨ x))↾ω

Choose ω = {a 7→ 0} — F untouched; new clause satisfied
¬(a ∨ x) forces x 7→ 0 which satisfies a ∨ x ∨ y

3 F ∧ (a ∨ x ∨ y) ∧ (a ∨ x) ∧ ¬(a∨y) |= (F ∧ (a∨x∨y) ∧ (a∨x) ∧ (a∨y))↾ω

Choose ω = {a 7→ 0} — F untouched; new clause satisfied
ω = {a 7→ 0} also satisfies a ∨ x
¬(a ∨ y) forces y 7→ 0 which satisfies a ∨ x ∨ y

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 19/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Deriving a ↔ (x ∧ y) Using the Redundance Rule
Want to derive

a ∨ x ∨ y a ∨ x a ∨ y

using redundance-based strengthening condition F ∧ ¬C |= (F ∧ C)↾ω

1 F ∧ ¬(a ∨ x ∨ y) |= (F ∧ (a ∨ x ∨ y))↾ω

Choose ω = {a 7→ 1} — F untouched; new clause satisfied

2 F ∧ (a ∨ x ∨ y) ∧ ¬(a ∨ x) |= (F ∧ (a ∨ x ∨ y) ∧ (a ∨ x))↾ω

Choose ω = {a 7→ 0} — F untouched; new clause satisfied
¬(a ∨ x) forces x 7→ 0 which satisfies a ∨ x ∨ y

3 F ∧ (a ∨ x ∨ y) ∧ (a ∨ x) ∧ ¬(a∨y) |= (F ∧ (a∨x∨y) ∧ (a∨x) ∧ (a∨y))↾ω

Choose ω = {a 7→ 0} — F untouched; new clause satisfied
ω = {a 7→ 0} also satisfies a ∨ x
¬(a ∨ y) forces y 7→ 0 which satisfies a ∨ x ∨ y

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 19/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Deriving a ↔ (x ∧ y) Using the Redundance Rule
Want to derive

a ∨ x ∨ y a ∨ x a ∨ y

using redundance-based strengthening condition F ∧ ¬C |= (F ∧ C)↾ω

1 F ∧ ¬(a ∨ x ∨ y) |= (F ∧ (a ∨ x ∨ y))↾ω

Choose ω = {a 7→ 1} — F untouched; new clause satisfied

2 F ∧ (a ∨ x ∨ y) ∧ ¬(a ∨ x) |= (F ∧ (a ∨ x ∨ y) ∧ (a ∨ x))↾ω

Choose ω = {a 7→ 0} — F untouched; new clause satisfied
¬(a ∨ x) forces x 7→ 0 which satisfies a ∨ x ∨ y

3 F ∧ (a ∨ x ∨ y) ∧ (a ∨ x) ∧ ¬(a∨y) |= (F ∧ (a∨x∨y) ∧ (a∨x) ∧ (a∨y))↾ω

Choose ω = {a 7→ 0} — F untouched; new clause satisfied
ω = {a 7→ 0} also satisfies a ∨ x
¬(a ∨ y) forces y 7→ 0 which satisfies a ∨ x ∨ y

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 19/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

CDCL by Example
Resolution
Extension Rules

Deriving a ↔ (x ∧ y) Using the Redundance Rule
Want to derive

a ∨ x ∨ y a ∨ x a ∨ y

using redundance-based strengthening condition F ∧ ¬C |= (F ∧ C)↾ω

1 F ∧ ¬(a ∨ x ∨ y) |= (F ∧ (a ∨ x ∨ y))↾ω

Choose ω = {a 7→ 1} — F untouched; new clause satisfied

2 F ∧ (a ∨ x ∨ y) ∧ ¬(a ∨ x) |= (F ∧ (a ∨ x ∨ y) ∧ (a ∨ x))↾ω

Choose ω = {a 7→ 0} — F untouched; new clause satisfied
¬(a ∨ x) forces x 7→ 0 which satisfies a ∨ x ∨ y

3 F ∧ (a ∨ x ∨ y) ∧ (a ∨ x) ∧ ¬(a∨y) |= (F ∧ (a∨x∨y) ∧ (a∨x) ∧ (a∨y))↾ω

Choose ω = {a 7→ 0} — F untouched; new clause satisfied
ω = {a 7→ 0} also satisfies a ∨ x
¬(a ∨ y) forces y 7→ 0 which satisfies a ∨ x ∨ y

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 19/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Proof Logging for State-of-the-Art SAT Solving

Resolution + redundance rule is as strong as extended Frege proof system

Should be enough to provide proof logging for state-of-the-art CDCL SAT solvers!?

Except
really care about efficiency
for some advanced techniques don’t know efficient proof logging methods

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 20/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Proof Logging for State-of-the-Art SAT Solving

Resolution + redundance rule is as strong as extended Frege proof system

Should be enough to provide proof logging for state-of-the-art CDCL SAT solvers!?

Except
really care about efficiency
for some advanced techniques don’t know efficient proof logging methods

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 20/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Proof Logging for State-of-the-Art SAT Solving

Resolution + redundance rule is as strong as extended Frege proof system

Should be enough to provide proof logging for state-of-the-art CDCL SAT solvers!?

Except
really care about efficiency
for some advanced techniques don’t know efficient proof logging methods

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 20/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Reasoning with Cardinality Constraints
Given clauses

x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x4

x1 ∨ x3 ∨ x4

x2 ∨ x3 ∨ x4

can deduce that
x1 + x2 + x3 + x4 ≥ 2

How provide proof logging for reasoning with such cardinality constraints?

Can solve pigeonhole principle efficiently — exponentially hard for CDCL [Hak85, BKS04]

Implemented in Lingeling [Lin], but not with DRAT proof logging
Resolution + extension rule can do it in theory, but efficiently in practice?!

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 21/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Reasoning with Cardinality Constraints
Given clauses

x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x4

x1 ∨ x3 ∨ x4

x2 ∨ x3 ∨ x4

can deduce that
x1 + x2 + x3 + x4 ≥ 2

How provide proof logging for reasoning with such cardinality constraints?

Can solve pigeonhole principle efficiently — exponentially hard for CDCL [Hak85, BKS04]

Implemented in Lingeling [Lin], but not with DRAT proof logging
Resolution + extension rule can do it in theory, but efficiently in practice?!

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 21/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Pseudo-Boolean Constraints

Pseudo-Boolean constraints are 0-1 integer linear inequalities∑
i

aiℓi ≥ A

ai, A ∈ Z

literals ℓi: xi or xi (where xi + xi = 1)

as before, variables xi take values 0 = false or 1 = true

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 22/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Some Types of Pseudo-Boolean Constraints

1 Clauses
x ∨ y ∨ z ⇔ x + y + z ≥ 1

2 Cardinality constraints
x1 + x2 + x3 + x4 ≥ 2

3 General pseudo-Boolean constraints

x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 23/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Some Types of Pseudo-Boolean Constraints

1 Clauses
x ∨ y ∨ z ⇔ x + y + z ≥ 1

2 Cardinality constraints
x1 + x2 + x3 + x4 ≥ 2

3 General pseudo-Boolean constraints

x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 23/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Some Types of Pseudo-Boolean Constraints

1 Clauses
x ∨ y ∨ z ⇔ x + y + z ≥ 1

2 Cardinality constraints
x1 + x2 + x3 + x4 ≥ 2

3 General pseudo-Boolean constraints

x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 23/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Literal axioms
ℓi ≥ 0

Linear combination
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(cAai + cBbi)ℓi ≥ cAA + cBB

[cA, cB ∈ N]

Division
∑

i caiℓi ≥ A∑
i aiℓi ≥ ⌈A/c⌉

[c ∈ N+]

Toy example:
w + 2x + 4y + 2z ≥ 5 w + 2x + y ≥ 2

Lin comb

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 24/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Literal axioms
ℓi ≥ 0

Linear combination
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(cAai + cBbi)ℓi ≥ cAA + cBB

[cA, cB ∈ N]

Division
∑

i caiℓi ≥ A∑
i aiℓi ≥ ⌈A/c⌉

[c ∈ N+]

Toy example:
w + 2x + 4y + 2z ≥ 5 w + 2x + y ≥ 2

Lin comb

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 24/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Literal axioms
ℓi ≥ 0

Linear combination
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(cAai + cBbi)ℓi ≥ cAA + cBB

[cA, cB ∈ N]

Division
∑

i caiℓi ≥ A∑
i aiℓi ≥ ⌈A/c⌉

[c ∈ N+]

Toy example:
w + 2x + 4y + 2z ≥ 5 w + 2x + y ≥ 2

Lin comb
(w + 2x + 4y + 2z) + 2 · (w + 2x + y) ≥ 5 + 2 · 2

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 24/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Literal axioms
ℓi ≥ 0

Linear combination
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(cAai + cBbi)ℓi ≥ cAA + cBB

[cA, cB ∈ N]

Division
∑

i caiℓi ≥ A∑
i aiℓi ≥ ⌈A/c⌉

[c ∈ N+]

Toy example:
w + 2x + 4y + 2z ≥ 5 w + 2x + y ≥ 2

Lin comb
3w + 6x + 6y + 2z ≥ 9

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 24/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Literal axioms
ℓi ≥ 0

Linear combination
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(cAai + cBbi)ℓi ≥ cAA + cBB

[cA, cB ∈ N]

Division
∑

i caiℓi ≥ A∑
i aiℓi ≥ ⌈A/c⌉

[c ∈ N+]

Toy example:
w + 2x + 4y + 2z ≥ 5 w + 2x + y ≥ 2

Lin comb
3w + 6x + 6y + 2z ≥ 9 z ≥ 0

Lin comb

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 24/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Literal axioms
ℓi ≥ 0

Linear combination
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(cAai + cBbi)ℓi ≥ cAA + cBB

[cA, cB ∈ N]

Division
∑

i caiℓi ≥ A∑
i aiℓi ≥ ⌈A/c⌉

[c ∈ N+]

Toy example:
w + 2x + 4y + 2z ≥ 5 w + 2x + y ≥ 2

Lin comb
3w + 6x + 6y + 2z ≥ 9 z ≥ 0

Lin comb
3w + 6x + 6y + 2z + 2 · z ≥ 9 + 2 · 0

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 24/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Literal axioms
ℓi ≥ 0

Linear combination
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(cAai + cBbi)ℓi ≥ cAA + cBB

[cA, cB ∈ N]

Division
∑

i caiℓi ≥ A∑
i aiℓi ≥ ⌈A/c⌉

[c ∈ N+]

Toy example:
w + 2x + 4y + 2z ≥ 5 w + 2x + y ≥ 2

Lin comb
3w + 6x + 6y + 2z ≥ 9 z ≥ 0

Lin comb
3w + 6x + 6y + 2 ≥ 9

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 24/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Literal axioms
ℓi ≥ 0

Linear combination
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(cAai + cBbi)ℓi ≥ cAA + cBB

[cA, cB ∈ N]

Division
∑

i caiℓi ≥ A∑
i aiℓi ≥ ⌈A/c⌉

[c ∈ N+]

Toy example:
w + 2x + 4y + 2z ≥ 5 w + 2x + y ≥ 2

Lin comb
3w + 6x + 6y + 2z ≥ 9 z ≥ 0

Lin comb
3w + 6x + 6y ≥ 7

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 24/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Literal axioms
ℓi ≥ 0

Linear combination
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(cAai + cBbi)ℓi ≥ cAA + cBB

[cA, cB ∈ N]

Division
∑

i caiℓi ≥ A∑
i aiℓi ≥ ⌈A/c⌉

[c ∈ N+]

Toy example:
w + 2x + 4y + 2z ≥ 5 w + 2x + y ≥ 2

Lin comb
3w + 6x + 6y + 2z ≥ 9 z ≥ 0

Lin comb
3w + 6x + 6y ≥ 7

Div
w + 2x + 2y ≥ 21

3

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 24/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]

Literal axioms
ℓi ≥ 0

Linear combination
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(cAai + cBbi)ℓi ≥ cAA + cBB

[cA, cB ∈ N]

Division
∑

i caiℓi ≥ A∑
i aiℓi ≥ ⌈A/c⌉

[c ∈ N+]

Toy example:
w + 2x + 4y + 2z ≥ 5 w + 2x + y ≥ 2

Lin comb
3w + 6x + 6y + 2z ≥ 9 z ≥ 0

Lin comb
3w + 6x + 6y ≥ 7

Div
w + 2x + 2y ≥ 3

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 24/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Recovering cardinality constraints from CNF
Clauses

x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x4

x1 ∨ x3 ∨ x4

x2 ∨ x3 ∨ x4

Pseudo-Boolean constraints

x1 + x2 + x3 ≥ 1
x1 + x2 + x4 ≥ 1
x1 + x3 + x4 ≥ 1
x2 + x3 + x4 ≥ 1

Add all up

3x1 + 3x2 + 3x3 + 3x4 ≥ 4

and divide by 3 to get

x1 + x2 + x3 + x4 ≥ 2

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 25/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Recovering cardinality constraints from CNF
Clauses

x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x4

x1 ∨ x3 ∨ x4

x2 ∨ x3 ∨ x4

Pseudo-Boolean constraints

x1 + x2 + x3 ≥ 1
x1 + x2 + x4 ≥ 1
x1 + x3 + x4 ≥ 1
x2 + x3 + x4 ≥ 1

Add all up

3x1 + 3x2 + 3x3 + 3x4 ≥ 4

and divide by 3 to get

x1 + x2 + x3 + x4 ≥ 2

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 25/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Extended Cutting Planes
Combine cutting planes method with redundance rule

Redundance-based strengthening [BT19, GN21]
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)↾ω

Cutting planes can do efficiently anything that resolution can do
Reverse unit propagation works also for 0-1 linear inequalities
RAT = redundance rule with witness flipping RAT literal

⇒ Strict extension of DRAT
Lifts reasoning from clauses to 0-1 inequalities
Implemented in proof checker VeriPB [Ver, GN21, BGMN22]
Yields surprisingly expressive proof logging system

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 26/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Extended Cutting Planes
Combine cutting planes method with redundance rule

Redundance-based strengthening [BT19, GN21]
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)↾ω

Cutting planes can do efficiently anything that resolution can do
Reverse unit propagation works also for 0-1 linear inequalities
RAT = redundance rule with witness flipping RAT literal

⇒ Strict extension of DRAT
Lifts reasoning from clauses to 0-1 inequalities
Implemented in proof checker VeriPB [Ver, GN21, BGMN22]
Yields surprisingly expressive proof logging system

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 26/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Extended Cutting Planes
Combine cutting planes method with redundance rule

Redundance-based strengthening [BT19, GN21]
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)↾ω

Cutting planes can do efficiently anything that resolution can do
Reverse unit propagation works also for 0-1 linear inequalities
RAT = redundance rule with witness flipping RAT literal

⇒ Strict extension of DRAT

Lifts reasoning from clauses to 0-1 inequalities
Implemented in proof checker VeriPB [Ver, GN21, BGMN22]
Yields surprisingly expressive proof logging system

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 26/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Extended Cutting Planes
Combine cutting planes method with redundance rule

Redundance-based strengthening [BT19, GN21]
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)↾ω

Cutting planes can do efficiently anything that resolution can do
Reverse unit propagation works also for 0-1 linear inequalities
RAT = redundance rule with witness flipping RAT literal

⇒ Strict extension of DRAT
Lifts reasoning from clauses to 0-1 inequalities
Implemented in proof checker VeriPB [Ver, GN21, BGMN22]
Yields surprisingly expressive proof logging system

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 26/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

CDCL Solvers on Pseudo-Boolean Inputs
Can re-encode to CNF and run CDCL:

MiniSat+ [ES06]
Open-WBO [MML14]
NaPS [SN15]

E.g., encode pseudo-Boolean constraint

x1 + x2 + x3 + x4 ≥ 2

to clauses with extension variables

si,k ⇔
∑i

j=1 xj ≥ k

s1,1 ∨ x1

s2,1 ∨ s1,1 ∨ x2

s2,2 ∨ s1,1

s2,2 ∨ x2

s3,1 ∨ s2,1 ∨ x3

s3,2 ∨ s2,1

s3,2 ∨ s2,2 ∨ x3

s4,1 ∨ s3,1 ∨ x4

s4,2 ∨ s3,1

s4,2 ∨ s3,2 ∨ x4

s4,2
How know translation correct?
VeriPB can certify pseudo-Boolean-to-CNF rewriting [GMNO22]

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 27/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

CDCL Solvers on Pseudo-Boolean Inputs
Can re-encode to CNF and run CDCL:

MiniSat+ [ES06]
Open-WBO [MML14]
NaPS [SN15]

E.g., encode pseudo-Boolean constraint

x1 + x2 + x3 + x4 ≥ 2

to clauses with extension variables

si,k ⇔
∑i

j=1 xj ≥ k

s1,1 ∨ x1

s2,1 ∨ s1,1 ∨ x2

s2,2 ∨ s1,1

s2,2 ∨ x2

s3,1 ∨ s2,1 ∨ x3

s3,2 ∨ s2,1

s3,2 ∨ s2,2 ∨ x3

s4,1 ∨ s3,1 ∨ x4

s4,2 ∨ s3,1

s4,2 ∨ s3,2 ∨ x4

s4,2
How know translation correct?
VeriPB can certify pseudo-Boolean-to-CNF rewriting [GMNO22]

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 27/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

CDCL Solvers on Pseudo-Boolean Inputs
Can re-encode to CNF and run CDCL:

MiniSat+ [ES06]
Open-WBO [MML14]
NaPS [SN15]

E.g., encode pseudo-Boolean constraint

x1 + x2 + x3 + x4 ≥ 2

to clauses with extension variables

si,k ⇔
∑i

j=1 xj ≥ k

s1,1 ∨ x1

s2,1 ∨ s1,1 ∨ x2

s2,2 ∨ s1,1

s2,2 ∨ x2

s3,1 ∨ s2,1 ∨ x3

s3,2 ∨ s2,1

s3,2 ∨ s2,2 ∨ x3

s4,1 ∨ s3,1 ∨ x4

s4,2 ∨ s3,1

s4,2 ∨ s3,2 ∨ x4

s4,2
How know translation correct?
VeriPB can certify pseudo-Boolean-to-CNF rewriting [GMNO22]

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 27/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

CDCL Solvers on Pseudo-Boolean Inputs
Can re-encode to CNF and run CDCL:

MiniSat+ [ES06]
Open-WBO [MML14]
NaPS [SN15]

E.g., encode pseudo-Boolean constraint

x1 + x2 + x3 + x4 ≥ 2

to clauses with extension variables

si,k ⇔
∑i

j=1 xj ≥ k

s1,1 ∨ x1

s2,1 ∨ s1,1 ∨ x2

s2,2 ∨ s1,1

s2,2 ∨ x2

s3,1 ∨ s2,1 ∨ x3

s3,2 ∨ s2,1

s3,2 ∨ s2,2 ∨ x3

s4,1 ∨ s3,1 ∨ x4

s4,2 ∨ s3,1

s4,2 ∨ s3,2 ∨ x4

s4,2
How know translation correct?
VeriPB can certify pseudo-Boolean-to-CNF rewriting [GMNO22]

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 27/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

CDCL Solvers on Pseudo-Boolean Inputs
Can re-encode to CNF and run CDCL:

MiniSat+ [ES06]
Open-WBO [MML14]
NaPS [SN15]

E.g., encode pseudo-Boolean constraint

x1 + x2 + x3 + x4 ≥ 2

to clauses with extension variables

si,k ⇔
∑i

j=1 xj ≥ k

s1,1 ∨ x1

s2,1 ∨ s1,1 ∨ x2

s2,2 ∨ s1,1

s2,2 ∨ x2

s3,1 ∨ s2,1 ∨ x3

s3,2 ∨ s2,1

s3,2 ∨ s2,2 ∨ x3

s4,1 ∨ s3,1 ∨ x4

s4,2 ∨ s3,1

s4,2 ∨ s3,2 ∨ x4

s4,2
How know translation correct?
VeriPB can certify pseudo-Boolean-to-CNF rewriting [GMNO22]

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 27/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Parity (XOR) Reasoning
Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and
y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive
x ∨ w

x ∨ w

This is just parity reasoning:

x + y + z = 1 (mod 2)
y + z + w = 1 (mod 2)

imply
x + w = 0 (mod 2)

Exponentially hard for CDCL [Urq87]
But used in CryptoMiniSat [Cry]

DRAT proof logging like [PR16] too inefficient in
practice!

Add XORs to proof language?
Prefer to keep things super-simple and verifiable. . .

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 28/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Parity (XOR) Reasoning
Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and
y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive
x ∨ w

x ∨ w

This is just parity reasoning:

x + y + z = 1 (mod 2)
y + z + w = 1 (mod 2)

imply
x + w = 0 (mod 2)

Exponentially hard for CDCL [Urq87]
But used in CryptoMiniSat [Cry]

DRAT proof logging like [PR16] too inefficient in
practice!

Add XORs to proof language?
Prefer to keep things super-simple and verifiable. . .

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 28/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Parity (XOR) Reasoning
Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and
y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive
x ∨ w

x ∨ w

This is just parity reasoning:

x + y + z = 1 (mod 2)
y + z + w = 1 (mod 2)

imply
x + w = 0 (mod 2)

Exponentially hard for CDCL [Urq87]
But used in CryptoMiniSat [Cry]

DRAT proof logging like [PR16] too inefficient in
practice!

Add XORs to proof language?
Prefer to keep things super-simple and verifiable. . .

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 28/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Parity (XOR) Reasoning
Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and
y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive
x ∨ w

x ∨ w

This is just parity reasoning:

x + y + z = 1 (mod 2)
y + z + w = 1 (mod 2)

imply
x + w = 0 (mod 2)

Exponentially hard for CDCL [Urq87]
But used in CryptoMiniSat [Cry]

DRAT proof logging like [PR16] too inefficient in
practice!

Add XORs to proof language?
Prefer to keep things super-simple and verifiable. . .

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 28/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Parity (XOR) Reasoning
Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and
y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive
x ∨ w

x ∨ w

This is just parity reasoning:

x + y + z = 1 (mod 2)
y + z + w = 1 (mod 2)

imply
x + w = 0 (mod 2)

Exponentially hard for CDCL [Urq87]
But used in CryptoMiniSat [Cry]

DRAT proof logging like [PR16] too inefficient in
practice!

Add XORs to proof language?
Prefer to keep things super-simple and verifiable. . .

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 28/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Parity (XOR) Reasoning
Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and
y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive
x ∨ w

x ∨ w

This is just parity reasoning:

x + y + z = 1 (mod 2)
y + z + w = 1 (mod 2)

imply
x + w = 0 (mod 2)

Exponentially hard for CDCL [Urq87]
But used in CryptoMiniSat [Cry]

DRAT proof logging like [PR16] too inefficient in
practice!

Add XORs to proof language?
Prefer to keep things super-simple and verifiable. . .

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 28/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Pseudo-Boolean Proof Logging for XOR Reasoning
Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and
y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive
x ∨ w

x ∨ w

Use redundance rule with fresh variables a,b to
derive

x + y + z + 2a = 3
y + z + w + 2b = 3

(“=” syntactic sugar for “≥” plus “≤”)
Add to get

x + w + 2y + 2z + 2a + 2b = 6

From this can extract

x + w ≥ 1
x + w ≥ 1

VeriPB can certify XOR reasoning [GN21]
Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 29/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Pseudo-Boolean Proof Logging for XOR Reasoning
Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and
y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive
x ∨ w

x ∨ w

Use redundance rule with fresh variables a,b to
derive

x + y + z + 2a = 3
y + z + w + 2b = 3

(“=” syntactic sugar for “≥” plus “≤”)
Add to get

x + w + 2y + 2z + 2a + 2b = 6

From this can extract

x + w ≥ 1
x + w ≥ 1

VeriPB can certify XOR reasoning [GN21]
Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 29/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Pseudo-Boolean Proof Logging for XOR Reasoning
Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and
y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive
x ∨ w

x ∨ w

Use redundance rule with fresh variables a,b to
derive

x + y + z + 2a = 3
y + z + w + 2b = 3

(“=” syntactic sugar for “≥” plus “≤”)
Add to get

x + w + 2y + 2z + 2a + 2b = 6

From this can extract

x + w ≥ 1
x + w ≥ 1

VeriPB can certify XOR reasoning [GN21]
Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 29/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Pseudo-Boolean Proof Logging for XOR Reasoning
Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and
y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive
x ∨ w

x ∨ w

Use redundance rule with fresh variables a,b to
derive

x + y + z + 2a = 3
y + z + w + 2b = 3

(“=” syntactic sugar for “≥” plus “≤”)
Add to get

x + w + 2y + 2z + 2a + 2b = 6

From this can extract

x + w ≥ 1
x + w ≥ 1

VeriPB can certify XOR reasoning [GN21]
Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 29/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Cardinality Constraints and Pseudo-Boolean Reasoning
Translating Pseudo-Boolean Constraints to CNF
Parity Reasoning

Pseudo-Boolean Proof Logging for XOR Reasoning
Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and
y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive
x ∨ w

x ∨ w

Use redundance rule with fresh variables a,b to
derive

x + y + z + 2a = 3
y + z + w + 2b = 3

(“=” syntactic sugar for “≥” plus “≤”)
Add to get

x + w + 2y + 2z + 2a + 2b = 6

From this can extract

x + w ≥ 1
x + w ≥ 1

VeriPB can certify XOR reasoning [GN21]
Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 29/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Proof Logging for Graph Solving and Constraint Programming

Pseudo-Boolean proof logging can also certify reasoning in
graph solvers without knowing what a graph is [GMN20, GMM+20]
constraint programming solvers without knowing what an integer is
[EGMN20, GMN22]

Caveat: Input pre-translated into 0–1 integer linear program
This translation should be formally verified (work in progress)

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 30/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Proof Logging for Graph Solving and Constraint Programming

Pseudo-Boolean proof logging can also certify reasoning in
graph solvers without knowing what a graph is [GMN20, GMM+20]
constraint programming solvers without knowing what an integer is
[EGMN20, GMN22]

Caveat: Input pre-translated into 0–1 integer linear program
This translation should be formally verified (work in progress)

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 30/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Integer Variables

Represent integer a as sum of bits
∑

i 2i · ai

Use redundance-based strengthening to introduce new variables

a≥k ⇔
∑

i

2i · ai ≥ k

a=k ⇔ (a≥k ∧ a≥k+1)

(definitions representable as 0–1 inequalities)

Go back and forth between representations to support efficient proof logging

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 31/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Integer Variables

Represent integer a as sum of bits
∑

i 2i · ai

Use redundance-based strengthening to introduce new variables

a≥k ⇔
∑

i

2i · ai ≥ k

a=k ⇔ (a≥k ∧ a≥k+1)

(definitions representable as 0–1 inequalities)

Go back and forth between representations to support efficient proof logging

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 31/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Integer Variables

Represent integer a as sum of bits
∑

i 2i · ai

Use redundance-based strengthening to introduce new variables

a≥k ⇔
∑

i

2i · ai ≥ k

a=k ⇔ (a≥k ∧ a≥k+1)

(definitions representable as 0–1 inequalities)

Go back and forth between representations to support efficient proof logging

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 31/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Constraint Programming Reasoning

Efficient proof logging support for
All-different propagators
Table constraints
Arrays
Problem reformulations
Backtracking during search
Et cetera. . .

Not at all trivial to implement
Lots of work left to get to full-fledged constraint programming solver
But so far everything has been possible to do [EGMN20, GMN22]

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 32/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Constraint Programming Reasoning

Efficient proof logging support for
All-different propagators
Table constraints
Arrays
Problem reformulations
Backtracking during search
Et cetera. . .

Not at all trivial to implement
Lots of work left to get to full-fledged constraint programming solver
But so far everything has been possible to do [EGMN20, GMN22]

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 32/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

The Challenge of Symmetries
Symmetries crucial for some optimization problems [AW13, GSVW14]
Show up also in hard SAT benchmarks

Symmetry breaking
Add clauses filtering out symmetric solutions [DBBD16]
DRAT proof logging for limited cases only [HHW15]

Symmetric learning
Allow to add all symmetric versions of learned clause [DBB17]
Recently proposed proof logging in [TD20]

1 Special-purpose, specific approach
2 Requires adding explicit concept of symmetries
3 Not compatible with preprocessing techniques

Better to keep proof system super-simple and verifiable. . .
Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 33/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

The Challenge of Symmetries
Symmetries crucial for some optimization problems [AW13, GSVW14]
Show up also in hard SAT benchmarks

Symmetry breaking
Add clauses filtering out symmetric solutions [DBBD16]
DRAT proof logging for limited cases only [HHW15]

Symmetric learning
Allow to add all symmetric versions of learned clause [DBB17]
Recently proposed proof logging in [TD20]

1 Special-purpose, specific approach
2 Requires adding explicit concept of symmetries
3 Not compatible with preprocessing techniques

Better to keep proof system super-simple and verifiable. . .
Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 33/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

The Challenge of Symmetries
Symmetries crucial for some optimization problems [AW13, GSVW14]
Show up also in hard SAT benchmarks

Symmetry breaking
Add clauses filtering out symmetric solutions [DBBD16]
DRAT proof logging for limited cases only [HHW15]

Symmetric learning
Allow to add all symmetric versions of learned clause [DBB17]
Recently proposed proof logging in [TD20]

1 Special-purpose, specific approach
2 Requires adding explicit concept of symmetries
3 Not compatible with preprocessing techniques

Better to keep proof system super-simple and verifiable. . .
Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 33/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Optimization Problems
Deal with symmetries by switching focus to optimization

Pseudo-Boolean optimization
Minimize f =

∑
i wiℓi (for wi ∈ N) subject to constraints in F

Proof of optimality:
F satisfied by α

F ∧
(∑

i wiℓi <
∑

i wi · α(ℓi)
)

is infeasible

Note that
∑

i wiℓi <
∑

i wi · α(ℓi) means
∑

i wiℓi ≤ −1 +
∑

i wi · α(ℓi)

Spoiler alert:
For decision problem, nothing stops us from inventing objective function
(like lexicographic order

∑n
i=1 2i · xi)

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 34/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Optimization Problems
Deal with symmetries by switching focus to optimization

Pseudo-Boolean optimization
Minimize f =

∑
i wiℓi (for wi ∈ N) subject to constraints in F

Proof of optimality:
F satisfied by α

F ∧
(∑

i wiℓi <
∑

i wi · α(ℓi)
)

is infeasible

Note that
∑

i wiℓi <
∑

i wi · α(ℓi) means
∑

i wiℓi ≤ −1 +
∑

i wi · α(ℓi)

Spoiler alert:
For decision problem, nothing stops us from inventing objective function
(like lexicographic order

∑n
i=1 2i · xi)

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 34/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Optimization Problems
Deal with symmetries by switching focus to optimization

Pseudo-Boolean optimization
Minimize f =

∑
i wiℓi (for wi ∈ N) subject to constraints in F

Proof of optimality:
F satisfied by α

F ∧
(∑

i wiℓi <
∑

i wi · α(ℓi)
)

is infeasible

Note that
∑

i wiℓi <
∑

i wi · α(ℓi) means
∑

i wiℓi ≤ −1 +
∑

i wi · α(ℓi)

Spoiler alert:
For decision problem, nothing stops us from inventing objective function
(like lexicographic order

∑n
i=1 2i · xi)

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 34/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Optimization Problems
Deal with symmetries by switching focus to optimization

Pseudo-Boolean optimization
Minimize f =

∑
i wiℓi (for wi ∈ N) subject to constraints in F

Proof of optimality:
F satisfied by α

F ∧
(∑

i wiℓi <
∑

i wi · α(ℓi)
)

is infeasible

Note that
∑

i wiℓi <
∑

i wi · α(ℓi) means
∑

i wiℓi ≤ −1 +
∑

i wi · α(ℓi)

Spoiler alert:
For decision problem, nothing stops us from inventing objective function
(like lexicographic order

∑n
i=1 2i · xi)

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 34/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Proof Logging for Optimization Problems
How does proof system change?
Rules must preserve (at least one) optimal solution

1 Standard cutting planes rules OK — derive constraints that must hold for any
satisfying assignment

2 Once solution α has been found, allow constraint
∑

i wiℓi <
∑

i wi · α(ℓi) to force
search for better solutions

3 Redundance rule must not destroy good solutions

Redundance-based strengthening, optimization version [BGMN22]
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)↾ω ∧ f↾ω ≤ f

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 35/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Proof Logging for Optimization Problems
How does proof system change?
Rules must preserve (at least one) optimal solution

1 Standard cutting planes rules OK — derive constraints that must hold for any
satisfying assignment

2 Once solution α has been found, allow constraint
∑

i wiℓi <
∑

i wi · α(ℓi) to force
search for better solutions

3 Redundance rule must not destroy good solutions

Redundance-based strengthening, optimization version [BGMN22]
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)↾ω ∧ f↾ω ≤ f

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 35/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Proof Logging for Optimization Problems
How does proof system change?
Rules must preserve (at least one) optimal solution

1 Standard cutting planes rules OK — derive constraints that must hold for any
satisfying assignment

2 Once solution α has been found, allow constraint
∑

i wiℓi <
∑

i wi · α(ℓi) to force
search for better solutions

3 Redundance rule must not destroy good solutions

Redundance-based strengthening, optimization version [BGMN22]
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)↾ω ∧ f↾ω ≤ f

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 35/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Proof Logging for Optimization Problems
How does proof system change?
Rules must preserve (at least one) optimal solution

1 Standard cutting planes rules OK — derive constraints that must hold for any
satisfying assignment

2 Once solution α has been found, allow constraint
∑

i wiℓi <
∑

i wi · α(ℓi) to force
search for better solutions

3 Redundance rule must not destroy good solutions

Redundance-based strengthening, optimization version [BGMN22]
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)↾ω ∧ f↾ω ≤ f

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 35/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Proof Logging for Optimization Problems
How does proof system change?
Rules must preserve (at least one) optimal solution

1 Standard cutting planes rules OK — derive constraints that must hold for any
satisfying assignment

2 Once solution α has been found, allow constraint
∑

i wiℓi <
∑

i wi · α(ℓi) to force
search for better solutions

3 Redundance rule must not destroy good solutions

Redundance-based strengthening, optimization version [BGMN22]
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)↾ω ∧ f↾ω ≤ f

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 35/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Proof Logging for Optimization Problems
How does proof system change?
Rules must preserve (at least one) optimal solution

1 Standard cutting planes rules OK — derive constraints that must hold for any
satisfying assignment

2 Once solution α has been found, allow constraint
∑

i wiℓi <
∑

i wi · α(ℓi) to force
search for better solutions

3 Redundance rule must not destroy good solutions

Redundance-based strengthening, optimization version [BGMN22]
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)↾ω ∧ f↾ω ≤ f

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 35/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Redundance and Dominance Rules

Redundance-based strengthening, optimization version [BGMN22]
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)↾ω ∧ f↾ω ≤ f

Can be more aggressive if witness ω strictly improves solution

Dominance-based strengthening (simplified) [BGMN22]
Add constraint D to formula F if exists witness substitution ω such that

F ∧ ¬D |= F↾ω ∧ f↾ω < f

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 36/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Redundance and Dominance Rules

Redundance-based strengthening, optimization version [BGMN22]
Add constraint C to formula F if exists witness substitution ω such that

F ∧ ¬C |= (F ∧ C)↾ω ∧ f↾ω ≤ f

Can be more aggressive if witness ω strictly improves solution

Dominance-based strengthening (simplified) [BGMN22]
Add constraint D to formula F if exists witness substitution ω such that

F ∧ ¬D |= F↾ω ∧ f↾ω < f

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 36/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Soundness of Dominance Rule
Dominance-based strengthening (simplified) [BGMN22]
Add constraint D to formula F if exists witness substitution ω such that

F ∧ ¬D |= F↾ω ∧ f↾ω < f

Why is this sound?
1 Suppose α satisfies F but falsifies D (i.e., satisfies ¬D)
2 Then α ◦ ω satisfies F and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies D, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies F and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies D, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies F and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying F ∧ D

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 37/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Soundness of Dominance Rule
Dominance-based strengthening (simplified) [BGMN22]
Add constraint D to formula F if exists witness substitution ω such that

F ∧ ¬D |= F↾ω ∧ f↾ω < f

Why is this sound?
1 Suppose α satisfies F but falsifies D (i.e., satisfies ¬D)
2 Then α ◦ ω satisfies F and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies D, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies F and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies D, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies F and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying F ∧ D

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 37/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Soundness of Dominance Rule
Dominance-based strengthening (simplified) [BGMN22]
Add constraint D to formula F if exists witness substitution ω such that

F ∧ ¬D |= F↾ω ∧ f↾ω < f

Why is this sound?
1 Suppose α satisfies F but falsifies D (i.e., satisfies ¬D)
2 Then α ◦ ω satisfies F and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies D, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies F and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies D, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies F and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying F ∧ D

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 37/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Soundness of Dominance Rule
Dominance-based strengthening (simplified) [BGMN22]
Add constraint D to formula F if exists witness substitution ω such that

F ∧ ¬D |= F↾ω ∧ f↾ω < f

Why is this sound?
1 Suppose α satisfies F but falsifies D (i.e., satisfies ¬D)
2 Then α ◦ ω satisfies F and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies D, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies F and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies D, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies F and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying F ∧ D

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 37/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Soundness of Dominance Rule
Dominance-based strengthening (simplified) [BGMN22]
Add constraint D to formula F if exists witness substitution ω such that

F ∧ ¬D |= F↾ω ∧ f↾ω < f

Why is this sound?
1 Suppose α satisfies F but falsifies D (i.e., satisfies ¬D)
2 Then α ◦ ω satisfies F and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies D, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies F and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies D, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies F and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying F ∧ D

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 37/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Soundness of Dominance Rule
Dominance-based strengthening (simplified) [BGMN22]
Add constraint D to formula F if exists witness substitution ω such that

F ∧ ¬D |= F↾ω ∧ f↾ω < f

Why is this sound?
1 Suppose α satisfies F but falsifies D (i.e., satisfies ¬D)
2 Then α ◦ ω satisfies F and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies D, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies F and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies D, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies F and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying F ∧ D

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 37/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Soundness of Dominance Rule
Dominance-based strengthening (simplified) [BGMN22]
Add constraint D to formula F if exists witness substitution ω such that

F ∧ ¬D |= F↾ω ∧ f↾ω < f

Why is this sound?
1 Suppose α satisfies F but falsifies D (i.e., satisfies ¬D)
2 Then α ◦ ω satisfies F and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies D, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies F and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies D, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies F and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying F ∧ D

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 37/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Soundness of Dominance Rule
Dominance-based strengthening (simplified) [BGMN22]
Add constraint D to formula F if exists witness substitution ω such that

F ∧ ¬D |= F↾ω ∧ f↾ω < f

Why is this sound?
1 Suppose α satisfies F but falsifies D (i.e., satisfies ¬D)
2 Then α ◦ ω satisfies F and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies D, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies F and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies D, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies F and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying F ∧ D

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 37/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Soundness of Dominance Rule
Dominance-based strengthening (simplified) [BGMN22]
Add constraint D to formula F if exists witness substitution ω such that

F ∧ ¬D |= F↾ω ∧ f↾ω < f

Why is this sound?
1 Suppose α satisfies F but falsifies D (i.e., satisfies ¬D)
2 Then α ◦ ω satisfies F and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies D, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies F and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies D, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies F and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying F ∧ D

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 37/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Strength of Dominance Rule

Dominance-based strengthening (stronger, still simplified) [BGMN22]
If D1, D2, . . . , Dm−1 have been derived from F (maybe using dominance), then can
derive also Dm if exists witness substitution ω such that

F ∧
∧m−1

i=1 Di ∧ ¬Dm |= F↾ω ∧ f↾ω < f

Why is this sound?
Same inductive proof as before, but nested
Or just pick α satisfying F and minimizing f and argue by contradiction

Further extensions:
Define dominance rule w.r.t. order independent of objective function
Switch between different orders in same proof

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 38/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Strength of Dominance Rule

Dominance-based strengthening (stronger, still simplified) [BGMN22]
If D1, D2, . . . , Dm−1 have been derived from F (maybe using dominance), then can
derive also Dm if exists witness substitution ω such that

F ∧
∧m−1

i=1 Di ∧ ¬Dm |= F↾ω ∧ f↾ω < f

Why is this sound?
Same inductive proof as before, but nested
Or just pick α satisfying F and minimizing f and argue by contradiction

Further extensions:
Define dominance rule w.r.t. order independent of objective function
Switch between different orders in same proof

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 38/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Strength of Dominance Rule

Dominance-based strengthening (stronger, still simplified) [BGMN22]
If D1, D2, . . . , Dm−1 have been derived from F (maybe using dominance), then can
derive also Dm if exists witness substitution ω such that

F ∧
∧m−1

i=1 Di ∧ ¬Dm |= F↾ω ∧ f↾ω < f

Why is this sound?
Same inductive proof as before, but nested
Or just pick α satisfying F and minimizing f and argue by contradiction

Further extensions:
Define dominance rule w.r.t. order independent of objective function
Switch between different orders in same proof

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 38/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Strength of Dominance Rule

Dominance-based strengthening (stronger, still simplified) [BGMN22]
If D1, D2, . . . , Dm−1 have been derived from F (maybe using dominance), then can
derive also Dm if exists witness substitution ω such that

F ∧
∧m−1

i=1 Di ∧ ¬Dm |= F↾ω ∧ f↾ω < f

Why is this sound?
Same inductive proof as before, but nested
Or just pick α satisfying F and minimizing f and argue by contradiction

Further extensions:
Define dominance rule w.r.t. order independent of objective function
Switch between different orders in same proof

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 38/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Strength of Dominance Rule

Dominance-based strengthening (stronger, still simplified) [BGMN22]
If D1, D2, . . . , Dm−1 have been derived from F (maybe using dominance), then can
derive also Dm if exists witness substitution ω such that

F ∧
∧m−1

i=1 Di ∧ ¬Dm |= F↾ω ∧ f↾ω < f

Why is this sound?
Same inductive proof as before, but nested
Or just pick α satisfying F and minimizing f and argue by contradiction

Further extensions:
Define dominance rule w.r.t. order independent of objective function
Switch between different orders in same proof

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 38/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Proof Configurations and Implicational Derivations

Slightly simplified version of proof system — see [BGMN22] for full details

Proof is sequence of configurations

Every configuration contains
set of core constraints C (≈ input formula)
set of derived constraints D
objective function / order f

Standard cutting planes rules applied to C ∪ D add new implied constraints to D

(Ignore rules for improving solutions here — focus on decision problems)

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 39/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Proof Configurations and Implicational Derivations

Slightly simplified version of proof system — see [BGMN22] for full details

Proof is sequence of configurations

Every configuration contains
set of core constraints C (≈ input formula)
set of derived constraints D
objective function / order f

Standard cutting planes rules applied to C ∪ D add new implied constraints to D

(Ignore rules for improving solutions here — focus on decision problems)

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 39/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Proof Configurations and Implicational Derivations

Slightly simplified version of proof system — see [BGMN22] for full details

Proof is sequence of configurations

Every configuration contains
set of core constraints C (≈ input formula)
set of derived constraints D
objective function / order f

Standard cutting planes rules applied to C ∪ D add new implied constraints to D

(Ignore rules for improving solutions here — focus on decision problems)

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 39/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Proof Configurations and Implicational Derivations

Slightly simplified version of proof system — see [BGMN22] for full details

Proof is sequence of configurations

Every configuration contains
set of core constraints C (≈ input formula)
set of derived constraints D
objective function / order f

Standard cutting planes rules applied to C ∪ D add new implied constraints to D

(Ignore rules for improving solutions here — focus on decision problems)

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 39/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Strengthening Rules
Redundance-based strengthening
Add constraint C to D if exists witness substitution ω such that

C ∪ D ∪ {¬C} ⊢ (C ∪ D ∪ {C})↾ω ∪ {f↾ω ≤ f}

Dominance-based strengthening
Add constraint D to D if exists witness substitution ω such that

C ∪ D ∪ {¬C} ⊢ C↾ω ∪ {f↾ω < f}

Witness ω should be explicitly specified
For all right-hand side proof targets derivations should be specified or be truly
obvious (e.g., by weakening)

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 40/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Strengthening Rules
Redundance-based strengthening
Add constraint C to D if exists witness substitution ω such that

C ∪ D ∪ {¬C} ⊢ (C ∪ D ∪ {C})↾ω ∪ {f↾ω ≤ f}

Dominance-based strengthening
Add constraint D to D if exists witness substitution ω such that

C ∪ D ∪ {¬C} ⊢ C↾ω ∪ {f↾ω < f}

Witness ω should be explicitly specified
For all right-hand side proof targets derivations should be specified or be truly
obvious (e.g., by weakening)

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 40/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Deletion, Core Transfer, and Order Change

Deletion
No restrictions on deletions from derived set D
Delete C from C only if C can be derived from C \ {C} by

implicational rules or
redundance-based strengthening

Except possible to add special cases for decision problems — see [BGMN22]

Core transfer
Constraints from D can be moved to C

Change of order
Possible to change order if D = ∅

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 41/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Deletion, Core Transfer, and Order Change

Deletion
No restrictions on deletions from derived set D
Delete C from C only if C can be derived from C \ {C} by

implicational rules or
redundance-based strengthening

Except possible to add special cases for decision problems — see [BGMN22]

Core transfer
Constraints from D can be moved to C

Change of order
Possible to change order if D = ∅

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 41/43



Basic SAT Solving
Advanced SAT Techniques

Beyond SAT

Constraint Programming
Symmetry, Dominance, and Optimization
Formal Proof System

Deletion, Core Transfer, and Order Change

Deletion
No restrictions on deletions from derived set D
Delete C from C only if C can be derived from C \ {C} by

implicational rules or
redundance-based strengthening

Except possible to add special cases for decision problems — see [BGMN22]

Core transfer
Constraints from D can be moved to C

Change of order
Possible to change order if D = ∅

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 41/43



Directions for Future Research
Proof logging for combinatorial optimization

Pseudo-Boolean optimization and MaxSAT solving (work in [VDB22, BBN+23])
General constraint programming
Mixed integer linear programming (work in [CGS17, EG21])
Satisfiability modulo theories (SMT) solving

Proof complexity
Efficient symmetric learning and recycling of subproofs (substitution rules)
General symmetry breaking in extended Frege?
Analysis of power of cutting planes with strengthening rules

And more. . .
Lots of challenging problems and interesting ideas
We’re hiring! Talk to me to join the proof logging revolution!

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 42/43



Directions for Future Research
Proof logging for combinatorial optimization

Pseudo-Boolean optimization and MaxSAT solving (work in [VDB22, BBN+23])
General constraint programming
Mixed integer linear programming (work in [CGS17, EG21])
Satisfiability modulo theories (SMT) solving

Proof complexity
Efficient symmetric learning and recycling of subproofs (substitution rules)
General symmetry breaking in extended Frege?
Analysis of power of cutting planes with strengthening rules

And more. . .
Lots of challenging problems and interesting ideas
We’re hiring! Talk to me to join the proof logging revolution!

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 42/43



Directions for Future Research
Proof logging for combinatorial optimization

Pseudo-Boolean optimization and MaxSAT solving (work in [VDB22, BBN+23])
General constraint programming
Mixed integer linear programming (work in [CGS17, EG21])
Satisfiability modulo theories (SMT) solving

Proof complexity
Efficient symmetric learning and recycling of subproofs (substitution rules)
General symmetry breaking in extended Frege?
Analysis of power of cutting planes with strengthening rules

And more. . .
Lots of challenging problems and interesting ideas
We’re hiring! Talk to me to join the proof logging revolution!

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 42/43



Directions for Future Research
Proof logging for combinatorial optimization

Pseudo-Boolean optimization and MaxSAT solving (work in [VDB22, BBN+23])
General constraint programming
Mixed integer linear programming (work in [CGS17, EG21])
Satisfiability modulo theories (SMT) solving

Proof complexity
Efficient symmetric learning and recycling of subproofs (substitution rules)
General symmetry breaking in extended Frege?
Analysis of power of cutting planes with strengthening rules

And more. . .
Lots of challenging problems and interesting ideas
We’re hiring! Talk to me to join the proof logging revolution!

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 42/43



Summing up

Combinatorial solving and optimization is a true success story

But ensuring correctness is a crucial, and not yet satisfactorily addressed, concern

Certifying solvers producing machine-verifiable proofs of correctness seems like a
promising approach

Requires powerful but simple proof systems — need for “constructive proof
complexity”

Cutting planes with strengthening rules seems to hit a sweet spot

Raises new and interesting questions also in “standard proof complexity”

Thank you for your attention!

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 43/43



Summing up

Combinatorial solving and optimization is a true success story

But ensuring correctness is a crucial, and not yet satisfactorily addressed, concern

Certifying solvers producing machine-verifiable proofs of correctness seems like a
promising approach

Requires powerful but simple proof systems — need for “constructive proof
complexity”

Cutting planes with strengthening rules seems to hit a sweet spot

Raises new and interesting questions also in “standard proof complexity”

Thank you for your attention!

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 43/43



References I

[ABM+11] Eyad Alkassar, Sascha Böhme, Kurt Mehlhorn, Christine Rizkallah, and Pascal Schweitzer. An
introduction to certifying algorithms. it - Information Technology Methoden und innovative
Anwendungen der Informatik und Informationstechnik, 53(6):287–293, December 2011.

[AGJ+18] Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter Nightingale.
Metamorphic testing of constraint solvers. In Proceedings of the 24th International Conference
on Principles and Practice of Constraint Programming (CP ’18), volume 11008 of Lecture Notes
in Computer Science, pages 727–736. Springer, August 2018.

[AW13] Tobias Achterberg and Roland Wunderling. Mixed integer programming: Analyzing 12 years of
progress. In Michael Jünger and Gerhard Reinelt, editors, Facets of Combinatorial Optimization,
pages 449–481. Springer, 2013.

[BBN+23] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and Dieter Vandesande. Certified
core-guided MaxSAT solving. Submitted manuscript., March 2023.

[BGMN22] Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified symmetry and
dominance breaking for combinatorial optimisation. In Proceedings of the 36th AAAI Conference
on Artificial Intelligence (AAAI ’22), pages 3698–3707, February 2022.

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 44/43



References II

[BHvMW21] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of
Satisfiability, volume 336 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2nd
edition, February 2021.

[BKS04] Paul Beame, Henry Kautz, and Ashish Sabharwal. Towards understanding and harnessing the
potential of clause learning. Journal of Artificial Intelligence Research, 22:319–351, December
2004. Preliminary version in IJCAI ’03.

[Bla37] Archie Blake. Canonical Expressions in Boolean Algebra. PhD thesis, University of Chicago, 1937.

[BLB10] Robert Brummayer, Florian Lonsing, and Armin Biere. Automated testing and debugging of SAT
and QBF solvers. In Proceedings of the 13th International Conference on Theory and
Applications of Satisfiability Testing (SAT ’10), volume 6175 of Lecture Notes in Computer
Science, pages 44–57. Springer, July 2010.

[BMN22] Bart Bogaerts, Ciaran McCreesh, and Jakob Nordström. Solving with provably correct results:
Beyond satisfiability, and towards constraint programming. Tutorial at the 28th International
Conference on Principles and Practice of Constraint Programming. Slides available at
http://www.jakobnordstrom.se/presentations/, August 2022.

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 45/43

http://www.jakobnordstrom.se/presentations/


References III

[BR07] Robert Bixby and Edward Rothberg. Progress in computational mixed integer programming—A
look back from the other side of the tipping point. Annals of Operations Research, 149(1):37–41,
February 2007.

[BS97] Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back techniques to solve real-world
SAT instances. In Proceedings of the 14th National Conference on Artificial Intelligence
(AAAI ’97), pages 203–208, July 1997.

[BT19] Samuel R. Buss and Neil Thapen. DRAT proofs, propagation redundancy, and extended
resolution. In Proceedings of the 22nd International Conference on Theory and Applications of
Satisfiability Testing (SAT ’19), volume 11628 of Lecture Notes in Computer Science, pages
71–89. Springer, July 2019.

[BvdKM+21] Péter Biró, Joris van de Klundert, David F. Manlove, William Pettersson, Tommy Andersson, Lisa
Burnapp, Pavel Chromy, Pablo Delgado, Piotr Dworczak, Bernadette Haase, Aline Hemke, Rachel
Johnson, Xenia Klimentova, Dirk Kuypers, Alessandro Nanni Costa, Bart Smeulders, Frits C. R.
Spieksma, Maŕıa O. Valent́ın, and Ana Viana. Modelling and optimisation in European kidney
exchange programmes. European Journal of Operational Research, 291(2):447–456, June 2021.

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 46/43



References IV

[CCT87] William Cook, Collette Rene Coullard, and György Turán. On the complexity of cutting-plane
proofs. Discrete Applied Mathematics, 18(1):25–38, November 1987.

[CGS17] Kevin K. H. Cheung, Ambros M. Gleixner, and Daniel E. Steffy. Verifying integer programming
results. In Proceedings of the 19th International Conference on Integer Programming and
Combinatorial Optimization (IPCO ’17), volume 10328 of Lecture Notes in Computer Science,
pages 148–160. Springer, June 2017.

[CHH+17] Lúıs Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt Jr., Matt Kaufmann, and Peter
Schneider-Kamp. Efficient certified RAT verification. In Proceedings of the 26th International
Conference on Automated Deduction (CADE-26), volume 10395 of Lecture Notes in Computer
Science, pages 220–236. Springer, August 2017.

[CKSW13] William Cook, Thorsten Koch, Daniel E. Steffy, and Kati Wolter. A hybrid branch-and-bound
approach for exact rational mixed-integer programming. Mathematical Programming
Computation, 5(3):305–344, September 2013.

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 47/43



References V

[CMS17] Lúıs Cruz-Filipe, João P. Marques-Silva, and Peter Schneider-Kamp. Efficient certified resolution
proof checking. In Proceedings of the 23rd International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS ’17), volume 10205 of Lecture Notes in
Computer Science, pages 118–135. Springer, April 2017.

[Cry] CryptoMiniSat SAT solver. https://github.com/msoos/cryptominisat/.

[DBB17] Jo Devriendt, Bart Bogaerts, and Maurice Bruynooghe. Symmetric explanation learning:
Effective dynamic symmetry handling for SAT. In Proceedings of the 20th International
Conference on Theory and Applications of Satisfiability Testing (SAT ’17), volume 10491 of
Lecture Notes in Computer Science, pages 83–100. Springer, August 2017.

[DBBD16] Jo Devriendt, Bart Bogaerts, Maurice Bruynooghe, and Marc Denecker. Improved static
symmetry breaking for SAT. In Proceedings of the 19th International Conference on Theory and
Applications of Satisfiability Testing (SAT ’16), volume 9710 of Lecture Notes in Computer
Science, pages 104–122. Springer, July 2016.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem proving.
Communications of the ACM, 5(7):394–397, July 1962.

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 48/43

https://github.com/msoos/cryptominisat/


References VI

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal of the
ACM, 7(3):201–215, 1960.

[EG21] Leon Eifler and Ambros Gleixner. A computational status update for exact rational mixed integer
programming. In Proceedings of the 22nd International Conference on Integer Programming and
Combinatorial Optimization (IPCO ’21), volume 12707 of Lecture Notes in Computer Science,
pages 163–177. Springer, May 2021.

[EGMN20] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Justifying all differences
using pseudo-Boolean reasoning. In Proceedings of the 34th AAAI Conference on Artificial
Intelligence (AAAI ’20), pages 1486–1494, February 2020.

[ES06] Niklas Eén and Niklas Sörensson. Translating pseudo-Boolean constraints into SAT. Journal on
Satisfiability, Boolean Modeling and Computation, 2(1-4):1–26, March 2006.

[GMM+20] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick Prosser, and James
Trimble. Certifying solvers for clique and maximum common (connected) subgraph problems. In
Proceedings of the 26th International Conference on Principles and Practice of Constraint
Programming (CP ’20), volume 12333 of Lecture Notes in Computer Science, pages 338–357.
Springer, September 2020.

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 49/43



References VII

[GMN20] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph isomorphism meets cutting
planes: Solving with certified solutions. In Proceedings of the 29th International Joint Conference
on Artificial Intelligence (IJCAI ’20), pages 1134–1140, July 2020.

[GMN22] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. An auditable constraint programming
solver. In Proceedings of the 28th International Conference on Principles and Practice of
Constraint Programming (CP ’22), volume 235 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 25:1–25:18, August 2022.

[GMNO22] Stephan Gocht, Ruben Martins, Jakob Nordström, and Andy Oertel. Certified CNF translations
for pseudo-Boolean solving. In Proceedings of the 25th International Conference on Theory and
Applications of Satisfiability Testing (SAT ’22), volume 236 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 16:1–16:25, August 2022.

[GN21] Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently using pseudo-Boolean
proofs. In Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI ’21), pages
3768–3777, February 2021.

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 50/43



References VIII

[GS19] Graeme Gange and Peter Stuckey. Certifying optimality in constraint programming. Presentation
at KTH Royal Institute of Technology. Slides available at
https://www.kth.se/polopoly_fs/1.879851.1550484700!/CertifiedCP.pdf, February 2019.

[GSD19] Xavier Gillard, Pierre Schaus, and Yves Deville. SolverCheck: Declarative testing of constraints.
In Proceedings of the 25th International Conference on Principles and Practice of Constraint
Programming (CP ’19), volume 11802 of Lecture Notes in Computer Science, pages 565–582.
Springer, October 2019.

[GSVW14] Maria Garcia de la Banda, Peter J. Stuckey, Pascal Van Hentenryck, and Mark Wallace. The
future of optimization technology. Constraints, 19(2):126–138, April 2014.

[Hak85] Armin Haken. The intractability of resolution. Theoretical Computer Science, 39(2-3):297–308,
August 1985.

[HHW13a] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trimming while checking clausal
proofs. In Proceedings of the 13th International Conference on Formal Methods in
Computer-Aided Design (FMCAD ’13), pages 181–188, October 2013.

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 51/43

https://www.kth.se/polopoly_fs/1.879851.1550484700!/CertifiedCP.pdf


References IX

[HHW13b] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying refutations with extended
resolution. In Proceedings of the 24th International Conference on Automated Deduction
(CADE-24), volume 7898 of Lecture Notes in Computer Science, pages 345–359. Springer, June
2013.

[HHW15] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Expressing symmetry breaking in
DRAT proofs. In Proceedings of the 25th International Conference on Automated Deduction
(CADE-25), volume 9195 of Lecture Notes in Computer Science, pages 591–606. Springer,
August 2015.

[HKB17] Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere. Short proofs without new variables. In
Proceedings of the 26th International Conference on Automated Deduction (CADE-26), volume
10395 of Lecture Notes in Computer Science, pages 130–147. Springer, August 2017.

[JHB12] Matti Järvisalo, Marijn J. H. Heule, and Armin Biere. Inprocessing rules. In Proceedings of the
6th International Joint Conference on Automated Reasoning (IJCAR ’12), volume 7364 of
Lecture Notes in Computer Science, pages 355–370. Springer, June 2012.

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 52/43



References X

[KM21] Sonja Kraiczy and Ciaran McCreesh. Solving graph homomorphism and subgraph isomorphism
problems faster through clique neighbourhood constraints. In Proceedings of the 30th
International Joint Conference on Artificial Intelligence (IJCAI ’21), pages 1396–1402, August
2021.

[Lin] Lingeling, Plingeling and Treengeling. http://fmv.jku.at/lingeling/.

[MML14] Ruben Martins, Vasco M. Manquinho, and Inês Lynce. Open-WBO: A modular MaxSAT solver.
In Proceedings of the 17th International Conference on Theory and Applications of Satisfiability
Testing (SAT ’14), volume 8561 of Lecture Notes in Computer Science, pages 438–445. Springer,
July 2014.

[MMNS11] Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer. Certifying algorithms.
Computer Science Review, 5(2):119–161, May 2011.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff:
Engineering an efficient SAT solver. In Proceedings of the 38th Design Automation Conference
(DAC ’01), pages 530–535, June 2001.

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 53/43

http://fmv.jku.at/lingeling/


References XI

[MO12] David F. Manlove and Gregg O’Malley. Paired and altruistic kidney donation in the UK:
Algorithms and experimentation. In Proceedings of the 11th International Symposium on
Experimental Algorithms (SEA ’12), volume 7276 of Lecture Notes in Computer Science, pages
271–282. Springer, June 2012.

[MS96] João P. Marques-Silva and Karem A. Sakallah. GRASP—a new search algorithm for satisfiability.
In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design
(ICCAD ’96), pages 220–227, November 1996.

[PR16] Tobias Philipp and Adrián Rebola-Pardo. DRAT proofs for XOR reasoning. In Proceedings of the
15th European Conference on Logics in Artificial Intelligence (JELIA ’16), volume 10021 of
Lecture Notes in Computer Science, pages 415–429. Springer, November 2016.

[Rob65] John Alan Robinson. A machine-oriented logic based on the resolution principle. Journal of the
ACM, 12(1):23–41, January 1965.

[RvBW06] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint
Programming, volume 2 of Foundations of Artificial Intelligence. Elsevier, 2006.

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 54/43



References XII

[SN15] Masahiko Sakai and Hidetomo Nabeshima. Construction of an ROBDD for a PB-constraint in
band form and related techniques for PB-solvers. IEICE Transactions on Information and
Systems, 98-D(6):1121–1127, June 2015.

[TD20] Rodrigue Konan Tchinda and Clémentin Tayou Djamégni. On certifying the UNSAT result of
dynamic symmetry-handling-based SAT solvers. Constraints, 25(3–4):251–279, December 2020.

[Urq87] Alasdair Urquhart. Hard examples for resolution. Journal of the ACM, 34(1):209–219, January
1987.

[VDB22] Dieter Vandesande, Wolf De Wulf, and Bart Bogaerts. QMaxSATpb: A certified MaxSAT solver.
In Proceedings of the 16th International Conference on Logic Programming and Non-monotonic
Reasoning (LPNMR ’22), volume 13416 of Lecture Notes in Computer Science, pages 429–442.
Springer, September 2022.

[Ver] VeriPB: Verifier for pseudo-Boolean proofs.
https://gitlab.com/MIAOresearch/software/VeriPB.

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 55/43

https://gitlab.com/MIAOresearch/software/VeriPB


References XIII

[WHH14] Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt Jr. DRAT-trim: Efficient checking and
trimming using expressive clausal proofs. In Proceedings of the 17th International Conference on
Theory and Applications of Satisfiability Testing (SAT ’14), volume 8561 of Lecture Notes in
Computer Science, pages 422–429. Springer, July 2014.

Jakob Nordström (UCPH & LU) Certifying Combinatorial Solving Using Cutting Planes Simons Mar ’23 56/43


	Intro
	MainTalk
	Basic SAT Solving
	CDCL by Example
	Resolution
	Extension Rules

	Advanced SAT Techniques
	Cardinality Constraints and Pseudo-Boolean Reasoning
	Translating Pseudo-Boolean Constraints to CNF
	Parity Reasoning

	Beyond SAT
	Constraint Programming
	Symmetry, Dominance, and Optimization
	Formal Proof System


	Conclusion
	Appendix

