
Abstract Modelling with Conjure

Dr Özgür Akgün (Oz)

School of Computer Science, University of St Andrews, UK

Satisfiability: Theory, Practice, and Beyond Workshop
19 April 2023, Berkeley

Motivation

Selected highlights

From today

• John Hooker: A bunch of isomorphic approaches. Why does
one work better than another in practice?

• Torsten: importance of modelling for the ubuntu package
manager

• Ciaran: fairly large gap between what the user writes and what
the solver gets

• Mate, in several occasions, not trusting the user (or tuners)

Some more

• "Are you a proof theory person or a geek who develops
solvers?" Karem Sakallah

• I am a geek who develops modelling tools
• Don Knuth

• After writing the book on sorting (including 25 algorithms)
• Didn't know which algorithm to use when faced with a real sorting task

• Karem in his roadmap talk: "Can we recover the high-level
structure from CNF?"

• Well, don't destroy it in the first place?

This talk

• A lot more practical than most talks so far
• Mostly about what happens before solving
• My goal is to convince you that there is value in capturing the

problem without losing the high-level problem structure.

•Conjure and its input language Essence
• github.com/conjure-cp/conjure
• conjure.readthedocs.io

http://github.com/conjure-cp/conjure
conjure.readthedocs.io

This talk

• I can only fit so much in 45 minutes
• Out of necessity: a high-level tour of a particular approach
• Not a deep dive
• Several papers on different aspects
• Happy to talk more!

Constraint Programming and friends

• SAT – Boolean satisfiability
• SMT – SAT modulo theories
• CP – Constraint programming
• MIP – Mathematical programming
• ASP – Answer set programming
• Local search methods:

• LNS – Large neighbourhood search
• Heuristics like simulated annealing, etc

Observation

• None of these approaches dominate
• i.e. There are classes of problems where one method is better

and other classes where another method is better
• Even for different instances of the same problem class

Levels of abstraction

• SAT: boolean decision variables, boolean constraints
• LP/IP/MIP: numeric decision variables, system of inequalities
• CP/SMT

• typically decision variables with integer domains
• richer set of constraints

• Essence
• richer set of domains

What is significant?

• Which methodology you use is significant
• Which solver you use is significant
• What solver settings you use is significant
• Which model you use is significant

• Our approach: expose options, then choose
• Decouple the compilation and the decision making

MOTIVATION

• When solving a problem in CP
• Potential performance gain

• Data structures (x10)
• Search strategies (x1000)
• Model (x1000000)

• Chance of success
• Data structures (95%)
• Search strategies (1%)
• Model (0.001%)

MOTIVATION

Jean-Charles Régin
ACP Research Excellence Award

CP 2013

Significance of modelling

• Modelling decisions
• Multiple ways to model a single problem
• Huge impact on solving performance
• “Modelling is an art, rather than science.”
• Can we make it science?

• Holy Grail of computer science
• the user states the problem
• the computer solves it

Modelling
decisions

• Which decision variables to use

Selecting the view point

• Several ways of stating each
constraint

Formulating each constraint

• Multiple view points & Channelling
• Symmetry breaking

Related

Modelling
decisions

• Multiple ways to compile a
code fragment

• They mostly use heuristics

Compilers are similar

• In CP, performance
differences can be huge!

One key difference

High-level
modelling

• Good old days

Modelling to a solver

• Essence Prime, Minizinc, ...

Solver independent modelling

• Problem specification
• Vast space of possibilities: Expose
• Progress towards exploiting

Model independent

Problem class level

•Most modelling tools work on a single instance
• Instantiate, reformulate, solve

•Conjure operates at the problem class levels
• Reformulate, instantiate, solve
• Parameterised input, parameterised output

•This can be a more challenging engineering task
•But all class level effort is amortised across instances

Conjure:
Part of a
pipeline

Languages
• Essence:

• Abstract domains,
• and operators.

• Essence Prime:
• Concrete domains. Non-flat.

• Minion:
• Concrete domains. Flat.

• Other backends:
• CP solvers: Gecode, Chuffed
• SAT: Glucose, Lingeling,

Open-WBO
• SMT, MIP, Local search
• FlatZinc

Tools

• Conjure: Class level
• Main act: Type refinement

• Structural & Symmetry
breaking constraints

• Channelling
• Operator refinement

• Savile Row: Instance level
• Instance level optimisations
• Targets several solvers

Example

Social Golfers

• The coordinator of a local golf club has come to you with the
following problem.

• In their club, there are 32 social golfers, each of whom play golf
once a week, and always in groups of 4.

• They would like you to come up with a schedule of play for
these golfers, to last as many weeks as possible, such that no
golfer plays in the same group as any other golfer on more than
one occasion.

Social Golfers

• The problem can easily be generalized to that of scheduling g
groups of s golfers over w weeks, such that no golfer plays in
the same group as any other golfer twice (i.e. maximum
socialisation is achieved).

• https://www.csplib.org/Problems/prob010/

https://www.csplib.org/Problems/prob010/

Essence

Essence: A problem specification

• A problem specification is made up of a number of top level
statements.

• A statement is one of:
• A declaration: decision variables, problem parameters, aliases, ...
• A constraint (such that)
• An objective statement (maximising/minimising)
• Conditions on valid instances (where)
• Search directives (branching on)

Essence: Declaration statements

•Decision variables
• find X : [DOMAIN]

•Problem parameters
•given P : [DOMAIN]

•Aliases to expressions or domains
• letting K be [EXPRESSION]
• letting D be domain [DOMAIN]

• (We can also declare unnamed and enumerated types, but won’t cover those just yet.)

Essence: Constraints, Objectives

• Constraints
• such that BOOL-EXPRESSION
• Typically involving decision variables

• Objectives
• minimising/maximising INT-EXPRESSION
• Typically involving decision variables

• Conditions on valid instances
• where BOOL-EXPRESSION
• In terms of the problem parameters

Essence: Domains

• Boolean, integer, matrix
• Enumerated, unnamed
• Tuple, record, variant
• Set, multi-set, sequence, function, relation, partition
• Graph (work in progress)

Domains: Set

• Set
• Variable size, no duplicates, unordered
• Cardinality attributes (minSize, maxSize, size)

• Representation options
• Fixed cardinality explicit
• Occurrence
• Variable cardinality explicit (with markers)

Domains: Multi-set

•Multi-set
• Variable size, may contain duplicates, unordered
• Cardinality attributes (minSize, maxSize, size)
• Occurrence attributes (minOccur, maxOccur)

•Representation options
• Explicit with repetition
• Explicit with counts
• Occurrence

Domains: Function

• Function
• Between two domains
• May be partial
• Cardinality attributes
• Function attributes (injective, surjective, bijective)

• Representation options
• For total functions: matrices
• For partial functions: matrices with boolean markers to

indicate function definedness
• Via-relation for sparse partial functions

Domains: Sequence

• Sequence
• Variable size, may contain duplicates, ordered
• Cardinality attributes (minSize, maxSize, size)
• Function-like attributes (injective, surjective, bijective)

• Representations
• A finite array with a size marker

Domains: Relation

• Relation
• On an arbitrary number of domains
• Cardinality constraints
• A number of binary relations attributes (reflexive,

symmetric, Euclidean, ...)
• Representations

• An n-dimensional boolean matrix
• A set-of-tuples representations (good for sparse relations)

Domains: Partition

•Partition
• On any domain
• Attributes on size and number of parts + regularity

•Representations
• Via set-of-sets: which in turn means a bunch of

different representations
• A direct partition occurrence representation

Concrete domains

• bool, int, matrix (very much like a multi-dimensional array)
• Matrices are sometimes natural for a problem
• But often they are a “code smell” – try to use abstract

domains where possible!

• Also available in Essence Prime

Domains: Tuple/Record

• Tuples
• find x : (DOMAIN_1, DOMAIN_2, ...)
• Arbitrary arity, accessed by square brackets
• Indexing starting at 1

• Records
• Similar to tuples, but fields are named
• find x : record { foo : DOMAIN_1, bar : DOMAIN_2 }
• Access by square brackets
• x[foo] + x[bar] = ...

Domains: Variants

• Similar syntax to records
• But only one active at a time
• Called tagged unions in some programming languages
• Syntax

• find x : variant { foo : DOMAIN_1, bar : DOMAIN_2 }
• x[foo]
• active(x, foo) – returns a Boolean

Domains: enumerated & unnamed types

• Enumerated
• letting Colours be new type enum {Red, Yellow, Green}
• given modes new type enum

• Unnamed
• Avoids naming values of a domain
• Aids type-directed symmetry breaking

Opportunities

Selected
highlights

Symmetry breaking

Model strengthening

Savile Row optimisations

Model selection (heuristics, racing, tuning)

Streamlining

Local search (SNS, Athanor)

Instance generation (for training, evaluation)

Constraint Dominance Programming

Symmetry breaking

• Automated symmetry breaking
• 2Conjure does not introduce symmetry

• i.e. breaks all symmetry it introduces

• Automated Symmetry Breaking and Model Selection in Conjure (CP 2013)
• Breaking Conditional Symmetry in Automated Constraint Modelling with

Conjure (ECAI 2014)

• Great when enumerating combinatorial objects

Streamlining constraints

• Adding uninferred constraints
• Directed by the domains

• Half of the functions in this set of functions are non-
decreasing

• A sequence is surjective on the even subset of values
• Etc...

• Selection: Monte Carlo Search on a Model Lattice
• "Automated streamliner portfolios for constraint satisfaction

problems." Artificial Intelligence (2023)

Constraint Dominance Programming

• Adding constraints among solutions
• If X is a solution, Y shouldn't be
• Very expressive
• Applications in multi-objective optimisation and data mining

• Exploiting incomparability in solution dominance: Improving general
purpose constraint-based mining (ECAI 2020)

Structure guided local search

• Generate declarative neighbourhoods
• Again, directed by the domains

• For a partition, move an item between parts
• Instead of removing the item and not putting it back

• A Framework for Constraint Based Local Search using Essence (IJCAI 18)
• Athanor: high-level local search over abstract constraint specifications in

Essence (IJCAI 19)

Channelled models

• There are typically several ways of representing an abstract
decision variable

• Every occurrence of an abstract decision variable is an
opportunity for a new representation

• Conjure automatically produces channelling constraints
• May help with propagation
• May act as a good search order

• Modelling Langford’s Problem: A Viewpoint for Search (ModRef 18)

Multiple models

• Conjure can generate a large number of models
(1000s in some cases)

• What to do with these?
• Model selection, model portfolios, racing
• Heuristics

• There are a few built in
• “Compact” seems to work reasonably well

Savile Row optimisations

• Instance level, for a particular solver
• Common subexpression elimination

• A way of connecting constraints
• Automatic tabulation

• Explicit representation of allowed tuples
• For subsets of constraints
• Another way of connecting constraints
• Choosing when to do this: to be presented at IJCAI 2023

Model & solver selection

• Applying algorithm tuning and algorithm selection methods
• They work reasonably well within a problem class
• They can help explain why something works

• Caveat:
• I share some of Mate's Skepticism about the existing tools

Generating benchmark instances

• Can automatically generate benchmark instances that
differentiate between options (model or solver)

• Works well for approach A, but not for approach B
• "Automated cherry-picking"
• Useful for identifying shortcomings of particular options

• Instance generation via generator instances (CP 2019)
• Discriminating instance generation from abstract specifications: A case

study with CP and MIP (CPAIOR 2020)

Summary

• I believe capturing the problem without losing the high-level
problem structure is very valuable.

• Allows efficient translation to multiple models and solvers
• Expose options, choose depending on data
• "Conjure: Automatic generation of constraint models from problem

specifications" (Artificial Intelligence 2022)
• Next steps

• Better translations & better choosing
• Better understanding of what works and why
• So we can focus on what needs improving

Some advertisement

• Get Conjure
• github.com/conjure-cp/conjure
• conjure.readthedocs.io

• Savile Row savilerow.cs.st-andrews.ac.uk
• Essence Catalog github.com/conjure-cp/EssenceCatalog
• CSPLib CSPLib.org

http://github.com/conjure-cp/conjure
conjure.readthedocs.io
savilerow.cs.st-andrews.ac.uk
http://github.com/conjure-cp/EssenceCatalog
http://csplib.org/

Abstract Modelling with Conjure
Dr Özgür Akgün

School of Computer Science, University of St Andrews
ozgur.akgun@st-andrews.ac.uk

Berkeley, 19 April 2023

mailto:ozgur.akgun@st-andrews.ac.uk

