# Aggregative Efficiency of Bayesian Learning in Networks 

Krishna Dasaratha Kevin He<br>Simons Institute Economics of Networks Conference

December 1, 2022

## Social-Learning Dynamics in Different Networks

- Social learning: info about unknown state dispersed among society of agents, agents act based on private signals and observations of social neighbors


## Social-Learning Dynamics in Different Networks

- Social learning: info about unknown state dispersed among society of agents, agents act based on private signals and observations of social neighbors
- How does social network affect efficiency of info aggregation?


## Social-Learning Dynamics in Different Networks

- Social learning: info about unknown state dispersed among society of agents, agents act based on private signals and observations of social neighbors
- How does social network affect efficiency of info aggregation?
- Much of existing theoretical work on complete network


## Social-Learning Dynamics in Different Networks

- Social learning: info about unknown state dispersed among society of agents, agents act based on private signals and observations of social neighbors
- How does social network affect efficiency of info aggregation?
- Much of existing theoretical work on complete network
- Less known about how rational social learning compares across networks, and existing results say agents eventually learn completely on all (reasonable) networks


## Social-Learning Dynamics in Different Networks

- Social learning: info about unknown state dispersed among society of agents, agents act based on private signals and observations of social neighbors
- How does social network affect efficiency of info aggregation?
- Much of existing theoretical work on complete network
- Less known about how rational social learning compares across networks, and existing results say agents eventually learn completely on all (reasonable) networks
- Open question: impact of network on how well signals are aggregated - hence how quickly rational agents learn


## Social-Learning Dynamics in Different Networks

- Social learning: info about unknown state dispersed among society of agents, agents act based on private signals and observations of social neighbors
- How does social network affect efficiency of info aggregation?
- Much of existing theoretical work on complete network
- Less known about how rational social learning compares across networks, and existing results say agents eventually learn completely on all (reasonable) networks
- Open question: impact of network on how well signals are aggregated - hence how quickly rational agents learn

Golub and Sadler (2016): "A significant gap in our knowledge concerns short-run dynamics and rates of learning in these models."

## Environment and Key Results

Introduce tractable model of rational sequential learning that lets us compare learning dynamics across different networks

## Environment and Key Results

Introduce tractable model of rational sequential learning that lets us compare learning dynamics across different networks

- define measure that ranks networks wrt social-learning efficiency


## Environment and Key Results

Introduce tractable model of rational sequential learning that lets us compare learning dynamics across different networks

- define measure that ranks networks wrt social-learning efficiency

Highlight network-based informational confounds

## Environment and Key Results

Introduce tractable model of rational sequential learning that lets us compare learning dynamics across different networks

- define measure that ranks networks wrt social-learning efficiency

Highlight network-based informational confounds

- suppose P2 and P3 see P1, but P4 sees only P2 and P3


## Environment and Key Results

Introduce tractable model of rational sequential learning that lets us compare learning dynamics across different networks

- define measure that ranks networks wrt social-learning efficiency

Highlight network-based informational confounds

- suppose P2 and P3 see P1, but P4 sees only P2 and P3
- from P4's perspective, P1's action confounds the info content of P2 and P3's behavior


## Environment and Key Results

Introduce tractable model of rational sequential learning that lets us compare learning dynamics across different networks

- define measure that ranks networks wrt social-learning efficiency

Highlight network-based informational confounds

- suppose P2 and P3 see P1, but P4 sees only P2 and P3
- from P4's perspective, P1's action confounds the info content of P2 and P3's behavior
- "intransitivity" that appears in almost all realistic observation networks can lead to arbitrarily inefficient social learning


## Environment and Key Results

Introduce tractable model of rational sequential learning that lets us compare learning dynamics across different networks

- define measure that ranks networks wrt social-learning efficiency

Highlight network-based informational confounds

- suppose P2 and P3 see P1, but P4 sees only P2 and P3
- from P4's perspective, P1's action confounds the info content of P2 and P3's behavior
- "intransitivity" that appears in almost all realistic observation networks can lead to arbitrarily inefficient social learning

Generations network - observe subset of agents in previous gen

## Environment and Key Results

Introduce tractable model of rational sequential learning that lets us compare learning dynamics across different networks

- define measure that ranks networks wrt social-learning efficiency

Highlight network-based informational confounds

- suppose P2 and P3 see P1, but P4 sees only P2 and P3
- from P4's perspective, P1's action confounds the info content of P2 and P3's behavior
- "intransitivity" that appears in almost all realistic observation networks can lead to arbitrarily inefficient social learning

Generations network - observe subset of agents in previous gen

- express learning rate as simple function of network parameters


## Environment and Key Results

Introduce tractable model of rational sequential learning that lets us compare learning dynamics across different networks

- define measure that ranks networks wot social-learning efficiency


## Highlight network-based informational confounds

- suppose P2 and P3 see P1, but P4 sees only P2 and P3
- from P4's perspective, P1's action confounds the info content of P2 and P3's behavior
- "intransitivity" that appears in almost all realistic observation networks can lead to arbitrarily inefficient social learning

Generations network - observe subset of agents in previous gen

- express learning rate as simple function of network parameters
- extent of info loss: under a symmetry condition, learning aggregates no more than 2 signals per gen asymptotically


## Related Social-Learning Literature

Sequential learning: Banerjee (1992), Bikhchandani, Hirshleifer, Welch (1992)
Network structure and Bayesian social learning

- Network does not matter (within "reasonable" class) for long-run learning: Acemoglu, Dahleh, Lobel, and Ozdaglar (2011), Lobel and Sadler (2015), Rosenberg and Vieille (2019)
- Examples and simulations: Sgroi (2002), Lobel, Acemoglu, Dahleh, and Ozdaglar (2009), Arieli and Mueller-Frank (2019)
- Adoption Dynamics: Board and Meyer-ter-Vehn (2021)
- This paper: analytic ranking of networks on rate of learning

Other obstructions to the efficient learning rate

- Coarse action space: Harel, Mossel, Strack, Tamuz (2020), Rosenberg and Vieille (2019), Hann-Caruthers, Martynov, Tamuz (2018)
- Endogenous info: Burguet and Vives (2000), Mueller-Frank and Pai (2016), Ali (2018), Lomys (2020), Liang and Mu (2020)
- This paper: network-based obstructions to efficient learning

Speed of learning under heuristics: Ellison and Fudenberg (1993), Golub and Jackson (2012), Molavi, Tahbaz-Salehi, Jadbabaie (2018). This paper:
rational learning

## Model and Notations

- Two equally likely states $\omega \in\{0,1\}$


## Model and Notations

- Two equally likely states $\omega \in\{0,1\}$
- Agents $i=1,2,3, \ldots$ move in order, each acting once


## Model and Notations

- Two equally likely states $\omega \in\{0,1\}$
- Agents $i=1,2,3, \ldots$ move in order, each acting once
- $i$ observes private signal $s_{i} \in \mathbb{R}$


## Model and Notations

- Two equally likely states $\omega \in\{0,1\}$
- Agents $i=1,2,3, \ldots$ move in order, each acting once
- $i$ observes private signal $s_{i} \in \mathbb{R}$ and actions of neighbors, $N(i) \subseteq\{1, \ldots i-1\}$


## Model and Notations

- Two equally likely states $\omega \in\{0,1\}$
- Agents $i=1,2,3, \ldots$ move in order, each acting once
- $i$ observes private signal $s_{i} \in \mathbb{R}$ and actions of neighbors, $N(i) \subseteq\{1, \ldots i-1\}$
- picks action $a_{i} \in[0,1]$ to maximize expectation of $-\left(a_{i}-\omega\right)^{2}$, so $a_{i}=\mathbb{P}[\omega=1 \mid i$ 's information $]$


## Model and Notations

- Two equally likely states $\omega \in\{0,1\}$
- Agents $i=1,2,3, \ldots$ move in order, each acting once
- $i$ observes private signal $s_{i} \in \mathbb{R}$ and actions of neighbors, $N(i) \subseteq\{1, \ldots i-1\}$
- picks action $a_{i} \in[0,1]$ to maximize expectation of $-\left(a_{i}-\omega\right)^{2}$, so $a_{i}=\mathbb{P}[\omega=1 \mid i$ 's information $]$
- Signals are Gaussian and conditionally i.i.d. given state,


## Model and Notations

- Two equally likely states $\omega \in\{0,1\}$
- Agents $i=1,2,3, \ldots$ move in order, each acting once
- $i$ observes private signal $s_{i} \in \mathbb{R}$ and actions of neighbors, $N(i) \subseteq\{1, \ldots i-1\}$
- picks action $a_{i} \in[0,1]$ to maximize expectation of $-\left(a_{i}-\omega\right)^{2}$, so $a_{i}=\mathbb{P}[\omega=1 \mid i$ 's information $]$
- Signals are Gaussian and conditionally i.i.d. given state, $s_{i} \sim \mathcal{N}\left(1, \sigma^{2}\right)$ when $\omega=1$


## Model and Notations

- Two equally likely states $\omega \in\{0,1\}$
- Agents $i=1,2,3, \ldots$ move in order, each acting once
- $i$ observes private signal $s_{i} \in \mathbb{R}$ and actions of neighbors, $N(i) \subseteq\{1, \ldots i-1\}$
- picks action $a_{i} \in[0,1]$ to maximize expectation of $-\left(a_{i}-\omega\right)^{2}$, so $a_{i}=\mathbb{P}[\omega=1 \mid i$ 's information $]$
- Signals are Gaussian and conditionally i.i.d. given state, $s_{i} \sim \mathcal{N}\left(1, \sigma^{2}\right)$ when $\omega=1$ and $s_{i} \sim \mathcal{N}\left(-1, \sigma^{2}\right)$ when $\omega=0$


## Model and Notations

- Two equally likely states $\omega \in\{0,1\}$
- Agents $i=1,2,3, \ldots$ move in order, each acting once
- $i$ observes private signal $s_{i} \in \mathbb{R}$ and actions of neighbors, $N(i) \subseteq\{1, \ldots i-1\}$
- picks action $a_{i} \in[0,1]$ to maximize expectation of $-\left(a_{i}-\omega\right)^{2}$, so $a_{i}=\mathbb{P}[\omega=1 \mid i$ 's information $]$
- Signals are Gaussian and conditionally i.i.d. given state, $s_{i} \sim \mathcal{N}\left(1, \sigma^{2}\right)$ when $\omega=1$ and $s_{i} \sim \mathcal{N}\left(-1, \sigma^{2}\right)$ when $\omega=0$
- Neighborhoods $N(i)$ are common knowledge


## Model and Notations

- Two equally likely states $\omega \in\{0,1\}$
- Agents $i=1,2,3, \ldots$ move in order, each acting once
- $i$ observes private signal $s_{i} \in \mathbb{R}$ and actions of neighbors, $N(i) \subseteq\{1, \ldots i-1\}$
- picks action $a_{i} \in[0,1]$ to maximize expectation of $-\left(a_{i}-\omega\right)^{2}$, so $a_{i}=\mathbb{P}[\omega=1 \mid i$ 's information $]$
- Signals are Gaussian and conditionally i.i.d. given state, $s_{i} \sim \mathcal{N}\left(1, \sigma^{2}\right)$ when $\omega=1$ and $s_{i} \sim \mathcal{N}\left(-1, \sigma^{2}\right)$ when $\omega=0$
- Neighborhoods $N(i)$ are common knowledge
- Agents are Bayesian and choose optimal actions (given observations and predecessors' play)


## Log-Linearity of Actions

WLOG apply log-transformations and work with log-likelihoods

- Log-signal $\lambda_{i}:=\ln \left(\frac{\mathbb{P}\left[\omega=1 \mid s_{i}\right]}{\mathbb{P}\left[\omega=0 \mid s_{i}\right]}\right)$, log-actions $\ell_{i}:=\ln \left(\frac{a_{i}}{1-a_{i}}\right)$
- These changes are 1-to-1, so there is a (unique) map from $i$ 's log-signal and neighbors' log-actions to i's optimal log-action
- Our first result says this map is linear


## Proposition 1

For each agent $i$ with $N(i)=\left\{j(1), \ldots, j\left(n_{i}\right)\right\}$, there exist constants $\left(\beta_{i, j(k)}\right)_{k=1}^{n_{i}}$ s.t.

$$
\ell_{i}^{*}=\lambda_{i}+\sum_{k=1}^{n_{i}} \beta_{i, j(k)} \ell_{j(k)}^{*} .
$$

- Proof gives explicit formula for coefficients $\beta_{i, j(k)}$


## Signal-Counting Interpretation of Accuracy

If $i$ 's only info is $n \in \mathbb{N}_{+}$indep signals, $\ell_{i} \sim \mathcal{N}\left( \pm n \cdot \frac{2}{\sigma^{2}}, n \cdot \frac{4}{\sigma^{2}}\right)$

## Signal-Counting Interpretation of Accuracy

If $i$ 's only info is $n \in \mathbb{N}_{+}$indep signals, $\ell_{i} \sim \mathcal{N}\left( \pm n \cdot \frac{2}{\sigma^{2}}, n \cdot \frac{4}{\sigma^{2}}\right)$

## Definition

Social learning aggregates $r \in \mathbb{R}_{+}$signals by agent $i$ if $\log$-action $\ell_{i}^{*} \sim \mathcal{N}\left( \pm r \cdot \frac{2}{\sigma^{2}}, r \cdot \frac{4}{\sigma^{2}}\right)$ in two states.

## Signal-Counting Interpretation of Accuracy

If $i$ 's only info is $n \in \mathbb{N}_{+}$indep signals, $\ell_{i} \sim \mathcal{N}\left( \pm n \cdot \frac{2}{\sigma^{2}}, n \cdot \frac{4}{\sigma^{2}}\right)$

## Definition

Social learning aggregates $r \in \mathbb{R}_{+}$signals by agent $i$ if $\log$-action $\ell_{i}^{*} \sim \mathcal{N}\left( \pm r \cdot \frac{2}{\sigma^{2}}, r \cdot \frac{4}{\sigma^{2}}\right)$ in two states.

- When agents choose arbitrary actions (even if log-linear), need not hold for any $r \in \mathbb{R}$


## Signal-Counting Interpretation of Accuracy

If $i$ 's only info is $n \in \mathbb{N}_{+}$indep signals, $\ell_{i} \sim \mathcal{N}\left( \pm n \cdot \frac{2}{\sigma^{2}}, n \cdot \frac{4}{\sigma^{2}}\right)$

## Definition

Social learning aggregates $r \in \mathbb{R}_{+}$signals by agent $i$ if $\log$-action $\ell_{i}^{*} \sim \mathcal{N}\left( \pm r \cdot \frac{2}{\sigma^{2}}, r \cdot \frac{4}{\sigma^{2}}\right)$ in two states.

- When agents choose arbitrary actions (even if log-linear), need not hold for any $r \in \mathbb{R}$
- But rational log-actions always admit this kind of signal-counting interpretation, suff. stat for rational accuracy


## Signal-Counting Interpretation of Accuracy

If $i$ 's only info is $n \in \mathbb{N}_{+}$indep signals, $\ell_{i} \sim \mathcal{N}\left( \pm n \cdot \frac{2}{\sigma^{2}}, n \cdot \frac{4}{\sigma^{2}}\right)$

## Definition

Social learning aggregates $r \in \mathbb{R}_{+}$signals by agent $i$ if $\log$-action $\ell_{i}^{*} \sim \mathcal{N}\left( \pm r \cdot \frac{2}{\sigma^{2}}, r \cdot \frac{4}{\sigma^{2}}\right)$ in two states.

- When agents choose arbitrary actions (even if log-linear), need not hold for any $r \in \mathbb{R}$
- But rational log-actions always admit this kind of signal-counting interpretation, suff. stat for rational accuracy


## Proposition 2

There exist $\left(r_{i}\right)_{i \geq 1}$ so that social learning aggregates $r_{i}$ signals by agent $i$. These $\left(r_{i}\right)_{i \geq 1}$ depend on the network, but not on $\sigma^{2}$.

## Signal-Counting Interpretation of Accuracy

If $i$ 's only info is $n \in \mathbb{N}_{+}$indep signals, $\ell_{i} \sim \mathcal{N}\left( \pm n \cdot \frac{2}{\sigma^{2}}, n \cdot \frac{4}{\sigma^{2}}\right)$

## Definition

Social learning aggregates $r \in \mathbb{R}_{+}$signals by agent $i$ if $\log$-action $\ell_{i}^{*} \sim \mathcal{N}\left( \pm r \cdot \frac{2}{\sigma^{2}}, r \cdot \frac{4}{\sigma^{2}}\right)$ in two states.

- When agents choose arbitrary actions (even if log-linear), need not hold for any $r \in \mathbb{R}$
- But rational log-actions always admit this kind of signal-counting interpretation, suff. stat for rational accuracy


## Proposition 2

There exist $\left(r_{i}\right)_{i \geq 1}$ so that social learning aggregates $r_{i}$ signals by agent $i$. These $\left(r_{i}\right)_{i \geq 1}$ depend on the network, but not on $\sigma^{2}$.

- Can measure each i's accuracy in units of private signals


## An Example of Informational Confound

$$
\begin{array}{cl}
\hline \text { Agent } & S_{1}=0.50 \\
1 & a_{1}=0.73
\end{array}
$$

## An Example of Informational Confound

$$
\begin{array}{cl}
\text { Agent } & S_{1}=0.50 \\
1 & a_{1}=0.73
\end{array}
$$

Agent $\mathrm{S}_{2}=1.00$ 2

$$
\begin{aligned}
& \text { Agent } \mathrm{s}_{3}=-0.2 \\
& 3
\end{aligned}
$$

## An Example of Informational Confound

$$
\begin{array}{cl}
\text { Agent } & S_{1}=0.50 \\
1 & a_{1}=0.73
\end{array}
$$

Agent $\mathrm{S}_{2}=1.00$
$2 \quad a_{2}=0.88$

$$
\begin{array}{cc}
\text { Agent } & s_{3}=-0.2 \\
3 & a_{3}=0.40
\end{array}
$$

## An Example of Informational Confound



## An Example of Informational Confound



- P4 perfectly infers P2 and P3's signals from their actions


## An Example of Informational Confound



- P4 perfectly infers P2 and P3's signals from their actions
- $r_{4}=3$ signals, fully incorporates info in $s_{2}, s_{3}$, and $s_{4}$


## An Example of Informational Confound

$$
\begin{array}{cc}
\text { Agent } & s_{1}=0.50 \\
1 & a_{1}=0.73
\end{array}
$$

$$
\begin{array}{cc}
\text { Agent } & s_{1}=0.50 \\
1 & a_{1}=0.73
\end{array}
$$



- P4 perfectly infers P2 and P3's signals from their actions
- $r_{4}=3$ signals, fully incorporates info in $s_{2}, s_{3}$, and $s_{4}$


## An Example of Informational Confound



$$
\begin{array}{cc}
\hline \text { Agent } & s_{1}=0.50 \\
1 & a_{1}=0.73
\end{array}
$$

| Agent $\mathrm{s}_{2}=1.00$ <br> 2 | Agent $\mathrm{s}_{3}=-0.2$ <br> 3 |
| :---: | :---: |

- P4 perfectly infers P2 and P3's signals from their actions
- $r_{4}=3$ signals, fully incorporates info in $s_{2}, s_{3}$, and $s_{4}$


## An Example of Informational Confound



- P4 perfectly infers P2 and P3's signals from their actions
- $r_{4}=3$ signals, fully incorporates info in $s_{2}, s_{3}$, and $s_{4}$


## An Example of Informational Confound



- P4 perfectly infers P2 and P3's signals from their actions
- $r_{4}=3$ signals, fully incorporates info in $s_{2}, s_{3}$, and $s_{4}$


## An Example of Informational Confound



- P4 perfectly infers P2 and P3's signals from their actions
- $r_{4}=3$ signals, fully incorporates info in $s_{2}, s_{3}$, and $s_{4}$


## An Example of Informational Confound



- P4 perfectly infers P2 and P3's signals from their actions
- $r_{4}=3$ signals, fully incorporates info in $s_{2}, s_{3}$, and $s_{4}$
- $a_{1}$ influences both $a_{2}$ and $a_{3}$, but is unobserved by P4


## An Example of Informational Confound



- P4 perfectly infers P2 and P3's signals from their actions
- $r_{4}=3$ signals, fully incorporates info in $s_{2}, s_{3}$, and $s_{4}$
- $a_{1}$ influences both $a_{2}$ and $a_{3}$, but is unobserved by P4
- P4 cannot fully incorporate $s_{2}$ and $s_{3}$ without over-counting $s_{1}$


## An Example of Informational Confound



- P4 perfectly infers P2 and P3's signals from their actions
- $r_{4}=3$ signals, fully incorporates info in $s_{2}, s_{3}$, and $s_{4}$
- $a_{1}$ influences both $a_{2}$ and $a_{3}$, but is unobserved by P4
- P4 cannot fully incorporate $s_{2}$ and $s_{3}$ without over-counting $s_{1}$
- With optimal signal extraction,
$r_{4}=$


## An Example of Informational Confound



- P4 perfectly infers P2 and P3's signals from their actions
- $r_{4}=3$ signals, fully incorporates info in $s_{2}, s_{3}$, and $s_{4}$
- $a_{1}$ influences both $a_{2}$ and $a_{3}$, but is unobserved by P4
- P4 cannot fully incorporate $s_{2}$ and $s_{3}$ without over-counting $s_{1}$
- With optimal signal extraction, $r_{4}=$ " $3 . \overline{66}$ signals" (to be formalized soon)


## A More Severe Confound



- Three generations of differing sizes, each observe all members of previous generation


## A More Severe Confound



- Three generations of differing sizes, each observe all members of previous generation
- Change in accuracy between generations 2 and 3 is equivalent to getting $\frac{(K+1)\left(K^{\prime}-1\right)}{K K^{\prime}+1}+1<3$ additional signals


## A More Severe Confound



- Three generations of differing sizes, each observe all members of previous generation
- Change in accuracy between generations 2 and 3 is equivalent to getting $\frac{(K+1)\left(K^{\prime}-1\right)}{K K^{\prime}+1}+1<3$ additional signals
- Little change in accuracy-even if $K$ small, so little confounding information!
- Even if $K^{\prime}$ is also large-many new signals in generation 2, but almost all information lost


## Condition for Long-Run Learning

- Society learns completely in the long run if actions $a_{i}^{*} \rightarrow \omega$ in probability (equivalent to $r_{i} \rightarrow \infty$ )


## Condition for Long-Run Learning

- Society learns completely in the long run if actions $a_{i}^{*} \rightarrow \omega$ in probability (equivalent to $r_{i} \rightarrow \infty$ )


## Proposition 3

Society learns completely in the long run if and only if

$$
\lim _{i \rightarrow \infty}\left[\max _{j \in N(i)} j\right]=\infty
$$

## Condition for Long-Run Learning

- Society learns completely in the long run if actions $a_{i}^{*} \rightarrow \omega$ in probability (equivalent to $r_{i} \rightarrow \infty$ )


## Proposition 3

Society learns completely in the long run if and only if

$$
\lim _{i \rightarrow \infty}\left[\max _{j \in N(i)} j\right]=\infty
$$

- Analog of Acemoglu, Dahleh, Lobel, and Ozdaglar (2011)'s expanding observations property for deterministic network


## Condition for Long-Run Learning

- Society learns completely in the long run if actions $a_{i}^{*} \rightarrow \omega$ in probability (equivalent to $r_{i} \rightarrow \infty$ )


## Proposition 3

Society learns completely in the long run if and only if

$$
\lim _{i \rightarrow \infty}\left[\max _{j \in N(i)} j\right]=\infty
$$

- Analog of Acemoglu, Dahleh, Lobel, and Ozdaglar (2011)'s expanding observations property for deterministic network
- Mild and clearly necessary: else for some $C<\infty$, infinitely many $i$ cannot access the signal of any $j>C$ except their own


## Condition for Long-Run Learning

- Society learns completely in the long run if actions $a_{i}^{*} \rightarrow \omega$ in probability (equivalent to $r_{i} \rightarrow \infty$ )


## Proposition 3

Society learns completely in the long run if and only if

$$
\lim _{i \rightarrow \infty}\left[\max _{j \in N(i)} j\right]=\infty
$$

- Analog of Acemoglu, Dahleh, Lobel, and Ozdaglar (2011)'s expanding observations property for deterministic network
- Mild and clearly necessary: else for some $C<\infty$, infinitely many $i$ cannot access the signal of any $j>C$ except their own
- Satisfied in all "reasonable" networks, not useful for ranking


## Aggregative Efficiency

## Definition

$\lim _{i \rightarrow \infty}\left(r_{i} / i\right)$ is the aggregative efficiency of the network

## Aggregative Efficiency

## Definition

$\lim _{i \rightarrow \infty}\left(r_{i} / i\right)$ is the aggregative efficiency of the network

- What fraction of signals in the entire society do individuals aggregate under social learning?


## Aggregative Efficiency

## Definition

$\lim _{i \rightarrow \infty}\left(r_{i} / i\right)$ is the aggregative efficiency of the network

- What fraction of signals in the entire society do individuals aggregate under social learning?
- Can have $r_{i} \rightarrow \infty$ but $\lim _{i \rightarrow \infty}\left(r_{i} / i\right)$ near 0: complete long-run learning, but get there very slowly


## Aggregative Efficiency

## Definition

$\lim _{i \rightarrow \infty}\left(r_{i} / i\right)$ is the aggregative efficiency of the network

- What fraction of signals in the entire society do individuals aggregate under social learning?
- Can have $r_{i} \rightarrow \infty$ but $\lim _{i \rightarrow \infty}\left(r_{i} / i\right)$ near 0: complete long-run learning, but get there very slowly
- Higher aggregative efficiency $\Rightarrow$ higher welfare if signals are not too precise and welfare function is patient


## Aggregative Efficiency

## Definition

$\lim _{i \rightarrow \infty}\left(r_{i} / i\right)$ is the aggregative efficiency of the network

- What fraction of signals in the entire society do individuals aggregate under social learning?
- Can have $r_{i} \rightarrow \infty$ but $\lim _{i \rightarrow \infty}\left(r_{i} / i\right)$ near 0: complete long-run learning, but get there very slowly
- Higher aggregative efficiency $\Rightarrow$ higher welfare if signals are not too precise and welfare function is patient
- Rest of the talk: compare networks for social learning by comparing their aggregative efficiency


## Maximal Generations Networks

- $K \geq 1$ agents per generation


## Maximal Generations Networks

- $K \geq 1$ agents per generation
- Agents in gen $t$ observe all agents in gen $t-1$


## Maximal Generations Networks

- $K \geq 1$ agents per generation
- Agents in gen $t$ observe all agents in gen $t-1$



## Maximal Generations Networks

- $K \geq 1$ agents per generation
- Agents in gen $t$ observe all agents in gen $t-1$



## Maximal Generations Networks

- $K \geq 1$ agents per generation
- Agents in gen $t$ observe all agents in gen $t-1$



## Maximal Generations Networks

- $K \geq 1$ agents per generation
- Agents in gen $t$ observe all agents in gen $t-1$



## Maximal Generations Networks

- $K \geq 1$ agents per generation
- Agents in gen $t$ observe all agents in gen $t-1$


## Proposition 4

In maximal generations networks:


## Maximal Generations Networks

- $K \geq 1$ agents per generation
- Agents in gen $t$ observe all agents in gen $t-1$



## Proposition 4

In maximal generations
networks:

- $\lim _{i \rightarrow \infty}\left(r_{i} / i\right)=\frac{(2 K-1)}{K^{2}}$


## Maximal Generations Networks

- $K \geq 1$ agents per generation
- Agents in gen $t$ observe all agents in gen $t-1$



## Proposition 4

In maximal generations networks:

- $\lim _{i \rightarrow \infty}\left(r_{i} / i\right)=\frac{(2 K-1)}{K^{2}}$
- In the long run, social learning aggregates...


## Maximal Generations Networks

- $K \geq 1$ agents per generation
- Agents in gen $t$ observe all agents in gen $t-1$



## Proposition 4

In maximal generations networks:

- $\lim _{i \rightarrow \infty}\left(r_{i} / i\right)=\frac{(2 K-1)}{K^{2}}$
- In the long run, social learning aggregates...
- fewer than 2 signals per generation with any $K$


## Maximal Generations Networks

- $K \geq 1$ agents per generation
- Agents in gen $t$ observe all agents in gen $t-1$



## Proposition 4

In maximal generations networks:

- $\lim _{i \rightarrow \infty}\left(r_{i} / i\right)=\frac{(2 K-1)}{K^{2}}$
- In the long run, social learning aggregates...
- fewer than 2 signals per generation with any $K$
- fewer signals per agent with larger K


## Maximal Generations Networks

- $K \geq 1$ agents per generation
- Agents in gen $t$ observe all agents in gen $t-1$



## Proposition 4

In maximal generations networks:

- $\lim _{i \rightarrow \infty}\left(r_{i} / i\right)=\frac{(2 K-1)}{K^{2}}$
- In the long run, social learning aggregates...
- fewer than 2 signals per generation with any $K$
- fewer signals per agent with larger K
- more signals per generation with larger $K$


## Maximal Generations Networks

- $K \geq 1$ agents per generation
- Agents in gen $t$ observe all agents in gen $t-1$



## Proposition 4

In maximal generations networks:

- $\lim _{i \rightarrow \infty}\left(r_{i} / i\right)=\frac{(2 K-1)}{K^{2}}$
- In the long run, social learning aggregates...
- fewer than 2 signals per generation with any $K$
- fewer signals per agent with larger K
- more signals per generation with larger $K$
- After generation 2, social learning aggregates fewer than 3 signals per generation with any $K$


## Bounds on Signals Aggregated Per Generation

- Social learning must aggregate at least 1 signal per gen (improvement by combining own signal with social obs)


## Bounds on Signals Aggregated Per Generation

- Social learning must aggregate at least 1 signal per gen (improvement by combining own signal with social obs)
- This lower-bound not too far from the actual learning rate:


## Bounds on Signals Aggregated Per Generation

- Social learning must aggregate at least 1 signal per gen (improvement by combining own signal with social obs)
- This lower-bound not too far from the actual learning rate:

$$
r_{i} / \underbrace{\lceil i / K\rceil}_{\text {gen of } i}=\underbrace{\frac{(2 K-1)}{K}}_{<2}+o(1)
$$

(No more than 2 signals per gen in long-run, for any $K$ )

## Bounds on Signals Aggregated Per Generation

- Social learning must aggregate at least 1 signal per gen (improvement by combining own signal with social obs)
- This lower-bound not too far from the actual learning rate:

$$
r_{i} / \underbrace{\lceil i / K\rceil}_{\text {gen of } i}=\underbrace{\frac{(2 K-1)}{K}}_{<2}+o(1)
$$

(No more than 2 signals per gen in long-run, for any $K$ )

$$
r_{i}-r_{i^{\prime}} \leq 3, \quad \text { for } i, i^{\prime} \text { in gen } t, t-1 \text { where } t \geq 3
$$

(No more than 3 signals per gen starting with gen 3, for any $K$ )

## Bounds on Signals Aggregated Per Generation

- Social learning must aggregate at least 1 signal per gen (improvement by combining own signal with social obs)
- This lower-bound not too far from the actual learning rate:

$$
r_{i} / \underbrace{\lceil i / K\rceil}_{\text {gen of } i}=\underbrace{\frac{(2 K-1)}{K}}_{<2}+o(1)
$$

(No more than 2 signals per gen in long-run, for any $K$ )

$$
r_{i}-r_{i^{\prime}} \leq 3, \quad \text { for } i, i^{\prime} \text { in gen } t, t-1 \text { where } t \geq 3
$$

(No more than 3 signals per gen starting with gen 3, for any $K$ )

- For $K$ large, aggregate only an unboundedly small fraction of the private signals


## Intuition for Inefficient Learning

- Someone in gen $t+1$ finds it hard to figure out gen $t$ 's private signals due to info confounding
- Which part of neighbors' actions come from their signals, and which part from their own social observations?


## Intuition for Inefficient Learning

- Someone in gen $t+1$ finds it hard to figure out gen $t$ 's private signals due to info confounding
- Which part of neighbors' actions come from their signals, and which part from their own social observations?
- Must trade off overweighting gen $t$ 's private signals and underweighting gen $t$ 's common social information


## Intuition for Inefficient Learning

- Someone in gen $t+1$ finds it hard to figure out gen $t$ 's private signals due to info confounding
- Which part of neighbors' actions come from their signals, and which part from their own social observations?
- Must trade off overweighting gen $t$ 's private signals and underweighting gen $t$ 's common social information
- When generations are large, optimal action severely underweights private signals from generation $t$
- Will see later that total weight on private signals from the generation $t$ is close to 1 for $t$ large
- Without confounding, would place weight 1 on each private signal from generation $t$


## Generation Size and Rate of Learning

1. Per-agent rate of learning is slower with larger generations:

## Generation Size and Rate of Learning

1. Per-agent rate of learning is slower with larger generations:

- If $K=1$, every agent perfectly incorporates all past private signals $\Rightarrow$ fastest possible speed of social learning
- Prop 4 says aggregative efficiency strictly decreases in $K$
- Worse learning with larger $K$ also holds numerically starting from agent $i=16$ when comparing among $K \in\{2,3,4,5\}$


## Generation Size and Rate of Learning

1. Per-agent rate of learning is slower with larger generations:

- If $K=1$, every agent perfectly incorporates all past private signals $\Rightarrow$ fastest possible speed of social learning
- Prop 4 says aggregative efficiency strictly decreases in $K$
- Worse learning with larger $K$ also holds numerically starting from agent $i=16$ when comparing among $K \in\{2,3,4,5\}$

2. Per-generation rate of learning is faster with larger generations:

## Generation Size and Rate of Learning

1. Per-agent rate of learning is slower with larger generations:

- If $K=1$, every agent perfectly incorporates all past private signals $\Rightarrow$ fastest possible speed of social learning
- Prop 4 says aggregative efficiency strictly decreases in $K$
- Worse learning with larger $K$ also holds numerically starting from agent $i=16$ when comparing among $K \in\{2,3,4,5\}$

2. Per-generation rate of learning is faster with larger generations:

- On the other hand larger $K \Rightarrow$ more learning per generation
- But differences are small, and per-generation rate of learning is bounded above by 2 signals

Which Network Leads to Faster Learning?
Network A
Network B


## Which Network Leads to Faster Learning?

Network A


- Network $\mathbf{A}$ is the maximal generations network with $K=3$

Which Network Leads to Faster Learning?
Network A


- Network $\mathbf{A}$ is the maximal generations network with $K=3$
- Network B puts agents in each gen into 3 slots, $k \in\{1,2,3\}$. $k=1$ sees 1 and $2, k=2$ sees 2 and $3, k=3$ sees 3 and 1 .


## Which Network Leads to Faster Learning?

Network A


- Network $\mathbf{A}$ is the maximal generations network with $K=3$
- Network B puts agents in each gen into 3 slots, $k \in\{1,2,3\}$. $k=1$ sees 1 and $2, k=2$ sees 2 and $3, k=3$ sees 3 and 1 .
- Fewer social observations, but also less info confounding


## Which Network Leads to Faster Learning?

Network A


- Network $\mathbf{A}$ is the maximal generations network with $K=3$
- Network B puts agents in each gen into 3 slots, $k \in\{1,2,3\}$. $k=1$ sees 1 and $2, k=2$ sees 2 and $3, k=3$ sees 3 and 1 .
- Fewer social observations, but also less info confounding
- Need: aggregative efficiency on more general networks

Generations Network with Partial Observations

## Generations Network with Partial Observations

- Generations network with $K$ agents per gen


## Generations Network with Partial Observations

- Generations network with $K$ agents per gen
- $\Psi_{k} \subseteq\{1, \ldots, K\}$, observation set, define which gen $t-1$ slots are observed by a gen $t$ agent in slot $k$


## Generations Network with Partial Observations

- Generations network with $K$ agents per gen
- $\Psi_{k} \subseteq\{1, \ldots, K\}$, observation set, define which gen $t-1$ slots are observed by a gen $t$ agent in slot $k$
- Maximal generations network is the case of $\Psi_{k}=\{1, \ldots, K\}$


## Generations Network with Partial Observations

- Generations network with $K$ agents per gen
- $\Psi_{k} \subseteq\{1, \ldots, K\}$, observation set, define which gen $t-1$ slots are observed by a gen $t$ agent in slot $k$
- Maximal generations network is the case of $\Psi_{k}=\{1, \ldots, K\}$


$$
\begin{aligned}
& \Psi_{1}=\{1,2\}, \\
& \Psi_{2}=\{2,3\}, \\
& \Psi_{3}=\{1,3\} .
\end{aligned}
$$

## Generations Network with Partial Observations

- Generations network with $K$ agents per gen
- $\Psi_{k} \subseteq\{1, \ldots, K\}$, observation set, define which gen $t-1$ slots are observed by a gen $t$ agent in slot $k$
- Maximal generations network is the case of $\Psi_{k}=\{1, \ldots, K\}$


$$
\begin{aligned}
& \Psi_{1}=\{1,2\}, \\
& \Psi_{2}=\{2,3\}, \\
& \Psi_{3}=\{1,3\} .
\end{aligned}
$$

## Definition

The network is symmetric if all agents observe $d \geq 1$ neighbors and all pairs of agents in the same generation share $c$ common neighbors.

## Generations Network with Partial Observations

- Generations network with $K$ agents per gen
- $\Psi_{k} \subseteq\{1, \ldots, K\}$, observation set, define which gen $t-1$ slots are observed by a gen $t$ agent in slot $k$
- Maximal generations network is the case of $\Psi_{k}=\{1, \ldots, K\}$


$$
\begin{aligned}
& \Psi_{1}=\{1,2\}, \\
& \Psi_{2}=\{2,3\}, \\
& \Psi_{3}=\{1,3\}
\end{aligned}
$$

## Definition

The network is symmetric if all agents observe $d \geq 1$ neighbors and all pairs of agents in the same generation share $c$ common neighbors.

For example, "Network B" is symmetric with $d=2, c=1$

## Speed of Learning with Partial Observations

- Each agent observes $d$ neighbors and pairs of agents in the same generation have $c$ common neighbors


## Theorem 1

In symmetric generations networks,

$$
\lim _{i \rightarrow \infty}\left(r_{i} / i\right)=\left(1+\frac{d^{2}-d}{d^{2}-d+c}\right) \frac{1}{K} .
$$

## Speed of Learning with Partial Observations

- Each agent observes $d$ neighbors and pairs of agents in the same generation have $c$ common neighbors


## Theorem 1

In symmetric generations networks,

$$
\lim _{i \rightarrow \infty}\left(r_{i} / i\right)=\left(1+\frac{d^{2}-d}{d^{2}-d+c}\right) \frac{1}{K} .
$$

- Exact expression of aggregative efficiency for a broader class of generations networks Proof


## Speed of Learning with Partial Observations

- Each agent observes $d$ neighbors and pairs of agents in the same generation have $c$ common neighbors


## Theorem 1

In symmetric generations networks,

$$
\lim _{i \rightarrow \infty}\left(r_{i} / i\right)=\left(1+\frac{d^{2}-d}{d^{2}-d+c}\right) \frac{1}{K} .
$$

- Exact expression of aggregative efficiency for a broader class of generations networks Proof
- Theorem 1 shows asymptotic bound of 2 signals per gen applies to all such networks, strengthening Proposition 4


## Speed of Learning with Partial Observations

- Each agent observes $d$ neighbors and pairs of agents in the same generation have $c$ common neighbors


## Theorem 1

In symmetric generations networks,

$$
\lim _{i \rightarrow \infty}\left(r_{i} / i\right)=\left(1+\frac{d^{2}-d}{d^{2}-d+c}\right) \frac{1}{K} .
$$

- Exact expression of aggregative efficiency for a broader class of generations networks Proof
- Theorem 1 shows asymptotic bound of 2 signals per gen applies to all such networks, strengthening Proposition 4
- Term in parenthesis increases in $d$ and decreases in $c$ - more obs speeds up rate of learning per gen but more confounding slows it down, all else equal


## Which Network Leads to Faster Learning?

Network A


## Which Network Leads to Faster Learning?

Network A


Network B


- Applying Theorem 1, aggregative efficiency is the same in Network A $(d=3, c=3)$ and Network B $(d=2, c=1)$ !


## Which Network Leads to Faster Learning?

Network A


Network B


- Applying Theorem 1, aggregative efficiency is the same in Network A $(d=3, c=3)$ and Network B $(d=2, c=1)$ !
- Extra social obs exactly cancel out reduced info content of each obs Conclusion


## Amplifying Private Signals

- Inefficiency can be corrected if agents place more weight on their private signals


## Amplifying Private Signals

- Inefficiency can be corrected if agents place more weight on their private signals
- Suppose all agents in generations $t \geq 2$ in a maximal generations network place weight $1+x$ on private signal


## Amplifying Private Signals

- Inefficiency can be corrected if agents place more weight on their private signals
- Suppose all agents in generations $t \geq 2$ in a maximal generations network place weight $1+x$ on private signal
- Choose weight on previous generation so there is a signal counting interpretation


## Amplifying Private Signals

- Inefficiency can be corrected if agents place more weight on their private signals
- Suppose all agents in generations $t \geq 2$ in a maximal generations network place weight $1+x$ on private signal
- Choose weight on previous generation so there is a signal counting interpretation


## Proposition 6

Suppose each agent $i$ aggregates $r_{i}(x)$ signals for each $x \geq 0$. Then $r_{i}^{\prime}(0)=0$ for any $i$ in generation 2 while $r_{i}^{\prime}(0)>0$ for any $i$ after generation 2.

## Amplifying Private Signals

- Inefficiency can be corrected if agents place more weight on their private signals
- Suppose all agents in generations $t \geq 2$ in a maximal generations network place weight $1+x$ on private signal
- Choose weight on previous generation so there is a signal counting interpretation


## Proposition 6

Suppose each agent $i$ aggregates $r_{i}(x)$ signals for each $x \geq 0$. Then $r_{i}^{\prime}(0)=0$ for any $i$ in generation 2 while $r_{i}^{\prime}(0)>0$ for any $i$ after generation 2.

- Slightly more weight on private signals is 'almost' Pareto-improving


## Amplifying Private Signals

## Proposition 6

Suppose each agent $i$ aggregates $r_{i}(x)$ signals for each $x \geq 0$. Then $r_{i}^{\prime}(0)=0$ for any $i$ in generation 2 while $r_{i}^{\prime}(0)>0$ for any $i$ after generation 2.

- Slightly more weight on private signals is 'almost' Pareto-improving


## Amplifying Private Signals

## Proposition 6

Suppose each agent $i$ aggregates $r_{i}(x)$ signals for each $x \geq 0$. Then $r_{i}^{\prime}(0)=0$ for any $i$ in generation 2 while $r_{i}^{\prime}(0)>0$ for any $i$ after generation 2.

- Slightly more weight on private signals is 'almost' Pareto-improving
- Suggests approach for policy to correct inefficiencies


## Amplifying Private Signals

## Proposition 6

Suppose each agent $i$ aggregates $r_{i}(x)$ signals for each $x \geq 0$. Then $r_{i}^{\prime}(0)=0$ for any $i$ in generation 2 while $r_{i}^{\prime}(0)>0$ for any $i$ after generation 2.

- Slightly more weight on private signals is 'almost' Pareto-improving
- Suggests approach for policy to correct inefficiencies
- With much more weight on private signals, can attain aggregative efficiency of 1


## Summary

- A tractable model of rational sequential learning that focuses on how the social network affects aggregative efficiency
- Generally, network confounds info content of neighbors' behavior and leads to info loss
- Exact aggregative efficiency in all generations networks with symmetric observation sets
- Significant info loss due to confounding: in any such network, each generation eventually aggregates no more than 2 signals
- Tractability of framework extends beyond generations networks, e.g., canonical random networks

Thank you!

## Proof Sketch of Theorem 1

Using symmetry, can show there exist numbers $\operatorname{Var}_{t}, \operatorname{Cov}_{t}, \beta_{t}$ s.t.

## Proof Sketch of Theorem 1

Using symmetry, can show there exist numbers $\operatorname{Var}_{t}, \operatorname{Cov}_{t}, \beta_{t}$ s.t.

- $\operatorname{Var}\left[\lambda_{i} \mid \omega\right]=\operatorname{Var}_{t}$ for all $i$ in generation $t$


## Proof Sketch of Theorem 1

Using symmetry, can show there exist numbers $\operatorname{Var}_{t}, \operatorname{Cov}_{t}, \beta_{t}$ s.t.

- $\operatorname{Var}\left[\lambda_{i} \mid \omega\right]=\operatorname{Var}_{t}$ for all $i$ in generation $t$
- $\operatorname{Cov}\left[\lambda_{i}, \lambda_{i^{\prime}} \mid \omega\right]=\operatorname{Cov}_{t}$ for all $i \neq i^{\prime}$ in generation $t$ (same covariance across all pairs)


## Proof Sketch of Theorem 1

Using symmetry, can show there exist numbers $\operatorname{Var}_{t}, \operatorname{Cov}_{t}, \beta_{t}$ s.t.

- $\operatorname{Var}\left[\lambda_{i} \mid \omega\right]=\operatorname{Var}_{t}$ for all $i$ in generation $t$
- $\operatorname{Cov}\left[\lambda_{i}, \lambda_{i^{\prime}} \mid \omega\right]=\operatorname{Cov}_{t}$ for all $i \neq i^{\prime}$ in generation $t$ (same covariance across all pairs)
- Each $i$ in generation $t$ puts weight $\beta_{t}$ on each $j \in N(i)$


## Proof Sketch of Theorem 1

Using symmetry, can show there exist numbers $\operatorname{Var}_{t}, \operatorname{Cov}_{t}, \beta_{t}$ s.t.

- $\operatorname{Var}\left[\lambda_{i} \mid \omega\right]=\operatorname{Var}_{t}$ for all $i$ in generation $t$
- $\operatorname{Cov}\left[\lambda_{i}, \lambda_{i^{\prime}} \mid \omega\right]=\operatorname{Cov}_{t}$ for all $i \neq i^{\prime}$ in generation $t$ (same covariance across all pairs)
- Each $i$ in generation $t$ puts weight $\beta_{t}$ on each $j \in N(i)$

From signal-counting interpretation, for $i$ in generation $t, r_{i}$ is proportional to $\mathrm{Var}_{t}$, so can compute $\mathrm{Var}_{t}$

## Proof Sketch of Theorem 1

Using symmetry, can show there exist numbers $\operatorname{Var}_{t}, \operatorname{Cov}_{t}, \beta_{t}$ s.t.

- $\operatorname{Var}\left[\lambda_{i} \mid \omega\right]=\operatorname{Var}_{t}$ for all $i$ in generation $t$
- $\operatorname{Cov}\left[\lambda_{i}, \lambda_{i^{\prime}} \mid \omega\right]=\operatorname{Cov}_{t}$ for all $i \neq i^{\prime}$ in generation $t$ (same covariance across all pairs)
- Each $i$ in generation $t$ puts weight $\beta_{t}$ on each $j \in N(i)$

From signal-counting interpretation, for $i$ in generation $t, r_{i}$ is proportional to $\mathrm{Var}_{t}$, so can compute $\mathrm{Var} r_{t}$

The optimal action from Prop 1 implies expressions for $\mathrm{Var}_{t+1}$ and $\operatorname{Cov}_{t+1}$ in terms of $\mathrm{Var}_{t}, \operatorname{Cov}_{t}$, and $\beta_{t+1}$

## Proof Sketch of Theorem 1

Using symmetry, can show there exist numbers $\operatorname{Var}_{t}, \operatorname{Cov}_{t}, \beta_{t}$ s.t.

- $\operatorname{Var}\left[\lambda_{i} \mid \omega\right]=\operatorname{Var}_{t}$ for all $i$ in generation $t$
- $\operatorname{Cov}\left[\lambda_{i}, \lambda_{i^{\prime}} \mid \omega\right]=\operatorname{Cov}_{t}$ for all $i \neq i^{\prime}$ in generation $t$ (same covariance across all pairs)
- Each $i$ in generation $t$ puts weight $\beta_{t}$ on each $j \in N(i)$

From signal-counting interpretation, for $i$ in generation $t, r_{i}$ is proportional to $\mathrm{Var}_{t}$, so can compute $\mathrm{Var} r_{t}$

The optimal action from Prop 1 implies expressions for $\mathrm{Var}_{t+1}$ and $\operatorname{Cov}_{t+1}$ in terms of $\mathrm{Var}_{t}, \operatorname{Cov}_{t}$, and $\beta_{t+1}$
Will sketch proof of key lemma:

## Lemma 1

$$
\lim _{t \rightarrow \infty} \beta_{t}=1 / d
$$

## $\beta_{t} \rightarrow 1 / d$ Using a Mixing Argument

- Showing $\beta_{t} \rightarrow 1 / d$ amounts to showing $\operatorname{Corr}\left(\ell_{i}, \ell_{i^{\prime}} \mid \omega\right) \rightarrow 1$ for $i \neq i^{\prime}$ in generation $t$, as $t \rightarrow \infty$
- Observe almost perfectly correlated actions $\approx$ observe only one action $\Rightarrow$ total weight is close to one


## $\beta_{t} \rightarrow 1 / d$ Using a Mixing Argument

- Showing $\beta_{t} \rightarrow 1 / d$ amounts to showing $\operatorname{Corr}\left(\ell_{i}, \ell_{i^{\prime}} \mid \omega\right) \rightarrow 1$ for $i \neq i^{\prime}$ in generation $t$, as $t \rightarrow \infty$
- Observe almost perfectly correlated actions $\approx$ observe only one action $\Rightarrow$ total weight is close to one
- Weight that $i$ puts on $j$ 's action is proportional to number of paths in the network from $i$ to $j$


## $\beta_{t} \rightarrow 1 / d$ Using a Mixing Argument

- Showing $\beta_{t} \rightarrow 1 / d$ amounts to showing $\operatorname{Corr}\left(\ell_{i}, \ell_{i^{\prime}} \mid \omega\right) \rightarrow 1$ for $i \neq i^{\prime}$ in generation $t$, as $t \rightarrow \infty$
- Observe almost perfectly correlated actions $\approx$ observe only one action $\Rightarrow$ total weight is close to one
- Weight that $i$ puts on $j$ 's action is proportional to number of paths in the network from $i$ to $j$
- Equivalent to a Markov chain with state space $\{1, \ldots, K\}$ and transitions to each neighbor with probability $1 / d$


## $\beta_{t} \rightarrow 1 / d$ Using a Mixing Argument

- Showing $\beta_{t} \rightarrow 1 / d$ amounts to showing $\operatorname{Corr}\left(\ell_{i}, \ell_{i^{\prime}} \mid \omega\right) \rightarrow 1$ for $i \neq i^{\prime}$ in generation $t$, as $t \rightarrow \infty$
- Observe almost perfectly correlated actions $\approx$ observe only one action $\Rightarrow$ total weight is close to one
- Weight that $i$ puts on $j$ 's action is proportional to number of paths in the network from $i$ to $j$
- Equivalent to a Markov chain with state space $\{1, \ldots, K\}$ and transitions to each neighbor with probability $1 / d$



## $\beta_{t} \rightarrow 1 / d$ Using a Mixing Argument

- Showing $\beta_{t} \rightarrow 1 / d$ amounts to showing $\operatorname{Corr}\left(\ell_{i}, \ell_{i^{\prime}} \mid \omega\right) \rightarrow 1$ for $i \neq i^{\prime}$ in generation $t$, as $t \rightarrow \infty$
- Observe almost perfectly correlated actions $\approx$ observe only one action $\Rightarrow$ total weight is close to one
- Weight that $i$ puts on $j$ 's action is proportional to number of paths in the network from $i$ to $j$
- Equivalent to a Markov chain with state space $\{1, \ldots, K\}$ and transitions to each neighbor with probability $1 / d$

- Markov chain mixing theorem implies steady-state distribution that does not depend on starting state $\Rightarrow$ number of paths to distant $j$ almost independent of $i$ Back


## Calculating Aggregative Efficiency

- Expressions for $\mathrm{Var}_{t+1}$ and $\mathrm{Cov}_{t+1}$ give

$$
\operatorname{Var}_{t+1}-\operatorname{Cov}_{t+1}=\frac{4}{\sigma^{2}}+\beta_{t+1}^{2}(d-c)\left(\operatorname{Var}_{t}-\operatorname{Cov}_{t}\right)
$$

## Calculating Aggregative Efficiency

- Expressions for $\mathrm{Var}_{t+1}$ and $\mathrm{Cov}_{t+1}$ give

$$
\operatorname{Var}_{t+1}-\operatorname{Cov}_{t+1}=\frac{4}{\sigma^{2}}+\beta_{t+1}^{2}(d-c)\left(\operatorname{Var}_{t}-\operatorname{Cov}_{t}\right)
$$

- For $\beta$ close enough to $1 / d$,

$$
\phi(x)=\frac{4}{\sigma^{2}}+\beta^{2}(d-c) x
$$

is a contraction mapping

- Difference $\mathrm{Var}_{t}-\mathrm{Cov}_{t}$ converges to the unique fixed point with $\beta=1 / d$


## Calculating Aggregative Efficiency

- Expressions for $\mathrm{Var}_{t+1}$ and $\operatorname{Cov}_{t+1}$ give

$$
\operatorname{Var}_{t+1}-\operatorname{Cov}_{t+1}=\frac{4}{\sigma^{2}}+\beta_{t+1}^{2}(d-c)\left(\operatorname{Var}_{t}-\operatorname{Cov}_{t}\right)
$$

- For $\beta$ close enough to $1 / d$,

$$
\phi(x)=\frac{4}{\sigma^{2}}+\beta^{2}(d-c) x
$$

is a contraction mapping

- Difference $\mathrm{Var}_{t}-\operatorname{Cov}_{t}$ converges to the unique fixed point with $\beta=1 / d$
- From this fixed point, can compute the growth rate of $\mathrm{Var}_{t}$ and therefore the aggregative efficiency Back


## Finite Populations

## Proposition 7

Let $\epsilon>0$. There exists a constant $C>0$ such that for any symmetric generations network and any generation $t \geq C K \log (K)$, at most $K \lim _{i}\left(r_{i} / i\right)+\epsilon$ signals are aggregated between generations $t$ and $t+1$.

- Gives an upper bound on how long it takes for Theorem 1 to apply


## Simulation: Observing Multiple Past Generations

Each agent observes all predecessors from past $\tau \geq 1$ generations

## Simulation: Observing Multiple Past Generations

## Each agent observes all predecessors from past $\tau \geq 1$ generations

Rate of Learning from Observing Multiple Past Generations


## Simulation: Observing Multiple Past Generations

Each agent observes all predecessors from past $\tau \geq 1$ generations

Rate of Learning from Observing Multiple Past Generations


- Limited improvement in aggregative efficiency: removes some confounds but creates new ones


## Simulation: General Signal Structures

- Each signal is finitely supported

1 signal per agent, generation 1


## Simulation: General Signal Structures

- Each signal is finitely supported

1 signal per agent, generation 1


- Each agent has not 1 , but $n$ conditionally i.i.d. signals


## Simulation: General Signal Structures

- Each signal is finitely supported

1 signal per agent, generation 1


- Each agent has not 1 , but $n$ conditionally i.i.d. signals
- Think of agents who gather info over a period of time


## Simulation: General Signal Structures

- Each signal is finitely supported

1 signal per agent, generation 1


- Each agent has not 1 , but $n$ conditionally i.i.d. signals
- Think of agents who gather info over a period of time
- Increase $n$ and scale down informativeness of each signal, fixing mean and SD of private log-belief (based on all $n$ private signals) to match the Gaussian case

