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Social-Learning Dynamics in Different Networks

• Social learning: info about unknown state dispersed among
society of agents, agents act based on private signals and
observations of social neighbors

• How does social network affect efficiency of info aggregation?
• Much of existing theoretical work on complete network
• Less known about how rational social learning compares
across networks, and existing results say agents eventually
learn completely on all (reasonable) networks
• Open question: impact of network on how well signals are
aggregated — hence how quickly rational agents learn

Golub and Sadler (2016): “A significant gap in our knowl-
edge concerns short-run dynamics and rates of learning in
these models.”

1



Social-Learning Dynamics in Different Networks

• Social learning: info about unknown state dispersed among
society of agents, agents act based on private signals and
observations of social neighbors
• How does social network affect efficiency of info aggregation?

• Much of existing theoretical work on complete network
• Less known about how rational social learning compares
across networks, and existing results say agents eventually
learn completely on all (reasonable) networks
• Open question: impact of network on how well signals are
aggregated — hence how quickly rational agents learn

Golub and Sadler (2016): “A significant gap in our knowl-
edge concerns short-run dynamics and rates of learning in
these models.”

1



Social-Learning Dynamics in Different Networks

• Social learning: info about unknown state dispersed among
society of agents, agents act based on private signals and
observations of social neighbors
• How does social network affect efficiency of info aggregation?
• Much of existing theoretical work on complete network

• Less known about how rational social learning compares
across networks, and existing results say agents eventually
learn completely on all (reasonable) networks
• Open question: impact of network on how well signals are
aggregated — hence how quickly rational agents learn

Golub and Sadler (2016): “A significant gap in our knowl-
edge concerns short-run dynamics and rates of learning in
these models.”

1



Social-Learning Dynamics in Different Networks

• Social learning: info about unknown state dispersed among
society of agents, agents act based on private signals and
observations of social neighbors
• How does social network affect efficiency of info aggregation?
• Much of existing theoretical work on complete network
• Less known about how rational social learning compares
across networks, and existing results say agents eventually
learn completely on all (reasonable) networks

• Open question: impact of network on how well signals are
aggregated — hence how quickly rational agents learn

Golub and Sadler (2016): “A significant gap in our knowl-
edge concerns short-run dynamics and rates of learning in
these models.”

1



Social-Learning Dynamics in Different Networks

• Social learning: info about unknown state dispersed among
society of agents, agents act based on private signals and
observations of social neighbors
• How does social network affect efficiency of info aggregation?
• Much of existing theoretical work on complete network
• Less known about how rational social learning compares
across networks, and existing results say agents eventually
learn completely on all (reasonable) networks
• Open question: impact of network on how well signals are
aggregated — hence how quickly rational agents learn

Golub and Sadler (2016): “A significant gap in our knowl-
edge concerns short-run dynamics and rates of learning in
these models.”

1



Social-Learning Dynamics in Different Networks

• Social learning: info about unknown state dispersed among
society of agents, agents act based on private signals and
observations of social neighbors
• How does social network affect efficiency of info aggregation?
• Much of existing theoretical work on complete network
• Less known about how rational social learning compares
across networks, and existing results say agents eventually
learn completely on all (reasonable) networks
• Open question: impact of network on how well signals are
aggregated — hence how quickly rational agents learn

Golub and Sadler (2016): “A significant gap in our knowl-
edge concerns short-run dynamics and rates of learning in
these models.”

1



Environment and Key Results
Introduce tractable model of rational sequential learning that
lets us compare learning dynamics across different networks

• define measure that ranks networks wrt social-learning
efficiency

Highlight network-based informational confounds

• suppose P2 and P3 see P1, but P4 sees only P2 and P3
• from P4’s perspective, P1’s action confounds the info content
of P2 and P3’s behavior
• “intransitivity” that appears in almost all realistic observation
networks can lead to arbitrarily inefficient social learning

Generations network – observe subset of agents in previous gen

• express learning rate as simple function of network parameters
• extent of info loss: under a symmetry condition, learning
aggregates no more than 2 signals per gen asymptotically
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Related Social-Learning Literature
Sequential learning: Banerjee (1992), Bikhchandani, Hirshleifer, Welch (1992)

Network structure and Bayesian social learning
• Network does not matter (within “reasonable” class) for long-run

learning: Acemoglu, Dahleh, Lobel, and Ozdaglar (2011), Lobel and
Sadler (2015), Rosenberg and Vieille (2019)
• Examples and simulations: Sgroi (2002), Lobel, Acemoglu, Dahleh,

and Ozdaglar (2009), Arieli and Mueller-Frank (2019)
• Adoption Dynamics: Board and Meyer-ter-Vehn (2021)
• This paper: analytic ranking of networks on rate of learning

Other obstructions to the efficient learning rate
• Coarse action space: Harel, Mossel, Strack, Tamuz (2020), Rosenberg

and Vieille (2019), Hann-Caruthers, Martynov, Tamuz (2018)
• Endogenous info: Burguet and Vives (2000), Mueller-Frank and Pai

(2016), Ali (2018), Lomys (2020), Liang and Mu (2020)
• This paper: network-based obstructions to efficient learning

Speed of learning under heuristics: Ellison and Fudenberg (1993), Golub and
Jackson (2012), Molavi, Tahbaz-Salehi, Jadbabaie (2018). This paper:
rational learning 3



Model and Notations

• Two equally likely states ω ∈ {0, 1}

• Agents i = 1, 2, 3, ... move in order, each acting once
I i observes private signal si ∈ R and actions of neighbors,

N(i) ⊆ {1, ...i − 1}
I picks action ai ∈ [0, 1] to maximize expectation of −(ai − ω)2,

so ai = P[ω = 1 | i ’s information]

• Signals are Gaussian and conditionally i.i.d. given state,
si ∼ N (1, σ2) when ω = 1 and si ∼ N (−1, σ2) when ω = 0

• Neighborhoods N(i) are common knowledge

• Agents are Bayesian and choose optimal actions (given
observations and predecessors’ play)
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Log-Linearity of Actions

WLOG apply log-transformations and work with log-likelihoods

• Log-signal λi := ln
(
P[ω=1|si ]
P[ω=0|si ]

)
, log-actions `i := ln

(
ai

1−ai

)
• These changes are 1-to-1, so there is a (unique) map from i ’s
log-signal and neighbors’ log-actions to i ’s optimal log-action
• Our first result says this map is linear

Proposition 1
For each agent i with N(i) = {j(1), ..., j(ni )}, there exist constants
(βi ,j(k))ni

k=1 s.t.

`∗i = λi +
ni∑

k=1
βi ,j(k)`

∗
j(k).

• Proof gives explicit formula for coefficients βi ,j(k)
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Signal-Counting Interpretation of Accuracy

If i ’s only info is n ∈ N+ indep signals, `i ∼ N
(
±n · 2

σ2 , n · 4
σ2

)

Definition
Social learning aggregates r ∈ R+ signals by agent i if
log-action `∗i ∼ N

(
±r · 2

σ2 , r · 4
σ2

)
in two states.

• When agents choose arbitrary actions (even if log-linear),
need not hold for any r ∈ R
• But rational log-actions always admit this kind of
signal-counting interpretation, suff. stat for rational accuracy

Proposition 2
There exist (ri )i≥1 so that social learning aggregates ri signals by
agent i . These (ri )i≥1 depend on the network, but not on σ2.

• Can measure each i ’s accuracy in units of private signals

6
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An Example of Informational Confound

Agent
    1

s1 = 0.50
a1 = 0.73

• 4 perfectly infers 2 and
3’s signals from their
actions

• 4’s accuracy = 3 signals,
fully incorporates info in
s2, s3, and s4

• a1 influences both a2 and a3,
but is unobserved by 4

• 4 cannot fully incorporate s2
and s3 without over-counting s1

• With optimal signal extraction,
r4 =“3.67 signals” (to be
formalized next)

7
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A More Severe Confound

1 2 3 K

K+1 K+2 K+K'

K+K'+1

• Three generations of differing sizes, each observe all members
of previous generation

• Change in accuracy between generations 2 and 3 is equivalent
to getting (K+1)(K ′−1)

KK ′+1 + 1 < 3 additional signals
• Little change in accuracy–even if K small, so little
confounding information!
I Even if K ′ is also large–many new signals in generation 2, but

almost all information lost
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Condition for Long-Run Learning

• Society learns completely in the long run if actions a∗i → ω in
probability (equivalent to ri →∞)

Proposition 3
Society learns completely in the long run if and only if

lim
i→∞

[
max

j∈N(i)
j
]

=∞.

• Analog of Acemoglu, Dahleh, Lobel, and Ozdaglar (2011)’s
expanding observations property for deterministic network
• Mild and clearly necessary: else for some C <∞, infinitely
many i cannot access the signal of any j > C except their own
• Satisfied in all “reasonable” networks, not useful for ranking
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Aggregative Efficiency

Definition
limi→∞(ri/i) is the aggregative efficiency of the network

• What fraction of signals in the entire society do individuals
aggregate under social learning?

• Can have ri →∞ but limi→∞(ri/i) near 0: complete long-run
learning, but get there very slowly

• Higher aggregative efficiency ⇒ higher welfare if signals are
not too precise and welfare function is patient

• Rest of the talk: compare networks for social learning by
comparing their aggregative efficiency
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Maximal Generations Networks

• K ≥ 1 agents per
generation

• Agents in gen t observe
all agents in gen t − 1

1 2 3

4 5 6
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1 2 3

4 5 6

7 8 9

Proposition 4
In maximal generations
networks:
• limi→∞(ri/i) = (2K−1)

K2

• In the long run, social
learning aggregates...
I fewer than 2 signals per

generation with any K
I fewer signals per agent

with larger K
I more signals per

generation with larger K
• After generation 2, social
learning aggregates fewer
than 3 signals per
generation with any K
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Bounds on Signals Aggregated Per Generation

• Social learning must aggregate at least 1 signal per gen
(improvement by combining own signal with social obs)

• This lower-bound not too far from the actual learning rate:

ri /di/Ke︸ ︷︷ ︸
gen of i

= (2K − 1)
K︸ ︷︷ ︸
<2

+ o(1)

(No more than 2 signals per gen in long-run, for any K )

ri − ri ′ ≤ 3, for i , i ′ in gen t, t − 1 where t ≥ 3

(No more than 3 signals per gen starting with gen 3, for any K )

• For K large, aggregate only an unboundedly small fraction of
the private signals
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Intuition for Inefficient Learning

• Someone in gen t + 1 finds it hard to figure out gen t’s
private signals due to info confounding
I Which part of neighbors’ actions come from their signals, and

which part from their own social observations?

• Must trade off overweighting gen t’s private signals and
underweighting gen t’s common social information

• When generations are large, optimal action severely
underweights private signals from generation t
I Will see later that total weight on private signals from the

generation t is close to 1 for t large
I Without confounding, would place weight 1 on each private

signal from generation t
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Generation Size and Rate of Learning

1. Per-agent rate of learning is slower with larger generations:

I If K = 1, every agent perfectly incorporates all past private
signals ⇒ fastest possible speed of social learning

I Prop 4 says aggregative efficiency strictly decreases in K
I Worse learning with larger K also holds numerically starting

from agent i = 16 when comparing among K ∈ {2, 3, 4, 5}

2. Per-generation rate of learning is faster with larger
generations:
I On the other hand larger K ⇒ more learning per generation
I But differences are small, and per-generation rate of learning is

bounded above by 2 signals
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Which Network Leads to Faster Learning?
Network A

1 2 3

4 5 6

7 8 9

Network B

1 2 3

4 5 6

7 8 9

• Network A is the maximal generations network with K = 3
• Network B puts agents in each gen into 3 slots, k ∈ {1, 2, 3}.
k = 1 sees 1 and 2, k = 2 sees 2 and 3, k = 3 sees 3 and 1.
• Fewer social observations, but also less info confounding
• Need: aggregative efficiency on more general networks

16
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Generations Network with Partial Observations

• Generations network with K agents per gen
• Ψk ⊆ {1, ...,K}, observation set, define which gen t − 1
slots are observed by a gen t agent in slot k
• Maximal generations network is the case of Ψk = {1, ...,K}

1 2 3

4 5 6

7 8 9

Ψ1 = {1, 2},
Ψ2 = {2, 3},
Ψ3 = {1, 3}.

Definition
The network is symmetric if all agents observe d ≥ 1 neighbors
and all pairs of agents in the same generation share c common
neighbors.

For example, “Network B” is symmetric with d = 2, c = 1
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Speed of Learning with Partial Observations

• Each agent observes d neighbors and pairs of agents in the
same generation have c common neighbors

Theorem 1
In symmetric generations networks,

lim
i→∞

(ri/i) =
(
1 + d2 − d

d2 − d + c

)
1
K .

• Exact expression of aggregative efficiency for a broader class
of generations networks Proof

• Theorem 1 shows asymptotic bound of 2 signals per gen
applies to all such networks, strengthening Proposition 4
• Term in parenthesis increases in d and decreases in c — more
obs speeds up rate of learning per gen but more confounding
slows it down, all else equal

18
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Which Network Leads to Faster Learning?
Network A

1 2 3

4 5 6

7 8 9

Network B

1 2 3

4 5 6

7 8 9

• Applying Theorem 1, aggregative efficiency is the same in
Network A (d = 3, c = 3) and Network B (d = 2, c = 1)!
• Extra social obs exactly cancel out reduced info content of
each obs Conclusion
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Amplifying Private Signals

• Inefficiency can be corrected if agents place more weight on
their private signals

• Suppose all agents in generations t ≥ 2 in a maximal
generations network place weight 1 + x on private signal
• Choose weight on previous generation so there is a signal
counting interpretation

Proposition 6
Suppose each agent i aggregates ri (x) signals for each x ≥ 0.
Then r ′i (0) = 0 for any i in generation 2 while r ′i (0) > 0 for any i
after generation 2.

• Slightly more weight on private signals is ‘almost’
Pareto-improving
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Then r ′i (0) = 0 for any i in generation 2 while r ′i (0) > 0 for any i
after generation 2.

• Slightly more weight on private signals is ‘almost’
Pareto-improving

• Suggests approach for policy to correct inefficiencies

• With much more weight on private signals, can attain
aggregative efficiency of 1
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Summary

• A tractable model of rational sequential learning that focuses
on how the social network affects aggregative efficiency
• Generally, network confounds info content of neighbors’
behavior and leads to info loss
• Exact aggregative efficiency in all generations networks with
symmetric observation sets
• Significant info loss due to confounding: in any such network,
each generation eventually aggregates no more than 2 signals
• Tractability of framework extends beyond generations
networks, e.g., canonical random networks

Thank you!
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Proof Sketch of Theorem 1
Using symmetry, can show there exist numbers Vart , Covt , βt s.t.

• Var[λi | ω] = Vart for all i in generation t
• Cov[λi , λi ′ | ω] = Covt for all i 6= i ′ in generation t (same
covariance across all pairs)
• Each i in generation t puts weight βt on each j ∈ N(i)

From signal-counting interpretation, for i in generation t, ri is
proportional to Vart , so can compute Vart
The optimal action from Prop 1 implies expressions for Vart+1 and
Covt+1 in terms of Vart ,Covt , and βt+1

Will sketch proof of key lemma:

Lemma 1

lim
t→∞

βt = 1/d .
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βt → 1/d Using a Mixing Argument
• Showing βt → 1/d amounts to showing Corr(`i , `i ′ | ω)→ 1

for i 6= i ′ in generation t, as t →∞
I Observe almost perfectly correlated actions ≈ observe only one

action ⇒ total weight is close to one

• Weight that i puts on j ’s action is proportional to number of
paths in the network from i to j
• Equivalent to a Markov chain with state space {1, ...,K} and
transitions to each neighbor with probability 1/d

1 2 3

4 5 6

7 8 9

induces
the

stochastic
process

1 2 3
0.5

0.5 0.5

0.5

0.5 0.5

• Markov chain mixing theorem implies steady-state distribution
that does not depend on starting state ⇒ number of paths to
distant j almost independent of i Back
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Calculating Aggregative Efficiency

• Expressions for Vart+1 and Covt+1 give

Vart+1 − Covt+1 = 4
σ2 + β2

t+1(d − c)(Vart − Covt)

• For β close enough to 1/d ,

φ(x) = 4
σ2 + β2(d − c)x

is a contraction mapping
I Difference Vart − Covt converges to the unique fixed point

with β = 1/d

• From this fixed point, can compute the growth rate of Vart
and therefore the aggregative efficiency Back

25



Calculating Aggregative Efficiency

• Expressions for Vart+1 and Covt+1 give

Vart+1 − Covt+1 = 4
σ2 + β2

t+1(d − c)(Vart − Covt)

• For β close enough to 1/d ,

φ(x) = 4
σ2 + β2(d − c)x

is a contraction mapping
I Difference Vart − Covt converges to the unique fixed point

with β = 1/d

• From this fixed point, can compute the growth rate of Vart
and therefore the aggregative efficiency Back

25



Calculating Aggregative Efficiency

• Expressions for Vart+1 and Covt+1 give

Vart+1 − Covt+1 = 4
σ2 + β2

t+1(d − c)(Vart − Covt)

• For β close enough to 1/d ,

φ(x) = 4
σ2 + β2(d − c)x

is a contraction mapping
I Difference Vart − Covt converges to the unique fixed point

with β = 1/d

• From this fixed point, can compute the growth rate of Vart
and therefore the aggregative efficiency Back

25



Finite Populations

Proposition 7
Let ε > 0. There exists a constant C > 0 such that for any
symmetric generations network and any generation t ≥ CK log(K ),
at most K limi (ri/i) + ε signals are aggregated between
generations t and t + 1.

• Gives an upper bound on how long it takes for Theorem 1 to
apply
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Simulation: Observing Multiple Past Generations
Each agent observes all predecessors from past τ ≥ 1 generations
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    Agents observe...
4 generations
3 generations
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1 generation

• Limited improvement in aggregative efficiency: removes some
confounds but creates new ones
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Simulation: General Signal Structures
• Each signal is finitely supported

1 signal per agent, generation 1

log−action
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• Each agent has not 1, but n conditionally i.i.d. signals
• Think of agents who gather info over a period of time
• Increase n and scale down informativeness of each signal,
fixing mean and SD of private log-belief (based on all n
private signals) to match the Gaussian case

28



Simulation: General Signal Structures
• Each signal is finitely supported

1 signal per agent, generation 1

log−action

D
en

si
ty

−10 −5 0 5 10

0.
0

0.
5

1.
0

1.
5

2.
0

• Each agent has not 1, but n conditionally i.i.d. signals

• Think of agents who gather info over a period of time
• Increase n and scale down informativeness of each signal,
fixing mean and SD of private log-belief (based on all n
private signals) to match the Gaussian case

28



Simulation: General Signal Structures
• Each signal is finitely supported

1 signal per agent, generation 1

log−action

D
en

si
ty

−10 −5 0 5 10

0.
0

0.
5

1.
0

1.
5

2.
0

• Each agent has not 1, but n conditionally i.i.d. signals
• Think of agents who gather info over a period of time

• Increase n and scale down informativeness of each signal,
fixing mean and SD of private log-belief (based on all n
private signals) to match the Gaussian case

28



Simulation: General Signal Structures
• Each signal is finitely supported

1 signal per agent, generation 1

log−action

D
en

si
ty

−10 −5 0 5 10

0.
0

0.
5

1.
0

1.
5

2.
0

• Each agent has not 1, but n conditionally i.i.d. signals
• Think of agents who gather info over a period of time
• Increase n and scale down informativeness of each signal,
fixing mean and SD of private log-belief (based on all n
private signals) to match the Gaussian case

28


	Appendix

