

Proof Complexity, Circuit Complexity, and TFNP

Noah Fleming

Based on work with Sam Buss and Russell Impagliazzo

Memorial University

Task

Object

Model

Monotone Circuit Model *M*

Task

Object

Model

Monotone Circuit Model *M*

Task

Object

Model

Monotone Function f

Monotone Circuit Model *M*

Task

Object

Model

Proof Complexity

Proof Complexity

Proof Complexity

Interplay

Major breakthroughs resulted from uncovering deep connections between these areas!

Q. When and why do these connections occur?

TFNP has emerged as a roadmap for interpolation and lifting theorems

Characterizations by Total Search Problems

 mKW_f : Given $(x, y) \in f^{-1}(1) \times f^{-1}(0)$ output $i \in [n]$ such that $x_i \neq y_i$

Characterizations by Total Search Problems

Search_F: Given $x \in \{0,1\}^n$ output the index of a clause of F falsified by x

Studies the complexity of computing total search problems

Studies the complexity of computing total search problems

→Organizes them into a variety of classes with complete problems

arch problems with complete problems

Studies the complexity of computing total search problems Organizes them into a variety of classes with complete problems

Studies the complexity of computing total search problems Organizes them into a variety of classes with complete problems

Studies the complexity of computing total search problems →Organizes them into a variety of classes with complete problems

Studies the complexity of computing total search problems Organizes them into a variety of classes with complete problems

Studies the complexity of computing total search problems Organizes them into a variety of classes with complete problems

Studies the complexity of computing total search problems → Organizes them into a variety of classes with complete problems

Studies the complexity of computing total search problems → Organizes them into a variety of classes with complete problems

Studies the complexity of computing total search problems → Organizes them into a variety of classes with complete problems

Typically study the Turing Machine complexity of total search problems However, useful to consider other models of computation

Model of Computation:

Decision Trees

Model of Computation:

Decision Trees

$S \subseteq \{0,1\}^n \times \mathcal{O} \text{ is in } TFNP^{dt} \text{ if }$ solutions can be verified by lowdepth decision trees

Model of Computation:

Decision Trees

 $S \subseteq \{0,1\}^n \times \mathcal{O} \text{ is in } TFNP^{dt} \text{ if }$ solutions can be verified by lowdepth decision trees

 $\forall \ell \in \mathcal{O} \text{ there is } polylog(n)$ -depth T_{ℓ} such that $(x, \ell) \in S \iff T_{\ell}(x) = 1$

[BCEIP98] Separations imply black-box / generic oracle separations

[BCEIP98] Separations imply black-box / generic oracle separations

[GKRS18] Certain proof systems are equivalent to decision tree TFNP classes!

Model of Computation:

Decision Trees

[BCEIP98] Separations imply black-box / generic oracle separations

[GKRS18] Certain proof systems are equivalent to decision tree TFNP classes!

Model of Computation:

Decision Trees

Say that these proof systems are characterized by the TFNP class

[BCEIP98] Separations imply black-box / generic oracle separations

[GKRS18] Certain proof systems are equivalent to decision tree TFNP classes!

Model of Computation:

Decision Trees

Say that these proof systems are characterized by the TFNP class

[BCEIP98] Separations imply black-box / generic oracle separations

TFNP \mathbb{F}_2 -Nullstellensatz PPADS PPP **PPA** Sherali-Adams **PPAD** \mathbb{Z} -Nullstellensatz FP **Tree-Resolution**

Model of Computation:

Decision Trees

[GKRS18] Certain proof systems are equivalent to decision tree TFNP classes!

Say that these proof systems are characterized by the TFNP class

TFNP and Proof Complexity

Why? *TFNP^{dt}* is the study of the false clause search problem!

Why? *TFNP^{dt}* is the study of the false clause search problem!

Claim: Any $R \subseteq \{0,1\}^n \times \mathcal{O}$ with $R \in TFNP^{dt}$ is equivalent to $Search_F$ for some unsatisfiable CNFF

Why? *TFNP^{dt}* is the study of the false clause search problem!

CNFF

As $R \in TFNP^{dt}$ there are $\{T_{\ell}\}$

Claim: Any $R \subseteq \{0,1\}^n \times \mathcal{O}$ with $R \in TFNP^{dt}$ is equivalent to $Search_F$ for some unsatisfiable

Why? *TFNP^{dt}* is the study of the false clause search problem!

Claim: Any $R \subseteq \{0,1\}^n \times \mathcal{O}$ with $R \in TFNP^{dt}$ is equivalent to $Search_F$ for some unsatisfiable CNFF

As $R \in TFNP^{dt}$ there are $\{T_{\ell}\}$

Let $DNF(T_{\ell})$ be obtained by taking disjunction over all 1-paths in T_{ℓ}

Why? *TFNP^{dt}* is the study of the false clause search problem!

CNFF

As $R \in TFNP^{dt}$ there are $\{T_{\ell}\}$

Let $DNF(T_{\ell})$ be obtained by taking disjunction over all 1-paths in T_{ℓ} $F = \bigwedge \neg DNF(T_{\ell})$ $\ell \in \mathcal{O}$

Claim: Any $R \subseteq \{0,1\}^n \times \mathcal{O}$ with $R \in TFNP^{dt}$ is equivalent to $Search_F$ for some unsatisfiable

Why? *TFNP^{dt}* is the study of the false clause search problem!

CNFF

As $R \in TFNP^{dt}$ there are $\{T_{\ell}\}$

Let $DNF(T_{\ell})$ be obtained by taking disjunction over all 1-paths in T_{ℓ}

Expresses that R is not total:

A clause of $\neg DNF(T_{\ell})$ is false under $x \iff (x, \ell) \in R$

F =

Claim: Any $R \subseteq \{0,1\}^n \times \mathcal{O}$ with $R \in TFNP^{dt}$ is equivalent to $Search_F$ for some unsatisfiable

$$\bigwedge \neg DNF(T_{\ell})$$

TFNP subclasses defined as everything polylog(n)-reducible to a particular search problem

 $S \subseteq \{0,1\}^n \times \mathcal{O}$ reduces to $R \subseteq \{0,1\}^m \times \mathcal{Q}$ if there are decision trees

TFNP subclasses defined as everything polylog(n)-reducible to a particular search problem

- $S \subseteq \{0,1\}^n \times \mathcal{O}$ reduces to $R \subseteq \{0,1\}^m \times \mathcal{Q}$ if there are decision trees
- T_1, \ldots, T_m turning inputs to S into inputs to R

TFNP subclasses defined as everything polylog(n)-reducible to a particular search problem

 $(T_1, ..., T_m)(x)$ R

- $S \subseteq \{0,1\}^n \times \mathcal{O}$ reduces to $R \subseteq \{0,1\}^m \times \mathcal{Q}$ if there are decision trees
- T_1, \ldots, T_m turning inputs to S into inputs to R
- $T_1^o, \ldots, T_{|Q|}^o$ translating solutions to R into solutions to S

TFNP subclasses defined as everything polylog(n)-reducible to a particular search problem

- $S \subseteq \{0,1\}^n \times \mathcal{O}$ reduces to $R \subseteq \{0,1\}^m \times \mathcal{Q}$ if there are decision trees
- T_1, \ldots, T_m turning inputs to S into inputs to R
- $T_1^o, \ldots, T_{|Q|}^o$ translating solutions to R into solutions to S

TFNP subclasses defined as everything polylog(n)-reducible to a particular search problem

Resolution Complexity: of proof Π is $\log size(\Pi) + width(\Pi)$

Resolution Complexity: of proof Π is $\log size(\Pi) + width(\Pi)$

PLS is Resolution: $PLS^{dt} = \{F : F \text{ has a polylog}(n) \text{-complexity Res proof}\}$

Resolution Complexity: of proof Π is $\log size(\Pi) + width(\Pi)$

PLS is Resolution: $PLS^{dt} = \{F : F \text{ has a polylog}(n) \text{-complexity Res proof}\}$

Resolution Complexity: of proof Π is $\log size(\Pi) + width(\Pi)$

PLS is Resolution: $PLS^{dt} = \{F : F \text{ has a polylog}(n) \text{-complexity Res proof}\}$

Resolution Complexity: of proof Π is $\log size(\Pi) + width(\Pi)$

PLS is Resolution: $PLS^{dt} = \{F : F \text{ has a polylog}(n) \text{-complexity Res proof}\}$

Resolution Complexity: of proof Π is $\log size(\Pi) + width(\Pi)$

PLS is Resolution: $PLS^{dt} = \{F : F \text{ has a polylog}(n) \text{-complexity Res proof}\}$

Resolution Complexity: of proof Π is $\log size(\Pi) + width(\Pi)$

PLS is Resolution: $PLS^{dt} = \{F : F \text{ has a polylog}(n) \text{-complexity Res proof}\}$

Resolution Complexity: of proof Π is $\log size(\Pi) + width(\Pi)$

PLS is Resolution: $PLS^{dt} = \{F : F \text{ has a polylog}(n) \text{-complexity Res proof}\}$

Resolution Complexity: of proof Π is $\log size(\Pi) + width(\Pi)$

PLS is Resolution: $PLS^{dt} = \{F : F \text{ has a polylog}(n) \text{-complexity Res proof}\}$

Resolution Complexity: of proof Π is $\log size(\Pi) + width(\Pi)$

PLS is Resolution: $PLS^{dt} = \{F : F \text{ has a polylog}(n) \text{-complexity Res proof}\}$

PLS is Resolution:

PLS is Resolution:

Resolution Complexity: of proof Π is $\log size(\Pi) + width(\Pi)$

PLS is Resolution: $PLS^{dt} = \{F : F \text{ has a polylog}(n) \text{-complexity Res proof}\}$

Delayer Prover Game on F:

Resolution Complexity: of proof Π is $\log size(\Pi) + width(\Pi)$

PLS is Resolution: $PLS^{dt} = \{F : F \text{ has a polylog}(n) \text{-complexity Res proof}\}$

Delayer Prover Game on *F*: each round

• Query: Prover suggests a variable x_i Delayer sets $x_i \in \{0,1\}$

Resolution Complexity: of proof Π is $\log size(\Pi) + width(\Pi)$

PLS is Resolution:

 $PLS^{dt} = \{F : F \text{ has a polylog}(n) \text{-complexity Res proof}\}$

Delayer Prover Game on *F*: each round

- Query: Prover suggests a variable x_i Delayer sets $x_i \in \{0,1\}$
- Forget: Prover sets a set of variables $x_{i_1}, \ldots, x_{i_k} = *$

Resolution Complexity: of proof Π is $\log size(\Pi) + width(\Pi)$

PLS is Resolution:

 $PLS^{dt} = \{F : F \text{ has a polylog}(n) \text{-complexity Res proof}\}$

Delayer Prover Game on *F*: each round

- Query: Prover suggests a variable x_i Delayer sets $x_i \in \{0,1\}$
- Forget: Prover sets a set of variables $x_{i_1}, \ldots, x_{i_k} = *$

Game ends when current assignment falsifies a clause of F

Resolution Complexity: of proof Π is $\log size(\Pi) + width(\Pi)$

PLS is Resolution:

 $PLS^{dt} = \{F : F \text{ has a polylog}(n) \text{-complexity Res proof}\}$

Delayer Prover Game on *F*: each round

- Query: Prover suggests a variable x_i Delayer sets $x_i \in \{0,1\}$
- Forget: Prover sets a set of variables $x_{i_1}, \ldots, x_{i_k} = *$

Game ends when current assignment falsifies a clause of F

- *w*-Prover Strategy: ends the game while remembering at most *w* variables at any time

Resolution Complexity: of proof Π is $\log size(\Pi) + width(\Pi)$

PLS is Resolution:

 $PLS^{dt} = \{F : F \text{ has a polylog}(n) \text{-complexity Res proof}\}$

Delayer Prover Game on *F*: each round

- Query: Prover suggests a variable x_i Delayer sets $x_i \in \{0,1\}$
- Forget: Prover sets a set of variables $x_{i_1}, \ldots, x_{i_k} = *$

Game ends when current assignment falsifies a clause of F

w-Prover strategy \implies Complexity $w \log n$ Resolution proof

- *w*-Prover Strategy: ends the game while remembering at most *w* variables at any time

Resolution Complexity: of proof Π is $\log size(\Pi) + width(\Pi)$

PLS is Resolution: $PLS^{dt} = \{F : F \text{ has a polylog}(n) \text{-complexity Res proof}\}$

 \leftarrow Extract a Prover Strategy for $Search_F$

SinkOfDag Vertices: 1,..., *n* Pointers: $s_i \ge i$ with $s_1 \ne 1$ Solutions: *i* s.t. $s_i \neq i \& s_{s_i} = s_i$

Memory

Resolution Complexity: of proof Π is $\log size(\Pi) + width(\Pi)$

PLS is Resolution: $PLS^{dt} = \{F : F \text{ has a polylog}(n) \text{-complexity Res proof}\}$

 \leftarrow Extract a Prover Strategy for $Search_F$

SinkOfDag Vertices: 1,..., *n* Pointers: $s_i \ge i$ with $s_1 \ne 1$ Solutions: *i* s.t. $s_i \neq i \& s_{s_i} = s_i$

> Memory T_1

Resolution Complexity: of proof Π is $\log size(\Pi) + width(\Pi)$

PLS is Resolution: $PLS^{dt} = \{F : F \text{ has a polylog}(n) \text{-complexity Res proof}\}$

 \leftarrow Extract a Prover Strategy for $Search_F$

SinkOfDag Vertices: 1,..., *n* Pointers: $s_i \ge i$ with $s_1 \ne 1$ Solutions: *i* s.t. $s_i \neq i \& s_{s_i} = s_i$

> Memory T_1

Resolution Complexity: of proof Π is $\log size(\Pi) + width(\Pi)$

PLS is Resolution: $PLS^{dt} = \{F : F \text{ has a polylog}(n) \text{-complexity Res proof}\}$

 \leftarrow Extract a Prover Strategy for $Search_F$

SinkOfDag Vertices: 1,..., *n* Pointers: $s_i \ge i$ with $s_1 \ne 1$ Solutions: *i* s.t. $s_i \neq i \& s_{s_i} = s_i$

> Memory T_1 T_{z}

Resolution Complexity: of proof Π is $\log size(\Pi) + width(\Pi)$

PLS is Resolution: $PLS^{dt} = \{F : F \text{ has a polylog}(n) \text{-complexity Res proof}\}$

 \Leftarrow Extract a Prover Strategy for $Search_F$

Resolution Complexity: of proof Π is $\log size(\Pi) + width(\Pi)$

PLS is Resolution: $PLS^{dt} = \{F : F \text{ has a polylog}(n) \text{-complexity Res proof}\}$

 \Leftarrow Extract a Prover Strategy for $Search_F$

SinkOfDag Vertices: 1,..., *n* Pointers: $s_i \ge i$ with $s_1 \ne 1$ Solutions: *i* s.t. $s_i \neq i \& s_{s_i} = s_i$

> Memory T_3

Resolution Complexity: of proof Π is $\log size(\Pi) + width(\Pi)$

PLS is Resolution: $PLS^{dt} = \{F : F \text{ has a polylog}(n) \text{-complexity Res proof}\}$

 \Leftarrow Extract a Prover Strategy for $Search_F$

SinkOfDag Vertices: 1,..., *n* Pointers: $s_i \ge i$ with $s_1 \ne 1$ Solutions: *i* s.t. $s_i \neq i \& s_{s_i} = s_i$

> Memory T_3 T_{Δ}

Resolution Complexity: of proof Π is $\log size(\Pi) + width(\Pi)$

PLS is Resolution: $PLS^{dt} = \{F : F \text{ has a polylog}(n) \text{-complexity Res proof}\}$

 \leftarrow Extract a Prover Strategy for $Search_F$

SinkOfDag Vertices: 1,..., *n* Pointers: $s_i \ge i$ with $s_1 \ne 1$ Solutions: *i* s.t. $s_i \neq i \& s_{s_i} = s_i$

> Memory T_3 T_4

Resolution is PLS

Resolution Complexity: of proof Π is $\log size(\Pi) + width(\Pi)$

PLS is Resolution: $PLS^{dt} = \{F : F \text{ has a polylog}(n) \text{-complexity Res proof}\}$

 \Leftarrow Extract a Prover Strategy for $Search_F$

SinkOfDag Vertices: 1,..., *n* Pointers: $s_i \ge i$ with $s_1 \ne 1$ Solutions: *i* s.t. $s_i \neq i \& s_{s_i} = s_i$

> Memory T_3 T_{4}

Communication Protocols

[GKRS18] Certain circuit models are equivalent to communication TFNP classes!

Observation 1: When both the DT and CC versions of a TFNP class admit a characterization then we immediately get an interpolation theorem

then we immediately get an interpolation theorem — CC protocols can simulate DTs

then we immediately get an interpolation theorem — CC protocols can simulate DTs

then we immediately get an interpolation theorem — CC protocols can simulate DTs

Observation 2: Query-to-communication lifting theorems can be viewed as relating the CC version of a TFNP class to its DT version.

Observation 2: Query-to-communication lifting theorems can be viewed as relating the CC version of a TFNP class to its DT version.

version of a TFNP class to its DT version.

Observation 1: When the DT and CC versions of a TFNP class both admit a characterization then we immediately get an interpolation theorem.

Observation 2: Query-to-communication lifting theorems can be viewed as relating the CC version of a TFNP class to its DT version.

Observation 1: When the DT and CC versions of a TFNP class both admit a characterization then we immediately get an interpolation theorem.

Observation 2: Query-to-communication lifting theorems can be viewed as relating the CC version of a TFNP class to its DT version.

Upshot: Understand when interpolation or query-to-communication lifting theorems occur by understanding when proof systems and monotone circuit models admit TFNP characterizations!

Observation 1: When the DT and CC versions of a TFNP class both admit a characterization then we immediately get an interpolation theorem.

Observation 2: Query-to-communication lifting theorems can be viewed as relating the CC version of a TFNP class to its DT version.

Upshot: Understand when interpolation or query-to-communication lifting theorems occur by understanding when proof systems and monotone circuit models admit TFNP characterizations!

2. Under what conditions does a TFNP class admit a proof system / circuit characterization?

Observation 1: When the DT and CC versions of a TFNP class both admit a characterization then we immediately get an interpolation theorem.

Observation 2: Query-to-communication lifting theorems can be viewed as relating the CC version of a TFNP class to its DT version.

Upshot: Understand when interpolation or query-to-communication lifting theorems occur by understanding when proof systems and monotone circuit models admit TFNP characterizations!

2. Under what conditions does a TFNP class admit a proof system / circuit characterization?

Q. Under what conditions does a proof system / circuit admit a TFNP characterization?

Q. Under what conditions does a TFNP class admit a proof system characterization?

Q. Under what conditions does a TFNP class admit a proof system characterization?

A. For every TFNP class C there is a proof system which characterizes it!

Q. Under what conditions does a TFNP class admit a proof system characterization?

A. For every TFNP class C there is a proof system which characterizes it!

 \rightarrow Proofs are reductions to a complete problem for C!

Q. Under what conditions does a TFNP class admit a proof system characterization?

A. For every TFNP class C there is a proof system which characterizes it!

 \rightarrow Proofs are reductions to a complete problem for C!

Canonical proof system for C

Fix H such that $Search_H$ is equivalent to the complete problem for C

Q. Under what conditions does a TFNP class admit a proof system characterization?

A. For every TFNP class C there is a proof system which characterizes it!

 \rightarrow Proofs are reductions to a complete problem for C!

Canonical proof system for C

Fix H such that $Search_H$ is equivalent to the complete problem for C

variables.

- Proof of *F*: a tuple $(n', \{T_i\}, \{T_i^o\})$ which describes a reduction from $Search_F$ to $Search_H$ on n'

Q. Under what conditions does a TFNP class admit a proof system characterization?

A. For every TFNP class C there is a proof system which characterizes it!

 \rightarrow Proofs are reductions to a complete problem for C!

Canonical proof system for C

Fix H such that $Search_H$ is equivalent to the complete problem for C

Proof of F: a tuple $(n', \{T_i\}, \{T_i^o\})$ which describes a reduction from $Search_F$ to $Search_H$ on n'variables.

Cook-Reckhow proof system — proofs are verifiable! \rightarrow Just check that $(n', \{T_i\}, \{T_j^o\})$ describes a valid reduction!

Q. Under what conditions does a TFNP class admit a proof system characterization?

A. For every TFNP class C there is a proof system which characterizes it!

 \rightarrow Proofs are reductions to a complete problem for C!

Q. Under what conditions does a proof system admit a TFNP characterization?

Q. Under what conditions does a TFNP class admit a proof system characterization?

A. For every TFNP class C there is a proof system which characterizes it!

 \rightarrow Proofs are reductions to a complete problem for C!

Q. Under what conditions does a proof system admit a TFNP characterization?

Q. Under what conditions does a TFNP class admit a proof system characterization?

A. For every TFNP class C there is a proof system which characterizes it!

 \rightarrow Proofs are reductions to a complete problem for C!

Q. Under what conditions does a proof system admit a TFNP characterization?

A. Iff the proof system P:

has short proofs of its own soundness!

Q. Under what conditions does a TFNP class admit a proof system characterization?

A. For every TFNP class C there is a proof system which characterizes it!

 \rightarrow Proofs are reductions to a complete problem for C!

Q. Under what conditions does a proof system admit a TFNP characterization?

A. Iff the proof system P:

has short proofs of its own soundness!

Efficiently verifiable version of a reflection principle about itself

Q. Under what conditions does a TFNP class admit a proof system characterization?

A. For every TFNP class C there is a proof system which characterizes it!

 \rightarrow Proofs are reductions to a complete problem for C!

Q. Under what conditions does a proof system admit a TFNP characterization?

A. Iff the proof system P:

has short proofs of its own soundness!

Efficiently verifiable version of a reflection principle about itself

Q. Under what conditions does a TFNP class admit a proof system characterization?

A. For every TFNP class C there is a proof system which characterizes it!

 \rightarrow Proofs are reductions to a complete problem for C!

Q. Under what conditions does a proof system admit a TFNP characterization?

A. Iff the proof system P:

Q. Under what conditions does a TFNP class admit a proof system characterization?

A. For every TFNP class C there is a proof system which characterizes it!

 \rightarrow Proofs are reductions to a complete problem for C!

Q. Under what conditions does a proof system admit a TFNP characterization?

A. Iff the proof system P:

- has short proofs of its own soundness!
- Closed under dt-reductions

Q. Under what conditions does a TFNP class admit a proof system characterization?

A. For every TFNP class C there is a proof system which characterizes it!

 \rightarrow Proofs are reductions to a complete problem for C!

Q. Under what conditions does a proof system admit a TFNP characterization?

A. Iff the proof system P:

- has short proofs of its own soundness!
- Closed under dt-reductions

If *P* has a small proof of *F* and T_1, \ldots, T_n are short decision trees \implies P has a small proof of $F(T_1, ..., T_n)$

Q. Under what conditions does a TFNP class admit a proof system characterization?

A. For every TFNP class C there is a proof system which characterizes it!

 \rightarrow Proofs are reductions to a complete problem for C!

Q. Under what conditions does a proof system admit a TFNP characterization?

A. Iff the proof system P:

- has short proofs of its own soundness!
- Closed under dt-reductions

If *P* has a small proof of *F* and T_1, \ldots, T_n are short decision trees \implies P has a small proof of $F(T_1, \ldots, T_n)$

Standard proof systems satisfy this — e.g., Resolution, Sherali-Adams, Nullstellensatz...

Reflection principle for proof system P

$Ref_{P,n,m,c} := Proof_P(F,\Pi) \wedge SAT(F,\alpha)$

Reflection principle for proof system P

$Ref_{P,n,m,c} := Proof_P(F,\Pi) \wedge SAT(F,\alpha)$

Reflection principle for proof system P

Π is a complexity-*c P*-proof that *F* is unsatisfiable

$Ref_{P,n,m,c} := Proof_P(F,\Pi) \wedge SAT(F,\alpha)$

Reflection principle for proof system P

Short Proofs of Soundness

Reflection principle for proof system P

Fix a standard encoding of SAT

Short Proofs of Soundness

Reflection principle for proof system *P*

Fix a standard encoding of SAT

Short Proofs of Soundness

Reflection principle for proof system P

Fix a standard encoding of SAT

Many ways to encode P-proofs in an efficiently verifiable manner (O(c) width, $2^{O(c)}$

 \rightarrow Each generates a TFNP class as everything reducible to $Search_{Ref_P}$

Theorem: If *P* is closed under dt-reductions and has polylog(n)-complexity proofs of Ref_P then *P* is characterized by the TFNP class for $Search_{Ref_P}$

Theorem: If P is closed under dt-reductions and has polylog(n)-complexity proofs of Ref_P then P is characterized by the TFNP class for $Search_{Ref_{P}}$

Search_{Ref_P} \in *TFNP*^{*dt*} as *Ref_P* is efficiently verifiable.

then P is characterized by the TFNP class for $Search_{Ref_{P}}$

Search_{Ref_P} \in *TFNP*^{*dt*} as *Ref_P* is efficiently verifiable.

Search_F reduces to Search_{Refp} \implies efficient P-proof of F:

Efficient *P*-proof of $F \Longrightarrow Search_F$ reduces to $Search_{Ref_F}$

- Theorem: If P is closed under dt-reductions and has polylog(n)-complexity proofs of Ref_P

then P is characterized by the TFNP class for $Search_{Ref_{P}}$

Search_{Ref_P} \in *TFNP*^{*dt*} as *Ref_P* is efficiently verifiable. $Search_F$ reduces to $Search_{Ref_P} \Longrightarrow$ efficient *P*-proof of *F*:

Efficient *P*-proof of $F \Longrightarrow Search_F$ reduces to $Search_{Ref_F}$

- Theorem: If P is closed under dt-reductions and has polylog(n)-complexity proofs of Ref_P
- As P is closed under dt-reductions and has a short proof of Ref_P then it has a short proof of F

then P is characterized by the TFNP class for $Search_{Ref_{P}}$

Search_{Ref_P} \in *TFNP*^{*dt*} as *Ref_P* is efficiently verifiable. Search_F reduces to Search_{Ref_P} \implies efficient P-proof of F:

Efficient P-proof of $F \Longrightarrow Search_F$ reduces to $Search_{Ref_F}$ Let Π be an efficient P-proof of F

- Theorem: If P is closed under dt-reductions and has polylog(n)-complexity proofs of Ref_P
- As P is closed under dt-reductions and has a short proof of Ref_P then it has a short proof of F

then P is characterized by the TFNP class for $Search_{Ref_{P}}$

Search_{Ref_P} \in *TFNP*^{*dt*} as *Ref_P* is efficiently verifiable. Search_F reduces to Search_{Ref_P} \implies efficient P-proof of F:

Efficient *P*-proof of $F \Longrightarrow Search_F$ reduces to $Search_{Ref_F}$ Let Π be an efficient *P*-proof of *F*

DTs)

- Theorem: If P is closed under dt-reductions and has polylog(n)-complexity proofs of Ref_P
- As P is closed under dt-reductions and has a short proof of Ref_P then it has a short proof of F

Reduction hardwires Π , F in $Ref_P(\Pi, F, \alpha)$ leaving only the assignment α free (using constant)

then P is characterized by the TFNP class for $Search_{Ref_{P}}$

Search_{Ref_P} \in *TFNP*^{*dt*} as *Ref_P* is efficiently verifiable. Search_F reduces to Search_{Ref_P} \implies efficient P-proof of F:

Efficient *P*-proof of $F \Longrightarrow Search_F$ reduces to $Search_{Ref_F}$ Let Π be an efficient *P*-proof of *F*

DTs)

- Theorem: If P is closed under dt-reductions and has polylog(n)-complexity proofs of Ref_P
- As P is closed under dt-reductions and has a short proof of Ref_P then it has a short proof of F
- Reduction hardwires Π , F in $Ref_P(\Pi, F, \alpha)$ leaving only the assignment α free (using constant)
- Π is low complexity \implies number of variables of Ref_P instance is not much more than that of F

Theorem: If *P* is closed under dt-reductions and has polylog(n)-complexity proofs of Ref_P then *P* is characterized by the TFNP class for $Search_{Ref_P}$

Theorem: If *P* is closed under dt-reductions and has polylog(n)-complexity proofs of Ref_P then *P* is characterized by the TFNP class for $Search_{Ref_P}$

Canonical proof system for a TFNP class can prove a reflection principle about itself

Theorem: If P is closed under dt-reductions and has polylog(n)-complexity proofs of Ref_P then P is characterized by the TFNP class for $Search_{Ref_P}$

Canonical proof system for a TFNP class can prove a reflection principle about itself

Corollary: A proof system admits a TFNP^{dt} characterization iff it is closed under decision tree reductions and has short proofs of a reflection principle about itself.

Q. Under what conditions does a TFNP class admit a circuit characterization?

Q. Under what conditions does a TFNP class admit a circuit characterization?

A. For every TFNP class there is a model of monotone circuit which characterizes it!

Q. Under what conditions does a TFNP class admit a circuit characterization?

A. For every TFNP class there is a model of monotone circuit which characterizes it!

2. Under what conditions does a monotone circuit model admit a TFNP characterization?

Q. Under what conditions does a TFNP class admit a circuit characterization?

A. For every TFNP class there is a model of monotone circuit which characterizes it!

Q. Under what conditions does a monotone circuit model admit a TFNP characterization?

A. Iff the monotone circuit model C has a universal family of functions!

Q. Under what conditions does a TFNP class admit a circuit characterization?

A For every TFNP class there is a model of monotone circuit which characterizes it!

Q. Under what conditions does a monotone circuit model admit a TFNP characterization?

A. Iff the monotone circuit model C has a universal family of functions! A monotone function *F* such that for any partial function g: C efficiently computes $g \implies$ there is a string z such that $F \upharpoonright z(x) = g(x)$

for all *x* on which *g* is defined

2.
$$C$$
 efficiently computes F

Q. Under what conditions does a TFNP class admit a circuit characterization?

A. For every TFNP class there is a model of monotone circuit which characterizes it!

Under what conditions does a monotone circuit model admit a TFNP characterization?

A. Iff the monotone circuit model C has a universal family of functions! (And closed under lowdepth formula reductions). A monotone function *F* such that

for any partial function g: for all x on which g is defined

2. C efficiently computes F

C efficiently computes $g \implies$ there is a string z such that $F \upharpoonright z(x) = g(x)$

Open Problem

Q. A generic lifting theorem?

A circuit and proof system characterization of a TFNP class immediately implies an interpolation theorem. Does the same hold for lifting theorems?

