TFNP

TBD

Proof Complexity, Circuit Complexity, and TFNP

Noah Fleming
Memorial University

Based on work with Sam Buss and Russell Impagliazzo

Monotone Circuit Complexity

Task

Object

Model

Monotone
Circuit Model M

Monotone Circuit Complexity

Task

Object

Model

Monotone
Circuit Model M

Monotone Circuit Complexity

Task

Monotone Function f

Object

Model

Monotone Circuit Complexity

Task

Object

Model

> Monotone
> Function f

Proof Complexity

Proof Complexity

Proof Complexity

Interplay

> Monotone Function f

Circuit computing f

Monotone
Circuit Model M

Major breakthroughs resulted from uncovering deep connections between these areas!

Interplay

Major breakthroughs resulted from uncovering deep connections between these areas!

Interplay

Major breakthroughs resulted from uncovering deep connections between these areas!

Interplay

Major breakthroughs resulted from uncovering deep connections between these areas!
Upshot: Tools from one area can be applied to the other!

Interplay

Q. When and why do these connections occur?

TFNP has emerged as a roadmap for interpolation and lifting theorems

Characterizations by Total Search Problems

Characterizations by Total Search Problems

$$
m K W_{f} \text { : Given }(x, y) \in f^{-1}(1) \times f^{-1}(0) \text { output } i \in[n] \text { such that } x_{i} \neq y_{i}
$$

Characterizations by Total Search Problems

Search $_{F}$: Given $x \in\{0,1\}^{n}$ output the index of a clause of F falsified by x

TFNP

Studies the complexity of computing total search problems

TFNP

Studies the complexity of computing total search problems
\rightarrow Organizes them into a variety of classes with complete problems

TFNP

Studies the complexity of computing total search problems
\rightarrow Organizes them into a variety of classes with complete problems

TFNP

Studies the complexity of computing total search problems
\rightarrow Organizes them into a variety of classes with complete problems

TFNP

Studies the complexity of computing total search problems
\rightarrow Organizes them into a variety of classes with complete problems

TFNP

Studies the complexity of computing total search problems
\rightarrow Organizes them into a variety of classes with complete problems

TFNP

Studies the complexity of computing total search problems
\rightarrow Organizes them into a variety of classes with complete problems

TFNP

Studies the complexity of computing total search problems
\rightarrow Organizes them into a variety of classes with complete problems

TFNP

Studies the complexity of computing total search problems
\rightarrow Organizes them into a variety of classes with complete problems

TFNP

Studies the complexity of computing total search problems
\rightarrow Organizes them into a variety of classes with complete problems

Typically study the Turing Machine complexity of total search problems
However, useful to consider other models of computation

TFNP

Model of Computation: Decision Trees

TFNP

TFNP

TFNP

[BCEIP98] Separations imply black-box / generic oracle separations

Model of Computation: Decision Trees

TFNP

[BCEIP98] Separations imply black-box / generic oracle separations
[GKRS18] Certain proof systems are equivalent to decision tree TFNP classes!

Model of Computation: Decision Trees

TFNP

[BCEIP98] Separations imply black-box / generic oracle separations
[GKRS18] Certain proof systems are equivalent to decision tree TFNP classes!

Say that these proof systems are characterized by the TFNP class

Model of Computation: Decision Trees

TFNP

[BCEIP98] Separations imply black-box / generic oracle separations
[GKRS18] Certain proof systems are equivalent to decision tree TFNP classes!

Model of Computation: Decision Trees

TFNP

[BCEIP98] Separations imply black-box / generic oracle separations
[GKRS18] Certain proof systems are equivalent to decision tree TFNP classes!

TFNP and Proof Complexity

Why? TFNP ${ }^{d t}$ is the study of the false clause search problem!

TFNP and Proof Complexity

Why? TFNP ${ }^{d t}$ is the study of the false clause search problem!
Claim: Any $R \subseteq\{0,1\}^{n} \times \mathcal{O}$ with $R \in T F N P^{d t}$ is equivalent to $\operatorname{Search}_{F}$ for some unsatisfiable CNF F

TFNP and Proof Complexity

Why? TFNP ${ }^{d t}$ is the study of the false clause search problem!
Claim: Any $R \subseteq\{0,1\}^{n} \times \mathcal{O}$ with $R \in T F N P^{d t}$ is equivalent to $\operatorname{Search}_{F}$ for some unsatisfiable CNF F

As $R \in T F N P^{d t}$ there are $\left\{T_{\ell}\right\}$

TFNP and Proof Complexity

Why? TFNP ${ }^{d t}$ is the study of the false clause search problem!
Claim: Any $R \subseteq\{0,1\}^{n} \times \mathcal{O}$ with $R \in T F N P^{d t}$ is equivalent to Search $_{F}$ for some unsatisfiable CNF F

As $R \in T F N P^{d t}$ there are $\left\{T_{\ell}\right\}$
Let $D N F\left(T_{\ell}\right)$ be obtained by taking disjunction over all 1-paths in T_{ℓ}

TFNP and Proof Complexity

Why? TFNP ${ }^{d t}$ is the study of the false clause search problem!
Claim: Any $R \subseteq\{0,1\}^{n} \times \mathcal{O}$ with $R \in T F N P^{d t}$ is equivalent to Search $_{F}$ for some unsatisfiable CNF F

As $R \in T F N P^{d t}$ there are $\left\{T_{\ell}\right\}$
Let $D N F\left(T_{\ell}\right)$ be obtained by taking disjunction over all 1-paths in T_{ℓ}

$$
F=\bigwedge_{\ell \in \mathcal{O}} \neg D N F\left(T_{\ell}\right)
$$

TFNP and Proof Complexity

Why? TFNP ${ }^{d t}$ is the study of the false clause search problem!
Claim: Any $R \subseteq\{0,1\}^{n} \times \mathcal{O}$ with $R \in T F N P^{d t}$ is equivalent to $\operatorname{Search}_{F}$ for some unsatisfiable CNF F

As $R \in T F N P^{d t}$ there are $\left\{T_{\ell}\right\}$
Let $D N F\left(T_{\ell}\right)$ be obtained by taking disjunction over all 1-paths in T_{ℓ}

$$
F=\bigwedge_{\ell \in \mathcal{O}} \neg D N F\left(T_{\ell}\right)
$$

Expresses that R is not total:

$$
\text { A clause of } \neg D N F\left(T_{\ell}\right) \text { is false under } x \Longleftrightarrow(x, \ell) \in R
$$

Resolution is PLS

TFNP subclasses defined as everything polylog(n)-reducible to a particular search problem

Resolution is PLS

TFNP subclasses defined as everything polylog(n)-reducible to a particular search problem
$S \subseteq\{0,1\}^{n} \times \mathcal{O}$ reduces to $R \subseteq\{0,1\}^{m} \times \mathbb{Q}$ if there are decision trees

Resolution is PLS

TFNP subclasses defined as everything polylog(n)-reducible to a particular search problem
$S \subseteq\{0,1\}^{n} \times \mathcal{O}$ reduces to $R \subseteq\{0,1\}^{m} \times \mathbb{Q}$ if there are decision trees

- T_{1}, \ldots, T_{m} turning inputs to S into inputs to R

Resolution is PLS

TFNP subclasses defined as everything polylog(n)-reducible to a particular search problem
$S \subseteq\{0,1\}^{n} \times \mathcal{O}$ reduces to $R \subseteq\{0,1\}^{m} \times \mathbb{Q}$ if there are decision trees

- T_{1}, \ldots, T_{m} turning inputs to S into inputs to R
- $T_{1}^{o}, \ldots, T_{|Q|}^{o}$ translating solutions to R into solutions to S

Resolution is PLS

TFNP subclasses defined as everything polylog(n)-reducible to a particular search problem
$S \subseteq\{0,1\}^{n} \times \mathcal{O}$ reduces to $R \subseteq\{0,1\}^{m} \times \mathbb{Q}$ if there are decision trees

- T_{1}, \ldots, T_{m} turning inputs to S into inputs to R
- $T_{1}^{o}, \ldots, T_{|Q|}^{o}$ translating solutions to R into solutions to S

Resolution is PLS

Resolution Complexity: of proof Π is $\log \operatorname{siz} e(\Pi)+$ width (Π)

Resolution is PLS

Resolution Complexity: of proof Π is $\log \operatorname{size}(\Pi)+$ width (Π)
PLS is Resolution:
$P L S^{d t}=\{F: F$ has a polylog (n)-complexity Res proof $\}$

Resolution is PLS

Resolution Complexity: of proof Π is $\log \operatorname{size}(\Pi)+$ width (Π)

PLS is Resolution:
$P L S^{d t}=\{F: F$ has a polylog (n)-complexity Res proof $\}$

SinkOfDag
Vertices: $1, \ldots, n$
Pointers: $s_{i} \geq i$ with $s_{1} \neq 1$
Solutions: i s.t. $s_{i} \neq i \& s_{s_{i}}=s_{i}$

Resolution is PLS

PLS is Resolution:
$P L S^{d t}=\{F: F$ has a polylog (n)-complexity Res proof $\}$

SinkOfDag

Vertices: $1, \ldots, n$
Pointers: $s_{i} \geq i$ with $s_{1} \neq 1$
Solutions: i s.t. $s_{i} \neq i \& s_{s_{i}}=s_{i}$

Resolution is PLS

PLS is Resolution:
$P L S^{d t}=\{F: F$ has a polylog (n)-complexity Res proof $\}$

SinkOfDag

Vertices: $1, \ldots, n$
Pointers: $s_{i} \geq i$ with $s_{1} \neq 1$
Solutions: i s.t. $s_{i} \neq i \& s_{s_{i}}=s_{i}$

Resolution is PLS

PLS is Resolution:
$P L S^{d t}=\{F: F$ has a polylog (n)-complexity Res proof $\}$

SinkOfDag

Vertices: $1, \ldots, n$
Pointers: $s_{i} \geq i$ with $s_{1} \neq 1$
Solutions: i s.t. $s_{i} \neq i \& s_{s_{i}}=s_{i}$

Resolution is PLS

PLS is Resolution:
$P L S^{d t}=\{F: F$ has a polylog (n)-complexity Res proof $\}$

SinkOfDag

Vertices: $1, \ldots, n$
Pointers: $s_{i} \geq i$ with $s_{1} \neq 1$
Solutions: i s.t. $s_{i} \neq i \& s_{s_{i}}=s_{i}$

Resolution is PLS

Resolution Complexity: of proof Π is $\log \operatorname{size}(\Pi)+$ width (Π)

PLS is Resolution:
$P L S^{d t}=\{F: F$ has a polylog (n)-complexity Res proof $\}$

SinkOfDag

Vertices: $1, \ldots, n$
Pointers: $s_{i} \geq i$ with $s_{1} \neq 1$
Solutions: i s.t. $s_{i} \neq i \& s_{s_{i}}=s_{i}$
\Longrightarrow

Resolution is PLS

Resolution Complexity: of proof Π is $\log \operatorname{size}(\Pi)+$ width (Π)

PLS is Resolution:
$P L S^{d t}=\{F: F$ has a polylog (n)-complexity Res proof $\}$

SinkOfDag

Vertices: $1, \ldots, n$
Pointers: $s_{i} \geq i$ with $s_{1} \neq 1$
Solutions: i s.t. $s_{i} \neq i \& s_{s_{i}}=s_{i}$
\Longrightarrow

$$
T_{2} \text { queries } x, y \text { : }
$$

$$
T_{2}= \begin{cases}2 & \text { if } y=1 \\ 4 & \text { if } x \vee y=0 \\ 5 & \text { otherwise }\end{cases}
$$

Resolution is PLS

Resolution Complexity: of proof Π is $\log \operatorname{size}(\Pi)+$ width (Π)

PLS is Resolution:
$P L S^{d t}=\{F: F$ has a polylog (n)-complexity Res proof $\}$

SinkOfDag

Vertices: $1, \ldots, n$
Pointers: $s_{i} \geq i$ with $s_{1} \neq 1$
Solutions: i s.t. $s_{i} \neq i \& s_{s_{i}}=s_{i}$
\Longrightarrow

Resolution is PLS

Resolution Complexity: of proof Π is $\log \operatorname{size}(\Pi)+$ width (Π)

PLS is Resolution:
$P L S^{d t}=\{F: F$ has a polylog(n)-complexity Res proof $\}$

SinkOfDag

Vertices: $1, \ldots, n$
Pointers: $s_{i} \geq i$ with $s_{1} \neq 1$
Solutions: i s.t. $s_{i} \neq i \& S_{s_{i}}=s_{i}$

$$
T_{2}= \begin{cases}2 & \text { if } y=1 \\ 4 & \text { if } x \vee y=0 \\ 5 & \text { otherwise }\end{cases}
$$

$$
\text { e.g. } x=01
$$

Resolution is PLS

Resolution Complexity: of proof Π is $\log \operatorname{size}(\Pi)+$ width (Π)

PLS is Resolution:
$P L S^{d t}=\{F: F$ has a polylog (n)-complexity Res proof $\}$

SinkOfDag

Vertices: $1, \ldots, n$
Pointers: $s_{i} \geq i$ with $s_{1} \neq 1$
Solutions: i s.t. $s_{i} \neq i \& S_{s_{i}}=s_{i}$

$$
\begin{aligned}
& T_{2}^{o} \text { queries } x, y: \\
& T_{2}^{o}= \begin{cases}C_{1} & \text { if } x \vee y=0 \\
C_{2} & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
\text { e.g. } x=01
$$

Resolution is PLS

Resolution Complexity: of proof Π is $\log \operatorname{size}(\Pi)+$ width (Π)
PLS is Resolution:
$P L S^{d t}=\{F: F$ has a polylog (n)-complexity Res proof $\}$

SinkOfDag
Vertices: $1, \ldots, n$
Pointers: $s_{i} \geq i$ with $s_{1} \neq 1$
Solutions: i s.t. $s_{i} \neq i \& s_{s_{i}}=s_{i}$
\Longleftarrow Delayer Prover Game on F :

Resolution is PLS

Resolution Complexity: of proof Π is $\log \operatorname{size}(\Pi)+$ width (Π)
PLS is Resolution:
$P L S^{d t}=\{F: F$ has a polylog (n)-complexity Res proof $\}$

SinkOfDag
Vertices: $1, \ldots, n$
Pointers: $s_{i} \geq i$ with $s_{1} \neq 1$
Solutions: i s.t. $s_{i} \neq i \& s_{s_{i}}=s_{i}$
\Longleftarrow Delayer Prover Game on F : each round

- Query: Prover suggests a variable x_{i} Delayer sets $x_{i} \in\{0,1\}$

Resolution is PLS

Resolution Complexity: of proof Π is $\log \operatorname{size}(\Pi)+$ width (Π)
PLS is Resolution:
$P L S^{d t}=\{F: F$ has a polylog (n)-complexity Res proof $\}$

SinkOfDag

Vertices: $1, \ldots, n$
Pointers: $s_{i} \geq i$ with $s_{1} \neq 1$
Solutions: i s.t. $s_{i} \neq i \& s_{s_{i}}=s_{i}$

Delayer Prover Game on F : each round

- Query: Prover suggests a variable x_{i} Delayer sets $x_{i} \in\{0,1\}$
- Forget: Prover sets a set of variables $x_{j_{1}}, \ldots, x_{j_{k}}=*$

Resolution is PLS

Resolution Complexity: of proof Π is $\log \operatorname{size}(\Pi)+$ width (Π)
PLS is Resolution:
$P L S^{d t}=\{F: F$ has a polylog (n)-complexity Res proof $\}$

SinkOfDag

Vertices: $1, \ldots, n$
Pointers: $s_{i} \geq i$ with $s_{1} \neq 1$
Solutions: i s.t. $s_{i} \neq i \& s_{s_{i}}=s_{i}$

Delayer Prover Game on F : each round

- Query: Prover suggests a variable x_{i} Delayer sets $x_{i} \in\{0,1\}$
- Forget: Prover sets a set of variables $x_{j_{1}}, \ldots, x_{j_{k}}=*$

Game ends when current assignment falsifies a clause of F

Resolution is PLS

Resolution Complexity: of proof Π is $\log \operatorname{size}(\Pi)+$ width (Π)
PLS is Resolution:
$P L S^{d t}=\{F: F$ has a polylog (n)-complexity Res proof $\}$

SinkOfDag

Vertices: $1, \ldots, n$
Pointers: $s_{i} \geq i$ with $s_{1} \neq 1$
Solutions: i s.t. $s_{i} \neq i \& s_{s_{i}}=s_{i}$

Delayer Prover Game on F : each round

- Query: Prover suggests a variable x_{i} Delayer sets $x_{i} \in\{0,1\}$
- Forget: Prover sets a set of variables $x_{j_{1}}, \ldots, x_{j_{k}}=*$

Game ends when current assignment falsifies a clause of F
w-Prover Strategy: ends the game while remembering at most w variables at any time

Resolution is PLS

Resolution Complexity: of proof Π is $\log \operatorname{size}(\Pi)+$ width (Π)
PLS is Resolution:
$P L S^{d t}=\{F: F$ has a polylog (n)-complexity Res proof $\}$

SinkOfDag

Vertices: $1, \ldots, n$
Pointers: $s_{i} \geq i$ with $s_{1} \neq 1$
Solutions: i s.t. $s_{i} \neq i \& s_{s_{i}}=s_{i}$

Delayer Prover Game on F : each round

- Query: Prover suggests a variable x_{i} Delayer sets $x_{i} \in\{0,1\}$
- Forget: Prover sets a set of variables $x_{j_{1}}, \ldots, x_{j_{k}}=*$

Game ends when current assignment falsifies a clause of F
w-Prover Strategy: ends the game while remembering at most w variables at any time

$$
w \text {-Prover strategy } \Longrightarrow \text { Complexity } w \log n \text { Resolution proof }
$$

Resolution is PLS

Resolution Complexity: of proof Π is $\log \operatorname{size}(\Pi)+$ width (Π)

PLS is Resolution:
$P L S^{d t}=\{F: F$ has a polylog (n)-complexity Res proof $\}$

```
SinkOfDag
Vertices: 1,\ldots,n
Pointers: }\mp@subsup{s}{i}{}\geqi\mathrm{ with }\mp@subsup{s}{1}{}\not=
Solutions: i i.t. si}=i&&\mp@subsup{s}{\mp@subsup{s}{i}{}}{}=\mp@subsup{s}{i}{
```

\Longleftarrow Extract a Prover Strategy for Search ${ }_{F}$

Resolution is PLS

Resolution Complexity: of proof Π is $\log \operatorname{size}(\Pi)+$ width (Π)

PLS is Resolution:
$P L S^{d t}=\{F: F$ has a polylog (n)-complexity Res proof $\}$

SinkOfDag

Vertices: $1, \ldots, n$
Pointers: $s_{i} \geq i$ with $s_{1} \neq 1$
Solutions: i s.t. $s_{i} \neq i \& s_{s_{i}}=s_{i}$
\Longleftarrow Extract a Prover Strategy for Search ${ }_{F}$

Resolution is PLS

Resolution Complexity: of proof Π is $\log \operatorname{size}(\Pi)+$ width (Π)

PLS is Resolution:
$P L S^{d t}=\{F: F$ has a polylog (n)-complexity Res proof $\}$

SinkOfDag

Vertices: $1, \ldots, n$
Pointers: $s_{i} \geq i$ with $s_{1} \neq 1$
Solutions: i s.t. $s_{i} \neq i \& s_{s_{i}}=s_{i}$
\Longleftarrow Extract a Prover Strategy for Search ${ }_{F}$

Memory
T_{1}

Resolution is PLS

Resolution Complexity: of proof Π is $\log \operatorname{size}(\Pi)+$ width (Π)
PLS is Resolution:
$P L S^{d t}=\{F: F$ has a polylog (n)-complexity Res proof $\}$

SinkOfDag

Vertices: $1, \ldots, n$
Pointers: $s_{i} \geq i$ with $s_{1} \neq 1$
Solutions: i s.t. $s_{i} \neq i \& s_{s_{i}}=s_{i}$
\Longleftarrow Extract a Prover Strategy for Search ${ }_{F}$

Memory
T_{1}
T_{3}

Resolution is PLS

Resolution Complexity: of proof Π is $\log \operatorname{size}(\Pi)+$ width (Π)
PLS is Resolution:
$P L S^{d t}=\{F: F$ has a polylog (n)-complexity Res proof $\}$

SinkOfDag

Vertices: $1, \ldots, n$
Pointers: $s_{i} \geq i$ with $s_{1} \neq 1$
Solutions: i s.t. $s_{i} \neq i \& s_{s_{i}}=s_{i}$
\Longleftarrow Extract a Prover Strategy for Search ${ }_{F}$

Memory
T_{1}
T_{3}

Resolution is PLS

Resolution Complexity: of proof Π is $\log \operatorname{size}(\Pi)+$ width (Π)

PLS is Resolution:
$P L S^{d t}=\{F: F$ has a polylog (n)-complexity Res proof $\}$

SinkOfDag

Vertices: $1, \ldots, n$
Pointers: $s_{i} \geq i$ with $s_{1} \neq 1$
Solutions: i s.t. $s_{i} \neq i \& s_{s_{i}}=s_{i}$
\Longleftarrow Extract a Prover Strategy for Search ${ }_{F}$

Resolution is PLS

Resolution Complexity: of proof Π is $\log \operatorname{size}(\Pi)+$ width (Π)
PLS is Resolution:
$P L S^{d t}=\{F: F$ has a polylog (n)-complexity Res proof $\}$

SinkOfDag

Vertices: $1, \ldots, n$
Pointers: $s_{i} \geq i$ with $s_{1} \neq 1$
Solutions: i s.t. $s_{i} \neq i \& s_{s_{i}}=s_{i}$
\Longleftarrow Extract a Prover Strategy for Search ${ }_{F}$

Memory
T_{3}
T_{4}

Resolution is PLS

Resolution Complexity: of proof Π is $\log \operatorname{size}(\Pi)+$ width (Π)
PLS is Resolution:
$P L S^{d t}=\{F: F$ has a polylog (n)-complexity Res proof $\}$

SinkOfDag

Vertices: $1, \ldots, n$
Pointers: $s_{i} \geq i$ with $s_{1} \neq 1$
Solutions: i s.t. $s_{i} \neq i \& s_{s_{i}}=s_{i}$
\Longleftarrow Extract a Prover Strategy for Search ${ }_{F}$

Memory
T_{3}
T_{4}
T_{3}^{o}

Resolution is PLS

Resolution Complexity: of proof Π is $\log \operatorname{size}(\Pi)+$ width (Π)
PLS is Resolution:
$P L S^{d t}=\{F: F$ has a polylog (n)-complexity Res proof $\}$

SinkOfDag

Vertices: $1, \ldots, n$
Pointers: $s_{i} \geq i$ with $s_{1} \neq 1$
Solutions: i s.t. $s_{i} \neq i \& s_{s_{i}}=s_{i}$
\Longleftarrow Extract a Prover Strategy for Search ${ }_{F}$

Memory
T_{3}
T_{4}
T_{3}^{o}

TFNP

TFNP

TFNP

[GKRS18] Certain circuit models are equivalent to communication TFNP classes!

TFNP

[GKRS18] Certain circuit models are equivalent to communication TFNP classes!

TFNP

[GKRS18] Certain circuit models are equivalent to communication TFNP classes!

Model of Computation: Decision Trees
Communication Protocols

TFNP

Observation 1: When both the DT and CC versions of a TFNP class admit a characterization then we immediately get an interpolation theorem

Model of Computation: Decision Trees
Communication Protocols

TFNP

Observation 1: When both the DT and CC versions of a TFNP class admit a characterization then we immediately get an interpolation theorem - CC protocols can simulate DTs

Model of Computation: Decision Trees
Communication Protocols

TFNP

Observation 1: When both the DT and CC versions of a TFNP class admit a characterization then we immediately get an interpolation theorem - CC protocols can simulate DTs

Model of Computation: Decision Trees
Communication Protocols

TFNP

Observation 1: When both the DT and CC versions of a TFNP class admit a characterization then we immediately get an interpolation theorem - CC protocols can simulate DTs

Model of Computation: Decision Trees
Communication Protocols

TFNP

Observation 2: Query-to-communication lifting theorems can be viewed as relating the CC version of a TFNP class to its DT version.

Model of Computation: Decision Trees
Communication Protocols

TFNP

Observation 2: Query-to-communication lifting theorems can be viewed as relating the CC version of a TFNP class to its DT version.

TFNP

Observation 2: Query-to-communication lifting theorems can be viewed as relating the CC version of a TFNP class to its DT version.

Model of Computation: Decision Trees
Communication Protocols

TFNP: Interpolation \& Lifting

Observation 1: When the DT and CC versions of a TFNP class both admit a characterization then we immediately get an interpolation theorem.

Observation 2: Query-to-communication lifting theorems can be viewed as relating the CC version of a TFNP class to its DT version.

TFNP: Interpolation \& Lifting

Observation 1: When the DT and CC versions of a TFNP class both admit a characterization then we immediately get an interpolation theorem.

Observation 2: Query-to-communication lifting theorems can be viewed as relating the CC version of a TFNP class to its DT version.

Upshot: Understand when interpolation or query-to-communication lifting theorems occur by understanding when proof systems and monotone circuit models admit TFNP characterizations!

TFNP: Interpolation \& Lifting

Observation 1: When the DT and CC versions of a TFNP class both admit a characterization then we immediately get an interpolation theorem.

Observation 2: Query-to-communication lifting theorems can be viewed as relating the CC version of a TFNP class to its DT version.

Upshot: Understand when interpolation or query-to-communication lifting theorems occur by understanding when proof systems and monotone circuit models admit TFNP characterizations!
Q. Under what conditions does a TFNP class admit a proof system / circuit characterization?

TFNP: Interpolation \& Lifting

Observation 1: When the DT and CC versions of a TFNP class both admit a characterization then we immediately get an interpolation theorem.

Observation 2: Query-to-communication lifting theorems can be viewed as relating the CC version of a TFNP class to its DT version.

Upshot: Understand when interpolation or query-to-communication lifting theorems occur by understanding when proof systems and monotone circuit models admit TFNP characterizations!
Q. Under what conditions does a TFNP class admit a proof system / circuit characterization?
Q. Under what conditions does a proof system / circuit admit a TFNP characterization?

Proof Complexity Characterizations

Q. Under what conditions does a TFNP class admit a proof system characterization?

Proof Complexity Characterizations

Q. Under what conditions does a TFNP class admit a proof system characterization?
A. For every TFNP class C there is a proof system which characterizes it!

Proof Complexity Characterizations

Q. Under what conditions does a TFNP class admit a proof system characterization?
A. For every TFNP class C there is a proof system which characterizes it!
\rightarrow Proofs are reductions to a complete problem for C !

Proof Complexity Characterizations

Q. Under what conditions does a TFNP class admit a proof system characterization?
A. For every TFNP class C there is a proof system which characterizes it!
\rightarrow Proofs are reductions to a complete problem for C !
Canonical proof system for C
Fix H such that $S e a r c h_{H}$ is equivalent to the complete problem for C

Proof Complexity Characterizations

Q. Under what conditions does a TFNP class admit a proof system characterization?
A. For every TFNP class C there is a proof system which characterizes it!
\rightarrow Proofs are reductions to a complete problem for C !

Canonical proof system for C

Fix H such that Search $_{H}$ is equivalent to the complete problem for C
Proof of F : a tuple ($n^{\prime},\left\{T_{i}\right\},\left\{T_{j}^{o}\right\}$) which describes a reduction from $\operatorname{Search}_{F}$ to $\operatorname{Search}_{H}$ on n^{\prime} variables.

Proof Complexity Characterizations

Q. Under what conditions does a TFNP class admit a proof system characterization?
A. For every TFNP class C there is a proof system which characterizes it!
\rightarrow Proofs are reductions to a complete problem for $C!$
Canonical proof system for C
Fix H such that $S e a r c h_{H}$ is equivalent to the complete problem for C
Proof of F : a tuple ($n^{\prime},\left\{T_{i}\right\},\left\{T_{j}^{o}\right\}$) which describes a reduction from $\operatorname{Search}_{F}$ to $\operatorname{Search}_{H}$ on n^{\prime} variables.

Cook-Reckhow proof system - proofs are verifiable!
\rightarrow Just check that $\left(n^{\prime},\left\{T_{i}\right\},\left\{T_{j}^{o}\right\}\right)$ describes a valid reduction!

Proof Complexity Characterizations

Q. Under what conditions does a TFNP class admit a proof system characterization?
A. For every TFNP class C there is a proof system which characterizes it!
\rightarrow Proofs are reductions to a complete problem for C !
Q. Under what conditions does a proof system admit a TFNP characterization?

Proof Complexity Characterizations

Q. Under what conditions does a TFNP class admit a proof system characterization?
A. For every TFNP class C there is a proof system which characterizes it!
\rightarrow Proofs are reductions to a complete problem for C !
Q. Under what conditions does a proof system admit a TFNP characterization?

Proof Complexity Characterizations

Q. Under what conditions does a TFNP class admit a proof system characterization?
A. For every TFNP class C there is a proof system which characterizes it!
\rightarrow Proofs are reductions to a complete problem for C !
Q. Under what conditions does a proof system admit a TFNP characterization?
A. Iff the proof system P :

- has short proofs of its own soundness!

Proof Complexity Characterizations

Q. Under what conditions does a TFNP class admit a proof system characterization?
A. For every TFNP class C there is a proof system which characterizes it!
\rightarrow Proofs are reductions to a complete problem for C !
Q. Under what conditions does a proof system admit a TFNP characterization?
A. Iff the proof system P :

- has short proofs of its own soundness!

Efficiently verifiable version of a reflection principle about itself

Proof Complexity Characterizations

Q. Under what conditions does a TFNP class admit a proof system characterization?
A. For every TFNP class C there is a proof system which characterizes it!
\rightarrow Proofs are reductions to a complete problem for $C!$
Q. Under what conditions does a proof system admit a TFNP characterization?
A. Iff the proof system P :

- has short proofs of its own soundness!

Efficiently verifiable version of a reflection principle about itself
"If F has a P-proof then F is a tautology"

Proof Complexity Characterizations

Q. Under what conditions does a TFNP class admit a proof system characterization?
A. For every TFNP class C there is a proof system which characterizes it!
\rightarrow Proofs are reductions to a complete problem for $C!$
Q. Under what conditions does a proof system admit a TFNP characterization?
A. Iff the proof system P :

- has short proofs of its own soundness!

Proof Complexity Characterizations

Q. Under what conditions does a TFNP class admit a proof system characterization?
A. For every TFNP class C there is a proof system which characterizes it!
\rightarrow Proofs are reductions to a complete problem for C !
Q. Under what conditions does a proof system admit a TFNP characterization?
A. Iff the proof system P :

- has short proofs of its own soundness!
- Closed under dt-reductions

Proof Complexity Characterizations

Q. Under what conditions does a TFNP class admit a proof system characterization?
A. For every TFNP class C there is a proof system which characterizes it!
\rightarrow Proofs are reductions to a complete problem for $C!$
Q. Under what conditions does a proof system admit a TFNP characterization?
A. Iff the proof system P :

- has short proofs of its own soundness!
- Closed under dt-reductions

If P has a small proof of F and T_{1}, \ldots, T_{n} are short decision trees
$\Longrightarrow P$ has a small proof of $F\left(T_{1}, \ldots, T_{n}\right)$

Proof Complexity Characterizations

Q. Under what conditions does a TFNP class admit a proof system characterization?
A. For every TFNP class C there is a proof system which characterizes it!
\rightarrow Proofs are reductions to a complete problem for C !
Q. Under what conditions does a proof system admit a TFNP characterization?
A. Iff the proof system P :

- has short proofs of its own soundness!
- Closed under dt-reductions

If P has a small proof of F and T_{1}, \ldots, T_{n} are short decision trees $\Longrightarrow P$ has a small proof of $F\left(T_{1}, \ldots, T_{n}\right)$

Standard proof systems satisfy this - e.g., Resolution, Sherali-Adams, Nullstellensatz...

Short Proofs of Soundness

$$
\begin{aligned}
& \text { Reflection principle for proof system } P \\
& \qquad \operatorname{Ref_{P,n,m,c}}:=\operatorname{Proof}_{P}(F, \Pi) \wedge \operatorname{SAT}(F, \alpha)
\end{aligned}
$$

Short Proofs of Soundness

$$
\begin{aligned}
& \text { Reflection principle for proof system } P \\
& \qquad \operatorname{Ref_{P,n,m,c}}:=\operatorname{Proof}_{P}(F, \Pi) \wedge \operatorname{SAT}(F, \alpha)
\end{aligned}
$$

Short Proofs of Soundness

Reflection principle for proof system P
$\operatorname{Ref}_{P, n, m, c}:=\operatorname{Proof}_{P}(F, \Pi$ is a complexity- $c P$-proof that F is unsatisfiable $\operatorname{SAT}(F, \alpha)$

Short Proofs of Soundness

$$
\begin{aligned}
& \begin{array}{l}
\text { Reflection principle for proof system } P \\
\operatorname{Ref}_{P, n, m, c}:=\operatorname{Proof}_{P}(F, \Pi) \wedge \sin \text { a complexity- } c P \text {-proof that } F \text { is unsatisfiable } \\
\alpha \text { is a satisfying assignment for } F
\end{array}
\end{aligned}
$$

Short Proofs of Soundness

Short Proofs of Soundness

Reflection principle for proof system P
Π is a complexity- $c P$-proof that F is unsatisfiable

$$
\operatorname{Ref}_{P, n, m, c}:=\operatorname{Proof}_{P}(F, \Pi) \wedge S A T(F, \alpha)
$$

Fix a standard encoding of $S A T$ α is a satisfying assignment for F

Many ways to encode P-proofs in an efficiently verifiable manner ($O(c)$ width, $2^{O(c)}$ size)

Short Proofs of Soundness

Reflection principle for proof system P
Π is a complexity- $c P$-proof that F is unsatisfiable

$$
\operatorname{Ref}_{P, n, m, c}:=\operatorname{Proof}_{P}(F, \Pi) \wedge S A T(F, \alpha)
$$

Fix a standard encoding of $S A T$ α is a satisfying assignment for F

Many ways to encode P-proofs in an efficiently verifiable manner ($O(c)$ width, $2^{O(c)}$ size)
\rightarrow Each generates a TFNP class as everything reducible to $\operatorname{Search}_{\text {Ref }_{P}}$

Efficiently Verifiable Reflection Principles

Theorem: If P is closed under dt-reductions and has $\operatorname{poly} \log (n)$-complexity proofs of $\operatorname{Ref} f_{P}$
then P is characterized by the TFNP class for $\operatorname{Search}_{\text {Ref }}^{P}$

Efficiently Verifiable Reflection Principles

Theorem: If P is closed under dt-reductions and has $\operatorname{polylog}(n)$-complexity proofs of $\operatorname{Ref} f_{P}$
then P is characterized by the TFNP class for $\operatorname{Search}_{R e f_{P}}$
Search $_{\text {Ref }_{P}} \in T F N P^{d t}$ as Ref_{P} is efficiently verifiable.

Efficiently Verifiable Reflection Principles

Theorem: If P is closed under dt-reductions and has $\operatorname{polylog}(n)$-complexity proofs of Ref_{P} then P is characterized by the TFNP class for $\operatorname{Search}_{\text {Ref }}^{P}$
Search $_{\text {Ref }_{P}} \in T F N P^{d t}$ as Ref_{P} is efficiently verifiable.
Search $_{F}$ reduces to $\operatorname{Search}_{\text {Ref }_{P}} \Longrightarrow$ efficient P-proof of F :
Efficient P-proof of $F \Longrightarrow$ Search $_{F}$ reduces to Search $_{\text {Ref }}^{F}$

Efficiently Verifiable Reflection Principles

Theorem: If P is closed under dt-reductions and has $\operatorname{poly} \log (n)$-complexity proofs of Ref_{P} then P is characterized by the TFNP class for $\operatorname{Search}_{\text {Ref }}^{P}$
Search $_{\text {Ref }_{P}} \in T F N P^{d t}$ as $R e f_{P}$ is efficiently verifiable.
Search $_{F}$ reduces to $\operatorname{Search}_{\text {Ref }_{P}} \Longrightarrow$ efficient P-proof of F :
As P is closed under dt-reductions and has a short proof of $R e f_{P}$ then it has a short proof of F
Efficient P-proof of $F \Longrightarrow$ Search $_{F}$ reduces to Search $_{\text {Ref }_{F}}$

Efficiently Verifiable Reflection Principles

Theorem: If P is closed under dt-reductions and has $\operatorname{poly} \log (n)$-complexity proofs of Ref_{P} then P is characterized by the TFNP class for $\operatorname{Search}_{\text {Ref }}^{P}$
Search $_{\text {Ref }_{P}} \in T F N P^{d t}$ as Ref_{P} is efficiently verifiable.
Search $_{F}$ reduces to $\operatorname{Search}_{\text {Ref }_{P}} \Longrightarrow$ efficient P-proof of F :
As P is closed under dt-reductions and has a short proof of $R e f_{P}$ then it has a short proof of F
Efficient P-proof of $F \Longrightarrow$ Search $_{F}$ reduces to Search $_{\text {Ref }}^{F}$
Let Π be an efficient P-proof of F

Efficiently Verifiable Reflection Principles

Theorem: If P is closed under dt-reductions and has $\operatorname{polylog}(n)$-complexity proofs of Ref_{P} then P is characterized by the TFNP class for $\operatorname{Search}_{\text {Ref }}^{P}$
Search $_{\text {Ref }_{P}} \in T F N P^{d t}$ as Ref_{P} is efficiently verifiable.
Search $_{F}$ reduces to $\operatorname{Search}_{\text {Ref }_{P}} \Longrightarrow$ efficient P-proof of F :
As P is closed under dt-reductions and has a short proof of $R e f_{P}$ then it has a short proof of F
Efficient P-proof of $F \Longrightarrow$ Search $_{F}$ reduces to Search $_{\text {Ref }_{F}}$
Let Π be an efficient P-proof of F
Reduction hardwires Π, F in $\operatorname{Ref}_{P}(\Pi, F, \alpha)$ leaving only the assignment α free (using constant DTs)

Efficiently Verifiable Reflection Principles

Theorem: If P is closed under dt-reductions and has $\operatorname{polylog}(n)$-complexity proofs of $\operatorname{Re} f_{P}$ then P is characterized by the TFNP class for $\operatorname{Search}_{\text {Ref }}^{P}$
Search $_{\text {Ref }_{P}} \in T F N P^{d t}$ as Ref_{P} is efficiently verifiable.
Search $_{F}$ reduces to $\operatorname{Search}_{\text {Ref }_{P}} \Longrightarrow$ efficient P-proof of F :
As P is closed under dt-reductions and has a short proof of $R e f_{P}$ then it has a short proof of F
Efficient P-proof of $F \Longrightarrow$ Search $_{F}$ reduces to Search $_{\text {Ref }_{F}}$
Let Π be an efficient P-proof of F
Reduction hardwires Π, F in $\operatorname{Ref}_{P}(\Pi, F, \alpha)$ leaving only the assignment α free (using constant DTs)
Π is low complexity \Longrightarrow number of variables of $R e f_{P}$ instance is not much more than that of F

Efficiently Verifiable Reflection Principles

Theorem: If P is closed under dt-reductions and has $\operatorname{poly} \log (n)$-complexity proofs of $\operatorname{Ref} f_{P}$
then P is characterized by the TFNP class for $\operatorname{Search}_{\text {Ref }}^{P}$

Efficiently Verifiable Reflection Principles

> Theorem: If P is closed under dt-reductions and has $\operatorname{polylog}(n)$-complexity proofs of Ref_{P} then P is characterized by the TFNP class for Search $_{\text {Ref }}^{P}$

Canonical proof system for a TFNP class can prove a reflection principle about itself

Efficiently Verifiable Reflection Principles

> Theorem: If P is closed under dt-reductions and has $\operatorname{polylog}(n)$-complexity proofs of $R e f_{P}$ then P is characterized by the TFNP class for $\operatorname{Search}_{R e f_{P}}$

Canonical proof system for a TFNP class can prove a reflection principle about itself
Corollary: A proof system admits a TFNP ${ }^{d t}$ characterization iff it is closed under decision tree reductions and has short proofs of a reflection principle about itself.

Circuit Complexity

Q. Under what conditions does a TFNP class admit a circuit characterization?

Circuit Complexity

Q. Under what conditions does a TFNP class admit a circuit characterization?
A. For every TFNP class there is a model of monotone circuit which characterizes it!

Circuit Complexity

Q. Under what conditions does a TFNP class admit a circuit characterization?
A. For every TFNP class there is a model of monotone circuit which characterizes it!
Q. Under what conditions does a monotone circuit model admit a TFNP characterization?

Circuit Complexity

Q. Under what conditions does a TFNP class admit a circuit characterization?
A. For every TFNP class there is a model of monotone circuit which characterizes it!
Q. Under what conditions does a monotone circuit model admit a TFNP characterization?
A. Iff the monotone circuit model C has a universal family of functions!

Circuit Complexity

Q. Under what conditions does a TFNP class admit a circuit characterization?
A. For every TFNP class there is a model of monotone circuit which characterizes it!
Q. Under what conditions does a monotone circuit model admit a TFNP characterization?
A. Iff the monotone circuit model C has a universal family of functions!

A monotone function F such that

1. for any partial function g :
C efficiently computes $g \Longrightarrow$ there is a string z such that $F \upharpoonright z(x)=g(x)$ for all x on which g is defined
2. C efficiently computes F

Circuit Complexity

Q. Under what conditions does a TFNP class admit a circuit characterization?
A. For every TFNP class there is a model of monotone circuit which characterizes it!
Q. Under what conditions does a monotone circuit model admit a TFNP characterization?
A. Iff the monotone circuit model C has a universal family of functions! (And closed under lowdepth formula reductions).

A monotone function F such that

1. for any partial function g :
C efficiently computes $g \Longrightarrow$ there is a string z such that $F \upharpoonright z(x)=g(x)$ for all x on which g is defined
2. C efficiently computes F

Open Problem

Q. A generic lifting theorem?

A circuit and proof system characterization of a TFNP class immediately implies an interpolation theorem. Does the same hold for lifting theorems?

