Rado numbers: SAT methods and connections to Nullstellensatz complexity

William (Jack) Wesley (joint with Yuan Chang and Jesús De Loera)

University of California, Davis

April 19, 2023

Jack Wesley (UC Davis) Rado numbers: SAT methods and connection April 19, 2023

2 Rado numbers and SAT

3 Nullstellensatz certificates for Ramsey-type numbers

Theorem (Ramsey, 1930)

Given positive integers r and s, there exists an integer n such that every red/blue edge coloring of K_n contains either a red K_r or a blue K_s .

Theorem (Ramsey, 1930)

Given positive integers r and s, there exists an integer n such that every red/blue edge coloring of K_n contains either a red K_r or a blue K_s .

But Ramsey theory came before Ramsey!

Theorem (Ramsey, 1930)

Given positive integers r and s, there exists an integer n such that every red/blue edge coloring of K_n contains either a red K_r or a blue K_s .

But Ramsey theory came before Ramsey!

Origins in algebra and number theory

Theorem (Hilbert's cube lemma, 1892)

For every k and d, there is an n such that every k-coloring of $\{1, ..., n\}$ produces a monochromatic solution to the system

$$x_0 + \sum_{i \in I} x_i = x_I, \quad I \subseteq \{1, \ldots, d\}, I \neq \emptyset.$$

Hilbert used this to prove results on irreducibility of rational functions.

Theorem (Schur, 1916)

For every $k \ge 1$, there exists a number n such that every k-coloring of $\{1, 2, ..., n\}$ contains a monochromatic triple (x, y, z) satisfying

$$x + y = z$$
.

Theorem (Schur, 1916)

For every $k \ge 1$, there exists a number n such that every k-coloring of $\{1, 2, ..., n\}$ contains a monochromatic triple (x, y, z) satisfying

$$x + y = z$$
.

 Proven while Schur was attacking Fermat's Last Theorem; used to prove existence of solutions to x^m + y^m = z^m (mod p)

Theorem (Schur, 1916)

For every $k \ge 1$, there exists a number n such that every k-coloring of $\{1, 2, ..., n\}$ contains a monochromatic triple (x, y, z) satisfying

$$x + y = z$$
.

- Proven while Schur was attacking Fermat's Last Theorem; used to prove existence of solutions to x^m + y^m = z^m (mod p)
- The Schur number S(k) is the smallest such n

Jack Wesley (UC Davis) Rado numbers: SAT methods and connection April 19, 2023

3 × 4 3 ×

• • • • • • • •

3

- *S*(2) = 5
- We can 2-color [4] while avoiding monochromatic solutions to x + y = z:

1 2 3 4

∃ ⇒

< A > <

э

- S(2) = 5
- We can 2-color [4] while avoiding monochromatic solutions to x + y = z:

1 2 3 4

• S(3) = 14:

I ∃ ►

< A > <

э

• *S*(2) = 5

• We can 2-color [4] while avoiding monochromatic solutions to x + y = z:

1 2 3 4

- *S*(3) = 14:
- We can 3-color [13] while avoiding monochromatic solutions to x + y = z:

1 2 3 4 5 6 7 8 9 10 11 12 13

Theorem (van der Waerden, 1927)

For every $k, \ell \ge 1$, there exists a number n such that every k-coloring of $\{1, \ldots, n\}$ contains a monochromatic length ℓ arithmetic progression.

• Rephrased: there is a positive integer *d* such that there is a monochromatic solution to the system of equations

$$x_2 = x_1 + d, \ x_3 = x_2 + d, \ldots, \ x_{\ell} = x_{\ell-1} + d.$$

• Originally conjectured by Schur while studying quadratic residues.

The van der Waerden number $w(k, \ell)$ is the smallest *n* such that every *k*-coloring of $\{1, \ldots, n\}$ contains a monochromatic ℓ -term arithmetic progression.

The van der Waerden number $w(k, \ell)$ is the smallest *n* such that every *k*-coloring of $\{1, \ldots, n\}$ contains a monochromatic ℓ -term arithmetic progression.

Example: w(2,3) = 9

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Van der Waerden numbers

Best general bounds:

w(2, p + 1) ≥ p2^p (Berlekamp '68)
w(k, ℓ) ≤ 2^{2^{k^{2^{ℓ+9}}}} (Gowers '01)

∃ >

Van der Waerden numbers

Best general bounds:

w(2, p + 1) ≥ p2^p (Berlekamp '68)
w(k, ℓ) ≤ 2^{2^{k^{2^{ℓ+9}}}} (Gowers '01)

All known exact values of $w(k, \ell)$:

e k	2	3	4
3	9	27	76
4	35	293	
5	178		
6	1132		

Rado's theorem

Questions:

→ < ∃ →</p>

3

Questions:

• What about other (systems of) equations?

Questions:

- What about other (systems of) equations?
- Is there a way to unify the results of Hilbert, Schur, and van der Waerden?

Questions:

- What about other (systems of) equations?
- Is there a way to unify the results of Hilbert, Schur, and van der Waerden?

Answered by Rado in his PhD thesis with Schur.

Definition (Rado number)

The (k-color) Rado number $R_k(\mathcal{E})$ of an equation \mathcal{E} is the smallest number n such that every $k-\text{coloring of } \{1,\ldots,n\}$ contains a monochromatic solution to \mathcal{E} .

Definition (Rado number)

The (k-color) Rado number $R_k(\mathcal{E})$ of an equation \mathcal{E} is the smallest number n such that every $k-\text{coloring of } \{1,\ldots,n\}$ contains a monochromatic solution to \mathcal{E} .

• The Schur number S(k) is $R_k(x + y = z)$.

Definition (Rado number)

The (k-color) Rado number $R_k(\mathcal{E})$ of an equation \mathcal{E} is the smallest number n such that every $k-\text{coloring of } \{1, \ldots, n\}$ contains a monochromatic solution to \mathcal{E} .

- The Schur number S(k) is $R_k(x + y = z)$.
- Not all Rado numbers are finite: e.g., $R_2(2x + 2y = z) = 34$, $R_3(2x + 2y = z) = \infty$.

An equation \mathcal{E} is regular if $R_k(\mathcal{E})$ exists (is finite) for all k.

æ

→ < ∃ →</p>

< 47 ▶

An equation \mathcal{E} is regular if $R_k(\mathcal{E})$ exists (is finite) for all k.

Rado's theorem generalizes Schur's theorem:

Theorem (Rado's Single Equation Theorem, 1933)

Let $m \geq 2$, and let $c_i \in \mathbb{Z} \setminus \{0\}$. Then the equation

$$\sum_{i=1}^m c_i x_i = 0$$

is regular if and only if there exists a nonempty subset of the coefficients that sums to 0.

An equation \mathcal{E} is regular if $R_k(\mathcal{E})$ exists (is finite) for all k.

Rado's theorem generalizes Schur's theorem:

Theorem (Rado's Single Equation Theorem, 1933)

Let $m \geq 2$, and let $c_i \in \mathbb{Z} \setminus \{0\}$. Then the equation

$$\sum_{i=1}^m c_i x_i = 0$$

is regular if and only if there exists a nonempty subset of the coefficients that sums to 0.

•
$$4w - 2x + 3y - 7z = 0$$
 is regular.

An equation \mathcal{E} is regular if $R_k(\mathcal{E})$ exists (is finite) for all k.

Rado's theorem generalizes Schur's theorem:

Theorem (Rado's Single Equation Theorem, 1933)

Let $m \geq 2$, and let $c_i \in \mathbb{Z} \setminus \{0\}$. Then the equation

$$\sum_{i=1}^m c_i x_i = 0$$

is regular if and only if there exists a nonempty subset of the coefficients that sums to 0.

- 4w 2x + 3y 7z = 0 is regular.
- 2x 5y + 6z = 0 is NOT regular.

3 Nullstellensatz certificates for Ramsey-type numbers

Jack Wesley (UC Davis) Rado numbers: SAT methods and connection April 1

•
$$w(2,6) = 1132$$
 (Kouril-Paul 2008)

Jack Wesley (UC Davis) Rado numbers: SAT methods and connection April 19, 2023

< ∃⇒

Image: A math

æ

- w(2,6) = 1132 (Kouril-Paul 2008)
- Green-Tao numbers (Kullmann 2010)

- w(2,6) = 1132 (Kouril-Paul 2008)
- Green-Tao numbers (Kullmann 2010)
- w(3,4) = 293 (Kouril 2012)

- w(2,6) = 1132 (Kouril-Paul 2008)
- Green-Tao numbers (Kullmann 2010)
- w(3,4) = 293 (Kouril 2012)
- Generalized van der Waerden numbers (Ahmed-Kullmann-Snevily 2014)

- w(2,6) = 1132 (Kouril-Paul 2008)
- Green-Tao numbers (Kullmann 2010)
- w(3,4) = 293 (Kouril 2012)
- Generalized van der Waerden numbers (Ahmed-Kullmann-Snevily 2014)
- Various Rado numbers (Myers 2015)
- w(2,6) = 1132 (Kouril-Paul 2008)
- Green-Tao numbers (Kullmann 2010)
- w(3,4) = 293 (Kouril 2012)
- Generalized van der Waerden numbers (Ahmed-Kullmann-Snevily 2014)
- Various Rado numbers (Myers 2015)
- R(3,3,4) = 30 (Codish-Frank-Itzhakov-Miller 2016)

- w(2,6) = 1132 (Kouril-Paul 2008)
- Green-Tao numbers (Kullmann 2010)
- w(3,4) = 293 (Kouril 2012)
- Generalized van der Waerden numbers (Ahmed-Kullmann-Snevily 2014)
- Various Rado numbers (Myers 2015)
- R(3,3,4) = 30 (Codish-Frank-Itzhakov-Miller 2016)
- Pythagorean Triples (Heule-Kullmann-Marek 2016)

- w(2,6) = 1132 (Kouril-Paul 2008)
- Green-Tao numbers (Kullmann 2010)
- w(3,4) = 293 (Kouril 2012)
- Generalized van der Waerden numbers (Ahmed-Kullmann-Snevily 2014)
- Various Rado numbers (Myers 2015)
- R(3,3,4) = 30 (Codish-Frank-Itzhakov-Miller 2016)
- Pythagorean Triples (Heule-Kullmann-Marek 2016)
- *S*(5) = 161 (Heule 2018)

- w(2,6) = 1132 (Kouril-Paul 2008)
- Green-Tao numbers (Kullmann 2010)
- w(3,4) = 293 (Kouril 2012)
- Generalized van der Waerden numbers (Ahmed-Kullmann-Snevily 2014)
- Various Rado numbers (Myers 2015)
- R(3,3,4) = 30 (Codish-Frank-Itzhakov-Miller 2016)
- Pythagorean Triples (Heule-Kullmann-Marek 2016)
- S(5) = 161 (Heule 2018)
- Generalized 3-color Schur numbers (Boza-Marín-Revuelta-Sanz 2019)

k	S(k)	
1	2	
2	5	
3	14	
4	45	Golomb and Baumert '65
5	161	Heule '18

æ

3 × < 3 ×

k	S(k)	
1	2	
2	5	
3	14	
4	45	Golomb and Baumert '65
5	161	Heule '18

• Showing $S(5) \le 161$ was a massive SAT computation using cube and conquer

・ 同 ト ・ ヨ ト ・ ヨ ト

э

k	S(k)	
1	2	
2	5	
3	14	
4	45	Golomb and Baumert '65
5	161	Heule '18

- Showing $S(5) \le 161$ was a massive SAT computation using cube and conquer
- 2-petabyte certificate

<日

<</p>

э

k	S(k)	
1	2	
2	5	
3	14	
4	45	Golomb and Baumert '65
5	161	Heule '18

- Showing $S(5) \le 161$ was a massive SAT computation using cube and conquer
- 2-petabyte certificate
- Our goal: study Rado numbers using SAT solvers

• The equation ax + by = cz gives bounds for other linear homogeneous equations

- The equation ax + by = cz gives bounds for other linear homogeneous equations
- Two color numbers most popular, but no general formula for $R_2(ax + by = cz)$ known.

- The equation ax + by = cz gives bounds for other linear homogeneous equations
- Two color numbers most popular, but no general formula for $R_2(ax + by = cz)$ known.
- Formulas for $R_2(ax ay = bz)$ and $R_2(ax + ay = bz)$ (Harborth and Maasberg '97)

- The equation ax + by = cz gives bounds for other linear homogeneous equations
- Two color numbers most popular, but no general formula for $R_2(ax + by = cz)$ known.
- Formulas for $R_2(ax ay = bz)$ and $R_2(ax + ay = bz)$ (Harborth and Maasberg '97)
- Few values known for three or more colors

- The equation ax + by = cz gives bounds for other linear homogeneous equations
- Two color numbers most popular, but no general formula for $R_2(ax + by = cz)$ known.
- Formulas for $R_2(ax ay = bz)$ and $R_2(ax + ay = bz)$ (Harborth and Maasberg '97)
- Few values known for three or more colors

Theorem (Chang-De Loera-W '22)

1
$$R_2(ax + by = cz)$$
 for $1 \le a, b, c \le 20$.

2
$$R_3(a(x-y) = bz)$$
 for $1 \le a, b \le 15$.

- 3 $R_3(a(x+y) = bz)$ for $1 \le a, b \le 10$.
- $R_3(ax + by = cz)$ for $1 \le a, b, c \le 6$.
- **5** $R_4(x y = az)$ for $1 \le a \le 4$.

6
$$R_4(a(x-y)=z)$$
 for $1 \le a \le 5$.

Patterns in $R_3(a(x - y) = bz)$

b b	1	2	3	4	5	6	7	8	9	10	11	12
1	14	14	27	64	125	216	343	512	729	1000	1331	1728
2	43	14	31	14	125	27	343	64	729	125	1331	216
3	94	61	14	73	125	14	343	512	27	1000	1331	64
4	173	43	109	14	141	31	343	14	729	125	1331	27
5	286	181	186	180	14	241	343	512	729	14	1331	1728
6	439	94	43	61	300	14	379	73	31	125	1331	14
7	638	428	442	456	470	462	14	561	729	1000	1331	1728
8	889	173	633	43	665	109	644	14	793	141	1331	31
9	1198	856	94	892	910	61	896	896	14	1081	1331	73
10	1571	286	1171	181	43	186	1190	180	1206	14	1431	241
11	2014	1508	1530	1552	1574	1596	1618	1584	1575	1580	14	1849
12	2533	439	173	94	2005	43	2053	61	109	300	2024	14

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Patterns in $R_3(a(x - y) = bz)$

a b	1	2	3	4	5	6	7	8	9	10	11	12
1	14	14	27	64	125	216	343	512	729	1000	1331	1728
2	43	14	31	14	125	27	343	64	729	125	1331	216
3	94	61	14	73	125	14	343	512	27	1000	1331	64
4	173	43	109	14	141	31	343	14	729	125	1331	27
5	286	181	186	180	14	241	343	512	729	14	1331	1728
6	439	94	43	61	300	14	379	73	31	125	1331	14
7	638	428	442	456	470	462	14	561	729	1000	1331	1728
8	889	173	633	43	665	109	644	14	793	141	1331	31
9	1198	856	94	892	910	61	896	896	14	1081	1331	73
10	1571	286	1171	181	43	186	1190	180	1206	14	1431	241
11	2014	1508	1530	1552	1574	1596	1618	1584	1575	1580	14	1849
12	2533	439	173	94	2005	43	2053	61	109	300	2024	14
• $R_3(a(x - y) = bz) = a^3$ for $a \ge b + 2$, $gcd(a, b) = 1$												

- $R_3(a(x-y) = (a-1)z) = a^3 + (a-1)^2$
- $R_3(x y = bz) = (b + 2)^3 (b + 2)^2 (b + 2) 1$

Theorem (Chang-De Loera-W '22)

- $R_3(a(x y) = bz) = a^3$ for $a \ge b + 2$, $a \ge 3$, gcd(a, b) = 1,
- $R_3(a(x-y) = (a-1)z) = a^3 + (a-1)^2$ for $a \ge 3$,
- $R_3(x y = bz) = (b + 2)^3 (b + 2)^2 (b + 2) 1$ for $b \ge 1$.

ヘロッ 不得 とくほ とくほう

3

Theorem (Chang-De Loera-W '22)

•
$$R_3(a(x - y) = bz) = a^3$$
 for $a \ge b + 2$, $a \ge 3$, $gcd(a, b) = 1$,

- $R_3(a(x-y) = (a-1)z) = a^3 + (a-1)^2$ for a > 3,
- $R_3(x y = bz) = (b + 2)^3 (b + 2)^2 (b + 2) 1$ for b > 1.

This theorem implies that the following result, conjectured by Ahmed and Schaal in 2016, on the generalized Schur numbers $S(k, m) := R_k(x_1 + \dots + x_{m-1} = x_m)$ is true:

Theorem (Boza, Marín, Revuelta, Sanz '19)

 $S(3,m) = m^3 - m^2 - m - 1.$

• Given an equation \mathcal{E} , we construct a formula $F_n^k(\mathcal{E})$ that is satisfiable if and only if $R_k(\mathcal{E}) > n$.

- Given an equation \mathcal{E} , we construct a formula $F_n^k(\mathcal{E})$ that is satisfiable if and only if $R_k(\mathcal{E}) > n$.
- The variables of $F_n^k(\mathcal{E})$ are $\{v_i^c\}$, $1 \le i \le n$, $1 \le c \le k$. The variable v_i^c is set to true if and only if the integer *i* has color *c*.

- Given an equation \mathcal{E} , we construct a formula $F_n^k(\mathcal{E})$ that is satisfiable if and only if $R_k(\mathcal{E}) > n$.
- The variables of $F_n^k(\mathcal{E})$ are $\{v_i^c\}$, $1 \le i \le n$, $1 \le c \le k$. The variable v_i^c is set to true if and only if the integer *i* has color *c*.
- $F_n^k(\mathcal{E})$ has three types of clauses: positive, negative, and optional

• Positive clauses encode that each integer is assigned at least one color, and take the form

$$v_i^1 \lor v_i^2 \lor \cdots \lor v_i^k$$

for all i

• Positive clauses encode that each integer is assigned at least one color, and take the form

$$v_i^1 \lor v_i^2 \lor \cdots \lor v_i^k$$

for all *i*

• Negative clauses encode that there are no monochromatic solutions to \mathcal{E} . For each solution (x, y, z) and color c, we have the negative clause

 $\bar{v}_x^c \vee \bar{v}_y^c \vee \bar{v}_z^c$

• Positive clauses encode that each integer is assigned at least one color, and take the form

$$v_i^1 \vee v_i^2 \vee \cdots \vee v_i^k$$

for all *i*

• Negative clauses encode that there are no monochromatic solutions to \mathcal{E} . For each solution (x, y, z) and color c, we have the negative clause

$$\bar{v}_x^c \vee \bar{v}_y^c \vee \bar{v}_z^c$$

• Optional clauses encode that each integer is assigned at most one color, and take the form

$$\bar{v}_i^c \vee \bar{v}_i^{c'}$$

for all i and all colors $1 \le c < c' \le k$.

The clauses in the formula $F_4^3(x + y = z)$ are: Positive clauses:

 $(v_{1}^{1} \vee v_{1}^{2} \vee v_{1}^{3}) \wedge (v_{2}^{1} \vee v_{2}^{2} \vee v_{2}^{3}) \wedge (v_{3}^{1} \vee v_{3}^{2} \vee v_{3}^{3}) \wedge (v_{4}^{1} \vee v_{4}^{2} \vee v_{4}^{3})$

Negative clauses:

$$\begin{split} & (\overline{v}_{1}^{1} \vee \overline{v}_{1}^{1} \vee \overline{v}_{2}^{1}) \wedge (\overline{v}_{2}^{1} \vee \overline{v}_{1}^{1} \vee \overline{v}_{3}^{1}) \wedge (\overline{v}_{3}^{1} \vee \overline{v}_{1}^{1} \vee \overline{v}_{4}^{1}) \wedge \\ & (\overline{v}_{1}^{1} \vee \overline{v}_{2}^{1} \vee \overline{v}_{3}^{1}) \wedge (\overline{v}_{2}^{1} \vee \overline{v}_{2}^{1} \vee \overline{v}_{4}^{1}) \wedge (\overline{v}_{1}^{1} \vee \overline{v}_{3}^{1} \vee \overline{v}_{4}^{1}) \wedge \\ & (\overline{v}_{1}^{2} \vee \overline{v}_{1}^{2} \vee \overline{v}_{2}^{2}) \wedge (\overline{v}_{2}^{2} \vee \overline{v}_{1}^{2} \vee \overline{v}_{3}^{2}) \wedge (\overline{v}_{3}^{2} \vee \overline{v}_{1}^{2} \vee \overline{v}_{4}^{2}) \wedge \\ & (\overline{v}_{1}^{2} \vee \overline{v}_{2}^{2} \vee \overline{v}_{3}^{2}) \wedge (\overline{v}_{2}^{2} \vee \overline{v}_{2}^{2} \vee \overline{v}_{4}^{2}) \wedge (\overline{v}_{1}^{2} \vee \overline{v}_{3}^{2} \vee \overline{v}_{4}^{2}) \wedge \\ & (\overline{v}_{1}^{3} \vee \overline{v}_{1}^{3} \vee \overline{v}_{2}^{3}) \wedge (\overline{v}_{2}^{3} \vee \overline{v}_{1}^{3} \vee \overline{v}_{3}^{3}) \wedge (\overline{v}_{3}^{3} \vee \overline{v}_{1}^{3} \vee \overline{v}_{4}^{3}) \wedge \\ & (\overline{v}_{1}^{3} \vee \overline{v}_{2}^{3} \vee \overline{v}_{3}^{3}) \wedge (\overline{v}_{2}^{3} \vee \overline{v}_{2}^{3} \vee \overline{v}_{4}^{3}) \wedge (\overline{v}_{1}^{3} \vee \overline{v}_{3}^{3} \vee \overline{v}_{4}^{3}) \end{split}$$

Optional clauses:

$$(\overline{\nu}_1^1 \vee \overline{\nu}_1^2) \wedge (\overline{\nu}_1^1 \vee \overline{\nu}_1^3) \wedge (\overline{\nu}_1^2 \vee \overline{\nu}_1^3) \wedge (\overline{\nu}_2^1 \vee \overline{\nu}_2^2) \wedge (\overline{\nu}_2^1 \vee \overline{\nu}_2^3) \wedge (\overline{\nu}_2^2 \vee \overline{\nu}_2^3) \wedge (\overline{\nu}_3^1 \vee \overline{\nu}_3^3) \wedge (\overline{\nu}_3^1 \vee \overline{\nu}_3^3) \wedge (\overline{\nu}_4^1 \vee \overline{\nu}_4^2) \wedge (\overline{\nu}_4^1 \vee \overline{\nu}_4^3) \wedge (\overline{\nu}_4^2 \vee \overline{\nu}_4^3)$$

э

• For each equation \mathcal{E} we produced the satisfiable formula $F_{n-1}^k(\mathcal{E})$ and unsatisfiable formula $F_n^k(\mathcal{E})$ to prove $R_k(\mathcal{E}) = n$

- For each equation \mathcal{E} we produced the satisfiable formula $F_{n-1}^k(\mathcal{E})$ and unsatisfiable formula $F_n^k(\mathcal{E})$ to prove $R_k(\mathcal{E}) = n$
- Guess lower and upper bounds for *n*, then use binary search to determine *n*

- For each equation \$\mathcal{E}\$ we produced the satisfiable formula \$F_{n-1}^k(\mathcal{E})\$ and unsatisfiable formula \$F_n^k(\mathcal{E})\$ to prove \$R_k(\mathcal{E}) = n\$
- Guess lower and upper bounds for *n*, then use binary search to determine *n*
- Solving is relatively fast for two or three colors (≤ 1 min for most formulas)

- For each equation \$\mathcal{E}\$ we produced the satisfiable formula \$F_{n-1}^k(\mathcal{E})\$ and unsatisfiable formula \$F_n^k(\mathcal{E})\$ to prove \$R_k(\mathcal{E}) = n\$
- Guess lower and upper bounds for *n*, then use binary search to determine *n*
- Solving is relatively fast for two or three colors (≤ 1 min for most formulas)
- Four color formulas require symmetry breaking and more time

- For each equation \$\mathcal{E}\$ we produced the satisfiable formula \$F_{n-1}^k(\mathcal{E})\$ and unsatisfiable formula \$F_n^k(\mathcal{E})\$ to prove \$R_k(\mathcal{E}) = n\$
- Guess lower and upper bounds for *n*, then use binary search to determine *n*
- Solving is relatively fast for two or three colors ($\leq 1 \mod 1$ min for most formulas)
- Four color formulas require symmetry breaking and more time
- Modified encoding to compute **infinitely** many values with a single formula

イロト 不得 トイヨト イヨト

3

• Don't need *all* the integers 1 to 9:

< ∃⇒

< 1 k

æ

- Don't need *all* the integers 1 to 9:
- Suppose 4 is red. Then since (6,4,6) is a solution, 6 must be blue.

- Don't need *all* the integers 1 to 9:
- Suppose 4 is red. Then since (6,4,6) is a solution, 6 must be blue.
- (9,6,9) and (3,3,4) are solutions, so 9 must be red and 3 must be blue.

- Don't need all the integers 1 to 9:
- Suppose 4 is red. Then since (6,4,6) is a solution, 6 must be blue.
- (9,6,9) and (3,3,4) are solutions, so 9 must be red and 3 must be blue.
- But (3,6,7) and (9,4,7) are solutions, so 7 can't be either color.

- Don't need all the integers 1 to 9:
- Suppose 4 is red. Then since (6,4,6) is a solution, 6 must be blue.
- (9,6,9) and (3,3,4) are solutions, so 9 must be red and 3 must be blue.
- But (3,6,7) and (9,4,7) are solutions, so 7 can't be either color.
- Only needed to use the numbers in $S = \{3, 4, 6, 7, 9\}$

- Don't need all the integers 1 to 9:
- Suppose 4 is red. Then since (6,4,6) is a solution, 6 must be blue.
- (9,6,9) and (3,3,4) are solutions, so 9 must be red and 3 must be blue.
- But (3,6,7) and (9,4,7) are solutions, so 7 can't be either color.
- Only needed to use the numbers in $S = \{3, 4, 6, 7, 9\}$
- Want to describe sets S that work for an *entire family* of equations
Example: $R_2(x + (a - 2)y = z) = a^2 - a - 1$ for all $a \ge 3$.

• 3 •

Example:
$$R_2(x + (a - 2)y = z) = a^2 - a - 1$$
 for all $a \ge 3$.
• Let $S = \{1, a - 1, a, a^2 - 2a + 1, a^2 - a - 1\}$

문 문 문

Example:
$$R_2(x + (a - 2)y = z) = a^2 - a - 1$$
 for all $a \ge 3$.

- Let $S = \{1, a 1, a, a^2 2a + 1, a^2 a 1\}$
- Suppose 1 is red.

★ 프 ► = 프

< A > <

Example: $R_2(x + (a - 2)y = z) = a^2 - a - 1$ for all $a \ge 3$.

- Let $S = \{1, a 1, a, a^2 2a + 1, a^2 a 1\}$
- Suppose 1 is red.
- (1, 1, a 1) is a solution, so a 1 is blue.

Example: $R_2(x + (a - 2)y = z) = a^2 - a - 1$ for all $a \ge 3$.

- Let $S = \{1, a 1, a, a^2 2a + 1, a^2 a 1\}$
- Suppose 1 is red.
- (1, 1, a 1) is a solution, so a 1 is blue.
- $(a 1, a 1, a^2 2a + 1)$ is a solution, so $a^2 2a + 1$ is red.

Example:
$$R_2(x + (a - 2)y = z) = a^2 - a - 1$$
 for all $a \ge 3$.

- Let $S = \{1, a 1, a, a^2 2a + 1, a^2 a 1\}$
- Suppose 1 is red.
- (1, 1, a 1) is a solution, so a 1 is blue.
- $(a 1, a 1, a^2 2a + 1)$ is a solution, so $a^2 2a + 1$ is red.
- $(a^2 2a + 1, 1, a^2 a 1)$ is a solution, so $a^2 a 1$ is blue.

Example:
$$R_2(x + (a - 2)y = z) = a^2 - a - 1$$
 for all $a \ge 3$.

- Let $S = \{1, a 1, a, a^2 2a + 1, a^2 a 1\}$
- Suppose 1 is red.
- (1, 1, a 1) is a solution, so a 1 is blue.
- $(a 1, a 1, a^2 2a + 1)$ is a solution, so $a^2 2a + 1$ is red.
- $(a^2 2a + 1, 1, a^2 a 1)$ is a solution, so $a^2 a 1$ is blue.
- $(1, a, a^2 2a + 1)$ and $(a 1, a, a^2 a 1)$ are solutions, so a cannot be either color.

Upper bounds: Variables indexed by polynomials

• Can prove upper bounds by generating a formula in the same way: negative clauses look like

$$\overline{v_1}^1 \vee \overline{v_a}^1 \vee \overline{v}_{a^2-2a+1}^1$$

• Set S describes an unsatisfiable core for an equation

Upper bounds: Variables indexed by polynomials

• Can prove upper bounds by generating a formula in the same way: negative clauses look like

$$\overline{v_1}^1 \vee \overline{v_a}^1 \vee \overline{v}_{a^2-2a+1}^1.$$

- Set S describes an unsatisfiable core for an equation
- Found suitable *S* for our Rado number families:

E	$R_3(\mathcal{E})$	S
x - y = (b - 2)z	$b^3 - b^2 - b - 1$	685
a(x-y) = (a-1)z	$a^3 + (a - 1)^2$	1365
a(x-y) = bz	a ³	40645

• Conjecture: $R_4(x_1 + \cdots + x_{m-1} = x_m) = m^4 - m^3 - m^2 - m - 1$ for $m \ge 4$

• • = •

< 1 k

3

- Conjecture: $R_4(x_1 + \cdots + x_{m-1} = x_m) = m^4 m^3 m^2 m 1$ for $m \ge 4$
- Refine methods to find unsatisfiable cores for Rado numbers

э

- Conjecture: $R_4(x_1 + \cdots + x_{m-1} = x_m) = m^4 m^3 m^2 m 1$ for $m \ge 4$
- Refine methods to find unsatisfiable cores for Rado numbers
- Application to other families of Rado numbers (nonhomogeneous, nonlinear, etc.)

- Conjecture: $R_4(x_1 + \cdots + x_{m-1} = x_m) = m^4 m^3 m^2 m 1$ for $m \ge 4$
- Refine methods to find unsatisfiable cores for Rado numbers
- Application to other families of Rado numbers (nonhomogeneous, nonlinear, etc.)
- General formula for $R_2(ax + by = cz)$

Current work

• The largest k for which $R_k(\mathcal{E})$ is finite (k-regular) is called the degree of regularity of \mathcal{E} .

∃ →

< 1 k

Current work

The largest k for which R_k(E) is finite (k-regular) is called the degree of regularity of E.

Theorem (Chang-De Loera-W '22)

The degree of regularity for the equation ax + by + cz = 0 is known for $1 \le |a|, |b|, |c| \le 5$.

The largest k for which R_k(E) is finite (k-regular) is called the degree of regularity of E.

Theorem (Chang-De Loera-W '22)

The degree of regularity for the equation ax + by + cz = 0 is known for $1 \le |a|, |b|, |c| \le 5$.

Conjecture (Rado's Boundedness Conjecture)

For all linear homogeneous equations \mathcal{E} in m variables, there is a value $\Delta = \Delta(m)$ such that if \mathcal{E} is Δ -regular, then \mathcal{E} is regular.

• Fox and Kleitman proved $\Delta = 24$ suffices for m = 3, but unknown if this can be improved

The largest k for which R_k(E) is finite (k-regular) is called the degree of regularity of E.

Theorem (Chang-De Loera-W '22)

The degree of regularity for the equation ax + by + cz = 0 is known for $1 \le |a|, |b|, |c| \le 5$.

Conjecture (Rado's Boundedness Conjecture)

For all linear homogeneous equations \mathcal{E} in m variables, there is a value $\Delta = \Delta(m)$ such that if \mathcal{E} is Δ -regular, then \mathcal{E} is regular.

- Fox and Kleitman proved $\Delta = 24$ suffices for m = 3, but unknown if this can be improved
- Is there an equation \mathcal{E} of the form ax + by + cz = 0 with degree of regularity 4?

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

3 Nullstellensatz certificates for Ramsey-type numbers

Jack Wesley (UC Davis) Rado numbers: SAT methods and connection Apri

Given an equation \mathcal{E} and number of colors k, let S_n be the set of solutions to \mathcal{E} where each variable is in $\{1, \ldots, n\}$. The following system of equations has no solution over $\overline{\mathbb{F}_2}$ if and only if $R_k(\mathcal{E}) < n$:

$$\prod_{s \in S_n} x_{s,c} = 0 \qquad 1 \le c \le k,$$

$$1 + \sum_{c=1}^k x_{i,c} = 0 \qquad 1 \le i \le n,$$

$$x_{i,c} x_{i,c'} = 0 \qquad 1 \le c < c' \le k$$

Polynomial encodings

The following system of equations has no solution over $\overline{\mathbb{F}_2}$ if and only if $R_2(x + y = z) \le 5$:

 $\begin{array}{rl} x_1 x_2 = 0, & y_1 y_2 = 0, \\ x_2 x_4 = 0, & y_2 y_4 = 0, \\ x_1 x_2 x_3 = 0, & y_1 y_2 y_3 = 0, \\ x_1 x_3 x_4 = 0, & y_1 y_3 y_4 = 0, \\ x_1 x_4 x_5 = 0, & y_1 y_4 y_5 = 0, \\ x_2 x_3 x_5 = 0, & y_2 y_3 y_5 = 0, \\ 1 + x_i + y_i = 0, & 1 \le i \le 5. \end{array}$

< A > <

→

Let K be an algebraically closed field, and let $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$. Then there is no solution to the system $f_1 = \cdots = f_m = 0$ if and only if there exist polynomials β_1, \ldots, β_m such that $\sum_{i=1}^m \beta_i f_i = 1$.

Let K be an algebraically closed field, and let $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$. Then there is no solution to the system $f_1 = \cdots = f_m = 0$ if and only if there exist polynomials β_1, \ldots, β_m such that $\sum_{i=1}^m \beta_i f_i = 1$.

The identity $\sum_{i=1}^{m} \beta_i f_i = 1$ is called a *Nullstellensatz certificate*.

Let K be an algebraically closed field, and let $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$. Then there is no solution to the system $f_1 = \cdots = f_m = 0$ if and only if there exist polynomials β_1, \ldots, β_m such that $\sum_{i=1}^m \beta_i f_i = 1$.

The identity $\sum_{i=1}^{m} \beta_i f_i = 1$ is called a *Nullstellensatz certificate*.

The *degree* of the certificate is the maximum degree of the β_i .

Let *K* be an algebraically closed field, and let $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$. Then there is no solution to the system $f_1 = \cdots = f_m = 0$ if and only if there exist polynomials β_1, \ldots, β_m such that $\sum_{i=1}^m \beta_i f_i = 1$.

The identity $\sum_{i=1}^{m} \beta_i f_i = 1$ is called a *Nullstellensatz certificate*.

The *degree* of the certificate is the maximum degree of the β_i .

Goal: describe Nullstellensatz certificates for Rado numbers

• Fix an equation \mathcal{E} and positive integers k and n.

- Fix an equation \mathcal{E} and positive integers k and n.
- Builder and Painter take turns where Builder selects an integer in $\{1, \ldots, n\}$ and Painter assigns it one of k colors.

- Fix an equation \mathcal{E} and positive integers k and n.
- Builder and Painter take turns where Builder selects an integer in $\{1, \ldots, n\}$ and Painter assigns it one of k colors.
- Builder wins when there is a monochromatic solution to \mathcal{E} .

- Fix an equation \mathcal{E} and positive integers k and n.
- Builder and Painter take turns where Builder selects an integer in $\{1, \ldots, n\}$ and Painter assigns it one of k colors.
- Builder wins when there is a monochromatic solution to \mathcal{E} .
- The number $\tilde{R}_k(\mathcal{E}; n)$ is the smallest number of turns for which Builder is guaranteed victory.

- Fix an equation \mathcal{E} and positive integers k and n.
- Builder and Painter take turns where Builder selects an integer in $\{1, \ldots, n\}$ and Painter assigns it one of k colors.
- Builder wins when there is a monochromatic solution to \mathcal{E} .
- The number $\tilde{R}_k(\mathcal{E}; n)$ is the smallest number of turns for which Builder is guaranteed victory.
- Builder always wins if $n \ge R_k(\mathcal{E})$.

- Fix an equation \mathcal{E} and positive integers k and n.
- Builder and Painter take turns where Builder selects an integer in $\{1, \ldots, n\}$ and Painter assigns it one of k colors.
- Builder wins when there is a monochromatic solution to \mathcal{E} .
- The number $\tilde{R}_k(\mathcal{E}; n)$ is the smallest number of turns for which Builder is guaranteed victory.
- Builder always wins if $n \ge R_k(\mathcal{E})$.
- Example: $\tilde{R}_2(x + 3y = 3z; 9) \le 5$ (Builder can choose from $\{3, 4, 6, 7, 9\}$ and win)

Theorem (De Loera-W)

Using the previous encoding, there exists a Nullstellensatz certificate of degree at most $\tilde{R}_k(\mathcal{E}; n)$ for $n = R_k(\mathcal{E})$.

Theorem (De Loera-W)

Using the previous encoding, there exists a Nullstellensatz certificate of degree at most $\tilde{R}_k(\mathcal{E}; n)$ for $n = R_k(\mathcal{E})$.

This theorem and encoding generalize!

- Ramsey numbers (multicolor, arbitrary graphs)
- Schur and Rado numbers
- van der Waerden numbers
- Hales-Jewett numbers

- Find lower bounds for the degrees of Nullstellensatz certificates in this encoding. Are online Ramsey-type numbers good bounds?
- The inequalities

min Nullstellensatz degree \leq online Rado number \leq Rado number are strict in general

- Find lower bounds for the degrees of Nullstellensatz certificates in this encoding. Are online Ramsey-type numbers good bounds?
- The inequalities

min Nullstellensatz degree \leq online Rado number \leq Rado number

are strict in general

 Investigate the analogous Builder-Painter game for other problems (Schur numbers, van der Waerden numbers, Ramsey numbers for other graphs)

Thank you!

References:

- (with Yuan Chang and Jesús De Loera) Rado Numbers and SAT Computations, Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC, 2022, pp. 333–342, https://dl.acm.org/doi/10.1145/3476446.3535494
- (with Jesús De Loera) Ramsey Numbers through the Lenses of Polynomial Ideals and Nullstellensätze https://arxiv.org/abs/2209.13859