
The Proof Complexity of Integer
Programming

Memorial University
Noah Fleming

Integer Programming

• A system of linear inequalities  
 

Input

a1x ≥ b1, …, amx ≥ bm

Integer Programming

Input

P
• A system of linear inequalities  

 
defining a polytope in P ℝn

P = {x : a1x ≥ b1, …, amx ≥ bm}

Integer Programming

Input

P

c

• A system of linear inequalities  
 
defining a polytope in

• A “direction”

P ℝn

c ∈ ℝn

P = {x : a1x ≥ b1, …, amx ≥ bm}

Integer Programming

Input

P

c
Output
• An integer point maximizing x ∈ P cx

• A system of linear inequalities  
 
defining a polytope in

• A “direction”

P ℝn

c ∈ ℝn

P = {x : a1x ≥ b1, …, amx ≥ bm}

Integer Programming

Input

P

c
Output
• An integer point maximizing x ∈ P cx

• A system of linear inequalities  
 
defining a polytope in

• A “direction”

P ℝn

c ∈ ℝn

P = {x : a1x ≥ b1, …, amx ≥ bm}

Integer Programming

Input

P

c
Output
• An integer point maximizing x ∈ P cx

• A system of linear inequalities  
 
defining a polytope in

• A “direction”

P ℝn

c ∈ ℝn

Very general framework. However, NP-hard to solve

P = {x : a1x ≥ b1, …, amx ≥ bm}

Integer Programming

Input

P

c
Output
• An integer point maximizing x ∈ P cx

• A system of linear inequalities  
 
defining a polytope in

• A “direction”

P ℝn

c ∈ ℝn

Very general framework. However, NP-hard to solve

 Contrast with linear programming: output any maximizing → x ∈ P cx

P = {x : a1x ≥ b1, …, amx ≥ bm}

Integer Programming

Input

P

c
Output
• An integer point maximizing x ∈ P cx

• A system of linear inequalities  
 
defining a polytope in

• A “direction”

P ℝn

c ∈ ℝn

Very general framework. However, NP-hard to solve

 Contrast with linear programming: output any maximizing → x ∈ P cx

P = {x : a1x ≥ b1, …, amx ≥ bm}

Integer Programming

Input

P

c
Output
• An integer point maximizing x ∈ P cx

• A system of linear inequalities  
 
defining a polytope in

• A “direction”

P ℝn

c ∈ ℝn

Very general framework. However, NP-hard to solve

 Contrast with linear programming: output any maximizing → x ∈ P cx

P = {x : a1x ≥ b1, …, amx ≥ bm}

Like SAT, practitioners routinely able to solve practical instances of IP

Integer Programming

Input

P

c
Output
• An integer point maximizing x ∈ P cx

• A system of linear inequalities  
 
defining a polytope in

• A “direction”

P ℝn

c ∈ ℝn

Very general framework. However, NP-hard to solve

 Contrast with linear programming: output any maximizing → x ∈ P cx

P = {x : a1x ≥ b1, …, amx ≥ bm}

Like SAT, practitioners routinely able to solve practical instances of IP

 How?→

Integer Programming

Input

P

c
Output
• An integer point maximizing x ∈ P cx

• A system of linear inequalities  
 
defining a polytope in

• A “direction”

P ℝn

c ∈ ℝn

Very general framework. However, NP-hard to solve

 Contrast with linear programming: output any maximizing → x ∈ P cx

P = {x : a1x ≥ b1, …, amx ≥ bm}

Like SAT, practitioners routinely able to solve practical instances of IP

 How? — Reduce to linear programming!→

Integer Programming in Practice

Integer Hull of a polytope is
P
int(P) := conv(P ∩ ℤn)

P

c

Integer Programming in Practice

int(P)

Integer Hull of a polytope is
P
int(P) := conv(P ∩ ℤn)

c

Integer Programming in Practice

Integer Hull of a polytope is
P
int(P) := conv(P ∩ ℤn)

int(P)
• is a polytope
int(P)

c

Integer Programming in Practice

Integer Hull of a polytope is
P
int(P) := conv(P ∩ ℤn)

int(P)
• is a polytope

• An LP solution to is an ILP solution to

int(P)

int(P) P
LP(int(P), c) = ILP(P, c)

c

Integer Programming in Practice

Integer Hull of a polytope is
P
int(P) := conv(P ∩ ℤn)

int(P)
• is a polytope

• An LP solution to is an ILP solution to

int(P)

int(P) P
LP(int(P), c) = ILP(P, c)

c

Integer Programming in Practice

int(P)

c

Modern IP-algorithms try to reduce P → int(P)

Integer Hull of a polytope is
P
int(P) := conv(P ∩ ℤn)

• is a polytope

• An LP solution to is an ILP solution to

int(P)

int(P) P
LP(int(P), c) = ILP(P, c)

Integer Programming in Practice

int(P)

c

Modern IP-algorithms try to reduce P → int(P)
How? — [Gomory63, Chvátal73]: Add cutting planes

Integer Hull of a polytope is
P
int(P) := conv(P ∩ ℤn)

• is a polytope

• An LP solution to is an ILP solution to

int(P)

int(P) P
LP(int(P), c) = ILP(P, c)

Integer Programming in Practice

int(P)

c

Modern IP-algorithms try to reduce P → int(P)
How? — [Gomory63, Chvátal73]: Add cutting planes

If is valid for with relatively prime and
then is a CG-cut for

ax ≥ b P a ∈ ℤn b ∈ ℝ
ax ≥ ⌈b⌉ P

Integer Hull of a polytope is
P
int(P) := conv(P ∩ ℤn)

• is a polytope

• An LP solution to is an ILP solution to

int(P)

int(P) P
LP(int(P), c) = ILP(P, c)

Integer Programming in Practice

P

Modern IP-algorithms try to reduce P → int(P)
How? — [Gomory63, Chvátal73]: Add cutting planes

If is valid for with relatively prime and
then is a CG-cut for

ax ≥ b P a ∈ ℤn b ∈ ℝ
ax ≥ ⌈b⌉ P

Integer Hull of a polytope is
P
int(P) := conv(P ∩ ℤn)

• is a polytope

• An LP solution to is an ILP solution to

int(P)

int(P) P
LP(int(P), c) = ILP(P, c)

Integer Programming in Practice

P

Modern IP-algorithms try to reduce P → int(P)
How? — [Gomory63, Chvátal73]: Add cutting planes

If is valid for with relatively prime and
then is a CG-cut for

ax ≥ b P a ∈ ℤn b ∈ ℝ
ax ≥ ⌈b⌉ P

Integer Hull of a polytope is
P
int(P) := conv(P ∩ ℤn)

• is a polytope

• An LP solution to is an ILP solution to

int(P)

int(P) P
LP(int(P), c) = ILP(P, c)

Integer Programming in Practice

P

Modern IP-algorithms try to reduce P → int(P)
How? — [Gomory63, Chvátal73]: Add cutting planes

If is valid for with relatively prime and
then is a CG-cut for

ax ≥ b P a ∈ ℤn b ∈ ℝ
ax ≥ ⌈b⌉ P

Integer Hull of a polytope is
P
int(P) := conv(P ∩ ℤn)

• is a polytope

• An LP solution to is an ILP solution to

int(P)

int(P) P
LP(int(P), c) = ILP(P, c)

Integer Programming in Practice

P

Modern IP-algorithms try to reduce P → int(P)
How? — [Gomory63, Chvátal73]: Add cutting planes

If is valid for with relatively prime and
then is a CG-cut for

ax ≥ b P a ∈ ℤn b ∈ ℝ
ax ≥ ⌈b⌉ P

Integer Hull of a polytope is
P
int(P) := conv(P ∩ ℤn)

• is a polytope

• An LP solution to is an ILP solution to

int(P)

int(P) P
LP(int(P), c) = ILP(P, c)

Integer Programming in Practice

P

Modern IP-algorithms try to reduce P → int(P)
How? — [Gomory63, Chvátal73]: Add cutting planes

If is valid for with relatively prime and
then is a CG-cut for

ax ≥ b P a ∈ ℤn b ∈ ℝ
ax ≥ ⌈b⌉ P

Integer Hull of a polytope is
P
int(P) := conv(P ∩ ℤn)

• May take exponentially many CG-
cuts [Pudlák93, BPR93]

• is a polytope

• An LP solution to is an ILP solution to

int(P)

int(P) P
LP(int(P), c) = ILP(P, c)

Integer Programming in Practice

P

Modern IP-algorithms try to reduce P → int(P)
How? — [Gomory63, Chvátal73]: Add cutting planes

If is valid for with relatively prime and
then is a CG-cut for

ax ≥ b P a ∈ ℤn b ∈ ℝ
ax ≥ ⌈b⌉ P

Integer Hull of a polytope is
P
int(P) := conv(P ∩ ℤn)

• May take exponentially many CG-
cuts [Pudlák93, BPR93]

• Numerically unstable to implement

• is a polytope

• An LP solution to is an ILP solution to

int(P)

int(P) P
LP(int(P), c) = ILP(P, c)

Modern IP Algorithms

Combine cutting planes with branch-and-bound

P

Modern IP Algorithms

Branch and Cut 

Combine cutting planes with branch-and-bound

P

Modern IP Algorithms

Branch and Cut 
Alternate

• Branch: Choose such that  
 .

P1, …, Pk
P ∩ ℤn ⊆ ∪i Pi

Combine cutting planes with branch-and-bound

P

Modern IP Algorithms

Branch and Cut 
Alternate

• Branch: Choose such that  
 .

P1, …, Pk
P ∩ ℤn ⊆ ∪i Pi

Combine cutting planes with branch-and-bound
P1

P2
P3

x ≤ 5 x ≥ 6

y ≥ 4

y ≤ 3

Modern IP Algorithms

Branch and Cut 
Alternate

• Branch: Choose such that  
 .

P1, …, Pk
P ∩ ℤn ⊆ ∪i Pi

Combine cutting planes with branch-and-bound
P1

P2
P3

All integer points preserved!

x ≤ 5 x ≥ 6

y ≥ 4

y ≤ 3

P ∩ {y ≥ 4}, P ∩ {x ≤ 3} ∩ {x ≤ 5}, P ∩ {y ≤ 3} ∩ {x ≥ 6}

Modern IP Algorithms

Branch and Cut 
Alternate

• Branch: Choose such that  
 .

P1, …, Pk
P ∩ ℤn ⊆ ∪i Pi

Combine cutting planes with branch-and-bound

All integer points preserved!
P ∩ {y ≥ 4}, P ∩ {x ≤ 3} ∩ {x ≤ 5}, P ∩ {y ≤ 3} ∩ {x ≥ 6}

Modern IP Algorithms

Branch and Cut 
Alternate

• Branch: Choose such that  
 .

• Cut: Refine by adding additional cutting planes.

P1, …, Pk
P ∩ ℤn ⊆ ∪i Pi

P1, …, Pk

Combine cutting planes with branch-and-bound

Modern IP Algorithms

Branch and Cut 
Alternate

• Branch: Choose such that  
 .

• Cut: Refine by adding additional cutting planes.

P1, …, Pk
P ∩ ℤn ⊆ ∪i Pi

P1, …, Pk

Combine cutting planes with branch-and-bound

Modern IP Algorithms

Branch and Cut 
Alternate

• Branch: Choose such that  
 .

• Cut: Refine by adding additional cutting planes.

P1, …, Pk
P ∩ ℤn ⊆ ∪i Pi

P1, …, Pk

Combine cutting planes with branch-and-bound

In practice branching is done by splitting on and for ,
ax ≤ b ax ≥ b + 1 a ∈ ℤn b ∈ ℤ

Analyzing Modern IP Algorithms

Modern IP algorithms are a complicated mess of heuristics:

• Choosing how to branch,

• Choosing which cuts to add.

Makes analyzing these algorithms directly challenging!

Analyzing Modern IP Algorithms

Modern IP algorithms are a complicated mess of heuristics:

• Choosing how to branch,

• Choosing which cuts to add.

Makes analyzing these algorithms directly challenging!

Observation: If contains no integer points then any correct IP algorithm running on must
identify this fact.

P P

Analyzing Modern IP Algorithms

Modern IP algorithms are a complicated mess of heuristics:

• Choosing how to branch,

• Choosing which cuts to add.

Makes analyzing these algorithms directly challenging!

Observation: If contains no integer points then any correct IP algorithm running on must
identify this fact.

 the transcript of the algorithm’s execution is a proof that .

P P

⟹ P ∩ ℤn = ∅

Analyzing Modern IP Algorithms

Modern IP algorithms are a complicated mess of heuristics:

• Choosing how to branch,

• Choosing which cuts to add.

Makes analyzing these algorithms directly challenging!

Observation: If contains no integer points then any correct IP algorithm running on must
identify this fact.

 the transcript of the algorithm’s execution is a proof that .

P P

⟹ P ∩ ℤn = ∅

Even works in optimization! Algorithm has to “prove” that no better solution exists

Analyzing Modern IP Algorithms

Modern IP algorithms are a complicated mess of heuristics:

• Choosing how to branch,

• Choosing which cuts to add.

Makes analyzing these algorithms directly challenging!

Observation: If contains no integer points then any correct IP algorithm running on must
identify this fact.

 the transcript of the algorithm’s execution is a proof that .

P P

⟹ P ∩ ℤn = ∅

Instead of trying to understand an algorithm directly, formalize the techniques used by the
algorithms into a proof system .

A
S

Even works in optimization! Algorithm has to “prove” that no better solution exists

Analyzing Modern IP Algorithms

Modern IP algorithms are a complicated mess of heuristics:

• Choosing how to branch,

• Choosing which cuts to add.

Makes analyzing these algorithms directly challenging!

Observation: If contains no integer points then any correct IP algorithm running on must
identify this fact.

 the transcript of the algorithm’s execution is a proof that .

P P

⟹ P ∩ ℤn = ∅

Instead of trying to understand an algorithm directly, formalize the techniques used by the
algorithms into a proof system .

 Lower bounds on the size of -proofs imply runtime lower bounds for

A
S

→ S A

Even works in optimization! Algorithm has to “prove” that no better solution exists

Cutting Planes

A Cutting Planes refutation of with is a
sequence of polytopes

where is obtained by a CG-cut from .

The size of the proof is .

P P ∩ ℤn = ∅

(P =) P0, …, Ps (= ∅)

Pi Pi−1

s

P0

Cutting Planes

A Cutting Planes refutation of with is a
sequence of polytopes

where is obtained by a CG-cut from .

The size of the proof is .

P P ∩ ℤn = ∅

(P =) P0, …, Ps (= ∅)

Pi Pi−1

s

P0

Cutting Planes

A Cutting Planes refutation of with is a
sequence of polytopes

where is obtained by a CG-cut from .

The size of the proof is .

P P ∩ ℤn = ∅

(P =) P0, …, Ps (= ∅)

Pi Pi−1

s

Cutting Planes

A Cutting Planes refutation of with is a
sequence of polytopes

where is obtained by a CG-cut from .

The size of the proof is .

P P ∩ ℤn = ∅

(P =) P0, …, Ps (= ∅)

Pi Pi−1

s

P1

Cutting Planes

A Cutting Planes refutation of with is a
sequence of polytopes

where is obtained by a CG-cut from .

The size of the proof is .

P P ∩ ℤn = ∅

(P =) P0, …, Ps (= ∅)

Pi Pi−1

s

P1

Cutting Planes

A Cutting Planes refutation of with is a
sequence of polytopes

where is obtained by a CG-cut from .

The size of the proof is .

P P ∩ ℤn = ∅

(P =) P0, …, Ps (= ∅)

Pi Pi−1

s

P1

A Cutting Planes refutation of with is a
sequence of polytopes

where is obtained by a CG-cut from .

The size of the proof is .

P P ∩ ℤn = ∅

(P =) P0, …, Ps (= ∅)

Pi Pi−1

s

Cutting Planes

A Cutting Planes refutation of with is a
sequence of polytopes

where is obtained by a CG-cut from .

The size of the proof is .

P P ∩ ℤn = ∅

(P =) P0, …, Ps (= ∅)

Pi Pi−1

s

P2

Cutting Planes

A Cutting Planes refutation of with is a
sequence of polytopes

where is obtained by a CG-cut from .

The size of the proof is .

P P ∩ ℤn = ∅

(P =) P0, …, Ps (= ∅)

Pi Pi−1

s

P2

Cutting Planes

A Cutting Planes refutation of with is a
sequence of polytopes

where is obtained by a CG-cut from .

The size of the proof is .

P P ∩ ℤn = ∅

(P =) P0, …, Ps (= ∅)

Pi Pi−1

s

Cutting Planes

A Cutting Planes refutation of with is a
sequence of polytopes

where is obtained by a CG-cut from .

The size of the proof is .

P P ∩ ℤn = ∅

(P =) P0, …, Ps (= ∅)

Pi Pi−1

s

Cutting Planes

P3 = ∅

A Cutting Planes refutation of with is a
sequence of polytopes

where is obtained by a CG-cut from .

The size of the proof is .

P P ∩ ℤn = ∅

(P =) P0, …, Ps (= ∅)

Pi Pi−1

s

Cutting Planes

P3 = ∅

• Introduced in [Chvátal73].

A Cutting Planes refutation of with is a
sequence of polytopes

where is obtained by a CG-cut from .

The size of the proof is .

P P ∩ ℤn = ∅

(P =) P0, …, Ps (= ∅)

Pi Pi−1

s

Cutting Planes

P3 = ∅

• Introduced in [Chvátal73].

• First exponential lower bounds in [Pudlák93] and [BPR93] for a restricted variant.

A Cutting Planes refutation of with is a
sequence of polytopes

where is obtained by a CG-cut from .

The size of the proof is .

P P ∩ ℤn = ∅

(P =) P0, …, Ps (= ∅)

Pi Pi−1

s

Cutting Planes

P3 = ∅

• Introduced in [Chvátal73].

• First exponential lower bounds in [Pudlák93] and [BPR93] for a restricted variant.

• Captures IP algorithms which use only CG-cuts (no branching).

Stabbing Planes

• Introduced to model branch-and-cut algorithms [BFI+18].

Stabbing Planes

• Introduced to model branch-and-cut algorithms [BFI+18].

• At each step one chooses an integer-linear inequality
recurses on and .

ax ≤ b
P ∩ {ax ≤ b} P ∩ {ax ≥ b + 1}

Stabbing Planes

ax ≤ b

ax ≥ b + 1

• Introduced to model branch-and-cut algorithms [BFI+18].

• At each step one chooses an integer-linear inequality
recurses on and .

ax ≤ b
P ∩ {ax ≤ b} P ∩ {ax ≥ b + 1}

Stabbing Planes

ax ≤ b

ax ≥ b + 1

• Introduced to model branch-and-cut algorithms [BFI+18].

• At each step one chooses an integer-linear inequality
recurses on and .

ax ≤ b
P ∩ {ax ≤ b} P ∩ {ax ≥ b + 1}

Slab removed{x : b < ax < b + 1}

Stabbing Planes

ax ≤ b

ax ≥ b + 1

• Introduced to model branch-and-cut algorithms [BFI+18].

• At each step one chooses an integer-linear inequality
recurses on and .

ax ≤ b
P ∩ {ax ≤ b} P ∩ {ax ≥ b + 1}

Slab removed{x : b < ax < b + 1}
 are integer valued slab does not

contain any integer points
a, b ⟹

Stabbing Planes

• Introduced to model branch-and-cut algorithms [BFI+18].

• At each step one chooses an integer-linear inequality
recurses on and .

ax ≤ b
P ∩ {ax ≤ b} P ∩ {ax ≥ b + 1}

Slab removed{x : b < ax < b + 1}
 are integer valued slab does not

contain any integer points
a, b ⟹

P ∩ {ax ≤ b}

P ∩ {ax ≥ b + 1}

Stabbing Planes

• Introduced to model branch-and-cut algorithms [BFI+18].

• At each step one chooses an integer-linear inequality
recurses on and .

• Terminate a recursive branch when the polytope is empty.

ax ≤ b
P ∩ {ax ≤ b} P ∩ {ax ≥ b + 1}

P ∩ {ax ≤ b}

P ∩ {ax ≥ b + 1}

Stabbing Planes

• Introduced to model branch-and-cut algorithms [BFI+18].

• At each step one chooses an integer-linear inequality
recurses on and .

• Terminate a recursive branch when the polytope is empty.

ax ≤ b
P ∩ {ax ≤ b} P ∩ {ax ≥ b + 1}

A Stabbing Planes refutation of with is a binary tree:
P P ∩ ℤn

P ∩ {ax ≤ b}

P ∩ {ax ≥ b + 1}

Stabbing Planes

• Introduced to model branch-and-cut algorithms [BFI+18].

• At each step one chooses an integer-linear inequality
recurses on and .

• Terminate a recursive branch when the polytope is empty.

ax ≤ b
P ∩ {ax ≤ b} P ∩ {ax ≥ b + 1}

ax ≤ b ax ≥ b + 1

A Stabbing Planes refutation of with is a binary tree:

• Each internal node has two outgoing edges labelled
and for some

P P ∩ ℤn

ax ≤ b
ax ≥ b + 1 a ∈ ℤn, b ∈ ℤ

P ∩ {ax ≤ b}

P ∩ {ax ≥ b + 1}

Stabbing Planes

• Introduced to model branch-and-cut algorithms [BFI+18].

• At each step one chooses an integer-linear inequality
recurses on and .

• Terminate a recursive branch when the polytope is empty.

ax ≤ b
P ∩ {ax ≤ b} P ∩ {ax ≥ b + 1}

ax ≤ b ax ≥ b + 1

P ∩ {ax ≤ b} P ∩ {ax ≥ b + 1}

A Stabbing Planes refutation of with is a binary tree:

• Each internal node has two outgoing edges labelled
and for some

• For each node let be the polytope obtained by
intersecting with the inequalities labelling the root-to- path.

P P ∩ ℤn

ax ≤ b
ax ≥ b + 1 a ∈ ℤn, b ∈ ℤ

v Pv
P v

P ∩ {ax ≤ b}

P ∩ {ax ≥ b + 1}

Stabbing Planes

• Introduced to model branch-and-cut algorithms [BFI+18].

• At each step one chooses an integer-linear inequality
recurses on and .

• Terminate a recursive branch when the polytope is empty.

ax ≤ b
P ∩ {ax ≤ b} P ∩ {ax ≥ b + 1}

A Stabbing Planes refutation of with is a binary tree:

• Each internal node has two outgoing edges labelled
and for some

• For each node let be the polytope obtained by
intersecting with the inequalities labelling the root-to- path.
Each leaf satisfies .

P P ∩ ℤn

ax ≤ b
ax ≥ b + 1 a ∈ ℤn, b ∈ ℤ

v Pv
P v

ℓ Pℓ = ∅

P ∩ {ax ≤ b}

P ∩ {ax ≥ b + 1}

ax ≤ b ax ≥ b + 1

∅ ∅ ∅…

Stabbing Planes

• Introduced to model branch-and-cut algorithms [BFI+18].

• At each step one chooses an integer-linear inequality
recurses on and .

• Terminate a recursive branch when the polytope is empty.

ax ≤ b
P ∩ {ax ≤ b} P ∩ {ax ≥ b + 1}

A Stabbing Planes refutation of with is a binary tree:

• Each internal node has two outgoing edges labelled
and for some

• For each node let be the polytope obtained by
intersecting with the inequalities labelling the root-to- path.
Each leaf satisfies .

P P ∩ ℤn

ax ≤ b
ax ≥ b + 1 a ∈ ℤn, b ∈ ℤ

v Pv
P v

ℓ Pℓ = ∅

P ∩ {ax ≤ b}

P ∩ {ax ≥ b + 1}

ax ≤ b ax ≥ b + 1

∅ ∅ ∅…• The size is the number of nodes in the tree

Cutting Planes vs. Stabbing Planes

CP and SP capture separate parts of branch-and-cut

Cutting Planes vs. Stabbing Planes

CP and SP capture separate parts of branch-and-cut

• CP captures CG-cuts,

• SP captures branching.

Cutting Planes vs. Stabbing Planes

CP and SP capture separate parts of branch-and-cut

• CP captures CG-cuts,

• SP captures branching.

Theorem: If has a size Cutting Planes proof then there is a
size Stabbing Planes refutation of .

P s
O(s) P

Cutting Planes vs. Stabbing Planes

CP and SP capture separate parts of branch-and-cut

• CP captures CG-cuts,

• SP captures branching.

Theorem: If has a size Cutting Planes proof then there is a
size Stabbing Planes refutation of .

P s
O(s) P

A Stabbing Planes query is pathlike if
either or .

ax ≤ b, ax ≥ b + 1
Pu ∩ {ax ≤ b} = ∅ Pu ∩ {ax ≥ b + 1} = ∅

Cutting Planes vs. Stabbing Planes

CP and SP capture separate parts of branch-and-cut

• CP captures CG-cuts,

• SP captures branching.

Theorem: If has a size Cutting Planes proof then there is a
size Stabbing Planes refutation of .

P s
O(s) P

A Stabbing Planes query is pathlike if
either or .

ax ≤ b, ax ≥ b + 1
Pu ∩ {ax ≤ b} = ∅ Pu ∩ {ax ≥ b + 1} = ∅

Cutting Planes vs. Stabbing Planes

CP and SP capture separate parts of branch-and-cut

• CP captures CG-cuts,

• SP captures branching.

Theorem: If has a size Cutting Planes proof then there is a
size Stabbing Planes refutation of .

P s
O(s) P

A Stabbing Planes query is pathlike if
either or .

ax ≤ b, ax ≥ b + 1
Pu ∩ {ax ≤ b} = ∅ Pu ∩ {ax ≥ b + 1} = ∅

Cutting Planes vs. Stabbing Planes

CP and SP capture separate parts of branch-and-cut

• CP captures CG-cuts,

• SP captures branching.

Theorem: If has a size Cutting Planes proof then there is a
size Stabbing Planes refutation of .

P s
O(s) P

A Stabbing Planes query is pathlike if
either or .

A Stabbing Planes proof is pathlike if every query is pathlike.

ax ≤ b, ax ≥ b + 1
Pu ∩ {ax ≤ b} = ∅ Pu ∩ {ax ≥ b + 1} = ∅

∅

∅

∅ ∅

Cutting Planes vs. Stabbing Planes

CP and SP capture separate parts of branch-and-cut

• CP captures CG-cuts,

• SP captures branching.

Theorem: If has a size Cutting Planes proof then there is a
size Stabbing Planes refutation of .

P s
O(s) P

A Stabbing Planes query is pathlike if
either or .

A Stabbing Planes proof is pathlike if every query is pathlike.

ax ≤ b, ax ≥ b + 1
Pu ∩ {ax ≤ b} = ∅ Pu ∩ {ax ≥ b + 1} = ∅

∅

∅

∅ ∅

Theorem: Pathlike Stabbing Planes = Cutting Planes

Cutting Planes vs. Stabbing Planes

CP and SP capture separate parts of branch-and-cut

• CP captures CG-cuts,

• SP captures branching.

Theorem: If has a size Cutting Planes proof then there is a
size Stabbing Planes refutation of .

P s
O(s) P

A Stabbing Planes query is pathlike if
either or .

A Stabbing Planes proof is pathlike if every query is pathlike.

ax ≤ b, ax ≥ b + 1
Pu ∩ {ax ≤ b} = ∅ Pu ∩ {ax ≥ b + 1} = ∅

Theorem: Pathlike Stabbing Planes = Cutting Planes

ax ≥ b
Proof:

Cutting Planes vs. Stabbing Planes

CP and SP capture separate parts of branch-and-cut

• CP captures CG-cuts,

• SP captures branching.

Theorem: If has a size Cutting Planes proof then there is a
size Stabbing Planes refutation of .

P s
O(s) P

A Stabbing Planes query is pathlike if
either or .

A Stabbing Planes proof is pathlike if every query is pathlike.

ax ≤ b, ax ≥ b + 1
Pu ∩ {ax ≤ b} = ∅ Pu ∩ {ax ≥ b + 1} = ∅

Theorem: Pathlike Stabbing Planes = Cutting Planes

ax ≥ ⌈b⌉

Proof:
ax ≥ b

Cutting Planes vs. Stabbing Planes

CP and SP capture separate parts of branch-and-cut

• CP captures CG-cuts,

• SP captures branching.

Theorem: If has a size Cutting Planes proof then there is a
size Stabbing Planes refutation of .

P s
O(s) P

A Stabbing Planes query is pathlike if
either or .

A Stabbing Planes proof is pathlike if every query is pathlike.

ax ≤ b, ax ≥ b + 1
Pu ∩ {ax ≤ b} = ∅ Pu ∩ {ax ≥ b + 1} = ∅

Theorem: Pathlike Stabbing Planes = Cutting Planes

ax ≥ ⌈b⌉ax ≤ ⌈b⌉ − 1

Proof:
ax ≥ b

Cutting Planes vs. Stabbing Planes

Is Cutting Planes weaker than Stabbing Planes?

Cutting Planes vs. Stabbing Planes

Is Cutting Planes weaker than Stabbing Planes?

• [BFI+18] conjectured that the Tseitin formulas are a separating example.

Cutting Planes vs. Stabbing Planes

Is Cutting Planes weaker than Stabbing Planes?

• [BFI+18] conjectured that the Tseitin formulas are a separating example.

Let be a connected graph with an odd number of vertices. The Tseitin formula for is
the system of -linear equations

asserting that there is a way to assign edges so that each vertex has an odd number of neighbours.

G = (V, E) G
𝔽2

∀v ∈ V : ⨁
uv∈E

xuv = 1

Cutting Planes vs. Stabbing Planes

Is Cutting Planes weaker than Stabbing Planes?

• [BFI+18] conjectured that the Tseitin formulas are a separating example.

Let be a connected graph with an odd number of vertices. The Tseitin formula for is
the system of -linear equations

asserting that there is a way to assign edges so that each vertex has an odd number of neighbours.

G = (V, E) G
𝔽2

∀v ∈ V : ⨁
uv∈E

xuv = 1

• Conjectured in the 80s to require exponential Cutting Planes proofs.

Cutting Planes vs. Stabbing Planes

Is Cutting Planes weaker than Stabbing Planes?

• [BFI+18] conjectured that the Tseitin formulas are a separating example.

Let be a connected graph with an odd number of vertices. The Tseitin formula for is
the system of -linear equations

asserting that there is a way to assign edges so that each vertex has an odd number of neighbours.

G = (V, E) G
𝔽2

∀v ∈ V : ⨁
uv∈E

xuv = 1

• Conjectured in the 80s to require exponential Cutting Planes proofs.

• [BFI+18] There are -size Cutting Planes proofs of Tseitin. nO(log n)

Cutting Planes vs. Stabbing Planes

Is Cutting Planes weaker than Stabbing Planes?

• [BFI+18] conjectured that the Tseitin formulas are a separating example.

Let be a connected graph with an odd number of vertices. The Tseitin formula for is
the system of -linear equations

asserting that there is a way to assign edges so that each vertex has an odd number of neighbours.

G = (V, E) G
𝔽2

∀v ∈ V : ⨁
uv∈E

xuv = 1

• Conjectured in the 80s to require exponential Cutting Planes proofs.

• [BFI+18] There are -size Cutting Planes proofs of Tseitin. nO(log n)

[DT20] The quasi-polynomial size Stabbing Planes proofs of Tseitin can be translated into quasi-
polynomial size Cutting Planes proofs!

Cutting Planes vs. Stabbing Planes

Can every Stabbing Planes proof be efficiently translated into Cutting Planes?

Cutting Planes vs. Stabbing Planes

Can every Stabbing Planes proof be efficiently translated into Cutting Planes?

• Yes! Provided the coefficients of the inequalities are not too large.

Cutting Planes vs. Stabbing Planes

Can every Stabbing Planes proof be efficiently translated into Cutting Planes?

• Yes! Provided the coefficients of the inequalities are not too large.

Theorem [FGI+ 22]. Let be a polytope, and suppose that there is a Stabbing Planes
refutation of with size and where every coefficient has magnitude at most . Then there is a
Cutting Planes refutation of of size

where is the diameter of .

P ⊆ Rn

P s c
P

s(cd(P) n)log s

d(P) P

Cutting Planes vs. Stabbing Planes

Can every Stabbing Planes proof be efficiently translated into Cutting Planes?

• Yes! Provided the coefficients of the inequalities are not too large.

Theorem [FGI+ 22]. Let be a polytope, and suppose that there is a Stabbing Planes
refutation of with size and where every coefficient has magnitude at most . Then there is a
Cutting Planes refutation of of size

where is the diameter of .

P ⊆ Rn

P s c
P

s(cd(P) n)log s

d(P) P

Corollary: Applying existing lower bounds for Cutting Planes proofs [P93, HP17, FPPR17]:

• The clique-colour formulas requires exponential size bounded-coefficient SP proofs.

• Random -CNF formulas require exponential size bounded-coefficient SP proofs.Θ(log n)

Proof Idea: Stabbing Planes* Cutting Planes→
Two steps

1. CP = Pathlike SP

Proof Idea: Stabbing Planes* Cutting Planes→
Two steps

1. CP = Pathlike SP = Facelike SP.

Proof Idea: Stabbing Planes* Cutting Planes→
Two steps

1. CP = Pathlike SP = Facelike SP.

2. Bounded-coefficient SP proofs can be made Facelike.

Proof Idea: Stabbing Planes* Cutting Planes→
Two steps

1. CP = Pathlike SP = Facelike SP.

2. Bounded-coefficient SP proofs can be made Facelike.

A Stabbing Planes query is facelike if at
least one of or is a face
of .

ax ≤ b, ax ≥ b + 1
Pu ∩ {ax ≤ b} Pu ∩ {ax ≥ b + 1}

Pu

Proof Idea: Stabbing Planes* Cutting Planes→
Two steps

1. CP = Pathlike SP = Facelike SP.

2. Bounded-coefficient SP proofs can be made Facelike.

A Stabbing Planes query is facelike if at
least one of or is a face
of .

ax ≤ b, ax ≥ b + 1
Pu ∩ {ax ≤ b} Pu ∩ {ax ≥ b + 1}

Pu

Pathlike

Proof Idea: Stabbing Planes* Cutting Planes→
Two steps

1. CP = Pathlike SP = Facelike SP.

2. Bounded-coefficient SP proofs can be made Facelike.

A Stabbing Planes query is facelike if at
least one of or is a face
of .

ax ≤ b, ax ≥ b + 1
Pu ∩ {ax ≤ b} Pu ∩ {ax ≥ b + 1}

Pu

Pathlike

∅

∅

∅ ∅

Two steps

1. CP = Pathlike SP = Facelike SP.

2. Bounded-coefficient SP proofs can be made Facelike.

A Stabbing Planes query is facelike if at
least one of or is a face
of .

A Stabbing Planes proof is facelike if every query is facelike.

ax ≤ b, ax ≥ b + 1
Pu ∩ {ax ≤ b} Pu ∩ {ax ≥ b + 1}

Pu

Proof Idea: Stabbing Planes* Cutting Planes→

Facelike
• In a facelike query, one child has lower dimension!

∅ ∅… ∅ ∅…

Two steps

1. CP = Pathlike SP = Facelike SP.

2. Bounded-coefficient SP proofs can be made Facelike.

A Stabbing Planes query is facelike if at
least one of or is a face
of .

A Stabbing Planes proof is facelike if every query is facelike.

ax ≤ b, ax ≥ b + 1
Pu ∩ {ax ≤ b} Pu ∩ {ax ≥ b + 1}

Pu

Proof Idea: Stabbing Planes* Cutting Planes→

Facelike
• In a facelike query, one child has lower dimension!

Lower dimension!

∅ ∅… ∅ ∅…

Step 1. Facelike Stabbing Planes = Cutting Planes
Idea:

Lemma [Schrijver80]: If there is a refutation of a face in Cutting Planes then there is a
Cutting Planes derivation of from of the same size!

P ∩ {ax ≤ b}
P ∩ {ax ≥ b + 1} P

P

P

ax ≥ b

Step 1. Facelike Stabbing Planes = Cutting Planes
Idea:

Lemma [Schrijver80]: If there is a refutation of a face in Cutting Planes then there is a
Cutting Planes derivation of from of the same size!

P ∩ {ax ≤ b}
P ∩ {ax ≥ b + 1} P

Step 1. Facelike Stabbing Planes = Cutting Planes
Idea:

Lemma [Schrijver80]: If there is a refutation of a face in Cutting Planes then there is a
Cutting Planes derivation of from of the same size!

P ∩ {ax ≤ b}
P ∩ {ax ≥ b + 1} P

P

P ∩ {ax ≤ b} P

Step 1. Facelike Stabbing Planes = Cutting Planes
Idea:

Lemma [Schrijver80]: If there is a refutation of a face in Cutting Planes then there is a
Cutting Planes derivation of from of the same size!

P ∩ {ax ≤ b}
P ∩ {ax ≥ b + 1} P

CP refutation of P ∩ {ax ≤ b}

P ∩ {ax ≤ b} P

Step 1. Facelike Stabbing Planes = Cutting Planes
Idea:

Lemma [Schrijver80]: If there is a refutation of a face in Cutting Planes then there is a
Cutting Planes derivation of from of the same size!

P ∩ {ax ≤ b}
P ∩ {ax ≥ b + 1} P

CP refutation of P ∩ {ax ≤ b}

P ∩ {ax ≤ b} P

Step 1. Facelike Stabbing Planes = Cutting Planes
Idea:

Lemma [Schrijver80]: If there is a refutation of a face in Cutting Planes then there is a
Cutting Planes derivation of from of the same size!

P ∩ {ax ≤ b}
P ∩ {ax ≥ b + 1} P

CP refutation of P ∩ {ax ≤ b}

P ∩ {ax ≤ b} P

Step 1. Facelike Stabbing Planes = Cutting Planes
Idea:

Lemma [Schrijver80]: If there is a refutation of a face in Cutting Planes then there is a
Cutting Planes derivation of from of the same size!

P ∩ {ax ≤ b}
P ∩ {ax ≥ b + 1} P

CP refutation of P ∩ {ax ≤ b}

∅

P ∩ {ax ≤ b} P

Step 1. Facelike Stabbing Planes = Cutting Planes
Idea:

Lemma [Schrijver80]: If there is a refutation of a face in Cutting Planes then there is a
Cutting Planes derivation of from of the same size!

P ∩ {ax ≤ b}
P ∩ {ax ≥ b + 1} P

CP refutation of P ∩ {ax ≤ b}

∅

P ∩ {ax ≤ b} P ∩ {ax ≥ b + 1}

ax ≥ b + 1

P

Step 1. Facelike Stabbing Planes = Cutting Planes
Idea:

Lemma [Schrijver80]: If there is a refutation of a face in Cutting Planes then there is a
Cutting Planes derivation of from of the same size!

P ∩ {ax ≤ b}
P ∩ {ax ≥ b + 1} P

Step 1. Facelike Stabbing Planes = Cutting Planes
Idea:

Lemma [Schrijver80]: If there is a refutation of a face in Cutting Planes then there is a
Cutting Planes derivation of from of the same size!

P ∩ {ax ≤ b}
P ∩ {ax ≥ b + 1} P

Step 1. Facelike Stabbing Planes = Cutting Planes
Idea:

Lemma [Schrijver80]: If there is a refutation of a face in Cutting Planes then there is a
Cutting Planes derivation of from of the same size!

P ∩ {ax ≤ b}
P ∩ {ax ≥ b + 1} P

Theorem: Facelike Stabbing Planes = Cutting Planes.

Step 1. Facelike Stabbing Planes = Cutting Planes
Idea:

Lemma [Schrijver80]: If there is a refutation of a face in Cutting Planes then there is a
Cutting Planes derivation of from of the same size!

P ∩ {ax ≤ b}
P ∩ {ax ≥ b + 1} P

Theorem: Facelike Stabbing Planes = Cutting Planes.

Proof sketch.

• Fix a Facelike Stabbing Planes proof.

P0

P1

Step 1. Facelike Stabbing Planes = Cutting Planes
Idea:

Lemma [Schrijver80]: If there is a refutation of a face in Cutting Planes then there is a
Cutting Planes derivation of from of the same size!

P ∩ {ax ≤ b}
P ∩ {ax ≥ b + 1} P

Theorem: Facelike Stabbing Planes = Cutting Planes.

Proof sketch.

• Fix a Facelike Stabbing Planes proof.

• Take an in-order traversal, repeatedly applying the lemma.

P0

P1

Step 1. Facelike Stabbing Planes = Cutting Planes
Idea:

Lemma [Schrijver80]: If there is a refutation of a face in Cutting Planes then there is a
Cutting Planes derivation of from of the same size!

P ∩ {ax ≤ b}
P ∩ {ax ≥ b + 1} P

Theorem: Facelike Stabbing Planes = Cutting Planes.

Proof sketch.

• Fix a Facelike Stabbing Planes proof.

• Take an in-order traversal, repeatedly applying the lemma.

• Repeatedly lift refutations of faces to derivations using the

lemma.

P0

P1

Step 1. Facelike Stabbing Planes = Cutting Planes
Idea:

Lemma [Schrijver80]: If there is a refutation of a face in Cutting Planes then there is a
Cutting Planes derivation of from of the same size!

P ∩ {ax ≤ b}
P ∩ {ax ≥ b + 1} P

Theorem: Facelike Stabbing Planes = Cutting Planes.

Proof sketch.

• Fix a Facelike Stabbing Planes proof.

• Take an in-order traversal, repeatedly applying the lemma.

• Repeatedly lift refutations of faces to derivations using the

lemma.

Face of P0

P0

P1

Step 1. Facelike Stabbing Planes = Cutting Planes
Idea:

Lemma [Schrijver80]: If there is a refutation of a face in Cutting Planes then there is a
Cutting Planes derivation of from of the same size!

P ∩ {ax ≤ b}
P ∩ {ax ≥ b + 1} P

Theorem: Facelike Stabbing Planes = Cutting Planes.

Proof sketch.

• Fix a Facelike Stabbing Planes proof.

• Take an in-order traversal, repeatedly applying the lemma.

• Repeatedly lift refutations of faces to derivations using the

lemma.

Face of P0

Face of P1

P0

P1

Step 2. Stabbing Planes* = Facelike Stabbing Planes

P

∅ ∅… ∅ ∅…

TL TR

ax ≤ b ax ≥ b + 1

Proof sketch.

• Consider a bounded-coefficient Stabbing Planes proof.

Step 2. Stabbing Planes* = Facelike Stabbing Planes

ax ≥ b + 1

ax ≤ b

P

∅ ∅… ∅ ∅…

TL TR

ax ≤ b ax ≥ b + 1

Proof sketch.

• Consider a bounded-coefficient Stabbing Planes proof.

• Look at the first query: .
ax ≤ b, ax ≥ b + 1

Step 2. Stabbing Planes* = Facelike Stabbing Planes

ax ≥ b + 1

ax ≤ b

P

∅ ∅… ∅ ∅…

TL TR

ax ≤ b ax ≥ b + 1

Proof sketch.

• Consider a bounded-coefficient Stabbing Planes proof.

• Look at the first query: .

Goal: convert to a facelike query.

ax ≤ b, ax ≥ b + 1

Step 2. Stabbing Planes* = Facelike Stabbing Planes

ax ≥ b + 1

ax ≤ b

P

∅ ∅… ∅ ∅…

TL TR

ax ≤ b ax ≥ b + 1

Proof sketch.

• Consider a bounded-coefficient Stabbing Planes proof.

• Look at the first query: .

Goal: convert to a facelike query.

• Add translates of the slab until we lie on the face!

ax ≤ b, ax ≥ b + 1

Step 2. Stabbing Planes* = Facelike Stabbing Planes
Proof sketch.

• Consider a bounded-coefficient Stabbing Planes proof.

• Look at the first query: .

Goal: convert to a facelike query.

• Add translates of the slab until we lie on the face!

ax ≤ b, ax ≥ b + 1

P

∅ ∅… ∅ ∅…

ax ≥ b + 1

ax ≤ b

ax ≥ b + 2

TL TR

P

ax ≤ b ax ≥ b + 1
ax ≤ b ax ≥ b + 1

ax ≥ b + 2ax ≤ b + 1

Step 2. Stabbing Planes* = Facelike Stabbing Planes
Proof sketch.

• Consider a bounded-coefficient Stabbing Planes proof.

• Look at the first query: .

Goal: convert to a facelike query.

• Add translates of the slab until we lie on the face!

ax ≤ b, ax ≥ b + 1

P

∅ ∅… ∅ ∅…

ax ≥ b + 1

ax ≤ b

ax ≥ b + 2

On face

TL TR

P

ax ≤ b ax ≥ b + 1
ax ≤ b + 1 ax ≥ b + 2

ax ≥ b + 1ax ≤ b

Step 2. Stabbing Planes* = Facelike Stabbing Planes
Proof sketch.

• Consider a bounded-coefficient Stabbing Planes proof.

• Look at the first query: .

Goal: convert to a facelike query.

• Add translates of the slab until we lie on the face!

• Recursively refute translates using the old subtree,

ax ≤ b, ax ≥ b + 1

P

∅ ∅… ∅ ∅…

ax ≥ b + 1

ax ≤ b

ax ≥ b + 2

On face

TL TR

∅ ∅…

TR

∅ ∅…

TR

ax ≤ b ax ≥ b + 1

P
ax ≤ b + 1 ax ≥ b + 2

ax ≥ b + 1ax ≤ b

Step 2. Stabbing Planes* = Facelike Stabbing Planes
Proof sketch.

• Consider a bounded-coefficient Stabbing Planes proof.

• Look at the first query: .

Goal: convert to a facelike query.

• Add translates of the slab until we lie on the face!

• Recursively refute translates using the old subtree,

recurse on the other side similarly.

ax ≤ b, ax ≥ b + 1

P

∅ ∅… ∅ ∅…

ax ≥ b + 1

ax ≤ b

ax ≥ b + 2

On face

TL TR

∅ ∅… ∅ ∅…

TL TR

∅ ∅…

TR

ax ≤ b ax ≥ b + 1

P
ax ≤ b + 1 ax ≥ b + 2

ax ≥ b + 1ax ≤ b

Step 2. Stabbing Planes* = Facelike Stabbing Planes
Proof sketch.

• Consider a bounded-coefficient Stabbing Planes proof.

• Look at the first query: .

Goal: convert to a facelike query.

• Add translates of the slab until we lie on the face!

• Recursively refute translates using the old subtree,

recurse on the other side similarly.

ax ≤ b, ax ≥ b + 1

P

∅ ∅… ∅ ∅…

ax ≥ b + 1

ax ≤ b

ax ≥ b + 2

On face

TL TR

P

∅ ∅… ∅ ∅…

TL TR

∅ ∅…

TR

ax ≤ b ax ≥ b + 1
ax ≤ b ax ≥ b + 1

ax ≥ b + 2ax ≤ b + 1

recurse

Step 2. Stabbing Planes* = Facelike Stabbing Planes
Proof sketch.

• Consider a bounded-coefficient Stabbing Planes proof.

• Look at the first query: .

Goal: convert to a facelike query.

• Add translates of the slab until we lie on the face!

• Recursively refute translates using the old subtree,

recurse on the other side similarly.

Recursive blowup is proportional to width of slab, diameter
of polytope.

ax ≤ b, ax ≥ b + 1

P

∅ ∅… ∅ ∅…

ax ≥ b + 1

ax ≤ b

ax ≥ b + 2

On face

TL TR

P

∅ ∅… ∅ ∅…

TL TR

∅ ∅…

TR

ax ≤ b ax ≥ b + 1
ax ≤ b ax ≥ b + 1

ax ≥ b + 2ax ≤ b + 1

recurse

Depth Blow-Up

• Converts shallow Stabbing Planes proofs into very deep
Cutting Planes proofs.

Theorem: Facelike Stabbing Planes = Cutting Planes.

Depth Blow-Up

• Converts shallow Stabbing Planes proofs into very deep
Cutting Planes proofs.

• Involves an in-order traversal of the SP proof.

Theorem: Facelike Stabbing Planes = Cutting Planes.

P0

P1

Depth Blow-Up

• Converts shallow Stabbing Planes proofs into very deep
Cutting Planes proofs.

• Involves an in-order traversal of the SP proof.

• The Stabbing Planes proofs of Tseitin have size and
depth .

nO(log n)

O(log2 n)

Theorem: Facelike Stabbing Planes = Cutting Planes.

P0

P1

Depth Blow-Up

• Converts shallow Stabbing Planes proofs into very deep
Cutting Planes proofs.

• Involves an in-order traversal of the SP proof.

• The Stabbing Planes proofs of Tseitin have size and
depth .

• Implies a Cutting Planes proof of depth and size .

nO(log n)

O(log2 n)

nO(log n)

Theorem: Facelike Stabbing Planes = Cutting Planes.

P0

P1

nO(log n)

Depth Blow-Up

• Converts shallow Stabbing Planes proofs into very deep
Cutting Planes proofs.

• Involves an in-order traversal of the SP proof.

• The Stabbing Planes proofs of Tseitin have size and
depth .

• Implies a Cutting Planes proof of depth and size .

• Tseitin has a Cutting Planes proof of depth and size .

nO(log n)

O(log2 n)

nO(log n)

O(n) 2n

Theorem: Facelike Stabbing Planes = Cutting Planes.

P0

P1

nO(log n)

Depth Blow-Up

• Converts shallow Stabbing Planes proofs into very deep
Cutting Planes proofs.

• Involves an in-order traversal of the SP proof.

• The Stabbing Planes proofs of Tseitin have size and
depth .

• Implies a Cutting Planes proof of depth and size .

• Tseitin has a Cutting Planes proof of depth and size .

nO(log n)

O(log2 n)

nO(log n)

O(n) 2n

Theorem: Facelike Stabbing Planes = Cutting Planes.

P0

P1

Conjecture: Any subexponential-size Cutting Planes refutation of a Tseitin formula requires
superpolynomial depth

nO(log n)

Supercritical Size-Depth Tradeoffs

Conjecture: Any subexponential-size Cutting Planes refutation of a Tseitin formula requires
superpolynomial depth

Supercritical Size-Depth Tradeoffs

Conjecture: Any subexponential-size Cutting Planes refutation of a Tseitin formula requires
superpolynomial depth

• Tseitin has a Cutting Planes proof of depth and size .

• Holds for any polytope coming from an unsatisfiable CNF formula.

O(n) 2n

Supercritical Size-Depth Tradeoffs

Conjecture: Any subexponential-size Cutting Planes refutation of a Tseitin formula requires
superpolynomial depth

• Tseitin has a Cutting Planes proof of depth and size .

• Holds for any polytope coming from an unsatisfiable CNF formula.

O(n) 2n

Supercritical Size/Depth Tradeoff: bounding the size increases the depth beyond the worst-case
O(n)

Supercritical Size-Depth Tradeoffs

Conjecture: Any subexponential-size Cutting Planes refutation of a Tseitin formula requires
superpolynomial depth

• Tseitin has a Cutting Planes proof of depth and size .

• Holds for any polytope coming from an unsatisfiable CNF formula.

O(n) 2n

Supercritical Size/Depth Tradeoff: bounding the size increases the depth beyond the worst-case

• Very few examples of supercritical tradeoffs.

O(n)

Supercritical Size-Depth Tradeoffs

Conjecture: Any subexponential-size Cutting Planes refutation of a Tseitin formula requires
superpolynomial depth

• Tseitin has a Cutting Planes proof of depth and size .

• Holds for any polytope coming from an unsatisfiable CNF formula.

O(n) 2n

Supercritical Size/Depth Tradeoff: bounding the size increases the depth beyond the worst-case

• Very few examples of supercritical tradeoffs.

• [BBI12] Tradeoff between Resolution size and space.

O(n)

Supercritical Size-Depth Tradeoffs

Conjecture: Any subexponential-size Cutting Planes refutation of a Tseitin formula requires
superpolynomial depth

• Tseitin has a Cutting Planes proof of depth and size .

• Holds for any polytope coming from an unsatisfiable CNF formula.

O(n) 2n

Supercritical Size/Depth Tradeoff: bounding the size increases the depth beyond the worst-case

• Very few examples of supercritical tradeoffs.

• [BBI12] Tradeoff between Resolution size and space.

• [Razborov16] Tradeoff between tree-like Resolution size and width.

O(n)

Supercritical Size-Depth Tradeoffs

Conjecture: Any subexponential-size Cutting Planes refutation of a Tseitin formula requires
superpolynomial depth

• Tseitin has a Cutting Planes proof of depth and size .

• Holds for any polytope coming from an unsatisfiable CNF formula.

O(n) 2n

Supercritical Size/Depth Tradeoff: bounding the size increases the depth beyond the worst-case

• Very few examples of supercritical tradeoffs.

• [BBI12] Tradeoff between Resolution size and space.

• [Razborov16] Tradeoff between tree-like Resolution size and width.

• [BNT13, BN20, Razborov18] Tradeoffs between notions of space and size for Resolution and

Polynomial Calculus.

O(n)

Supercritical Size-Depth Tradeoffs

Conjecture: Any subexponential-size Cutting Planes refutation of a Tseitin formula requires
superpolynomial depth

• Tseitin has a Cutting Planes proof of depth and size .

• Holds for any polytope coming from an unsatisfiable CNF formula.

O(n) 2n

Supercritical Size/Depth Tradeoff: bounding the size increases the depth beyond the worst-case

• Very few examples of supercritical tradeoffs.

• [BBI12] Tradeoff between Resolution size and space.

• [Razborov16] Tradeoff between tree-like Resolution size and width.

• [BNT13, BN20, Razborov18] Tradeoffs between notions of space and size for Resolution and

Polynomial Calculus.

O(n)

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.

Supercritical Size-Depth Tradeoffs

Conjecture: Any subexponential-size Cutting Planes refutation of a Tseitin formula requires
superpolynomial depth

• Tseitin has a Cutting Planes proof of depth and size .

• Holds for any polytope coming from an unsatisfiable CNF formula.

O(n) 2n

Supercritical Size/Depth Tradeoff: bounding the size increases the depth beyond the worst-case

• Very few examples of supercritical tradeoffs.

• [BBI12] Tradeoff between Resolution size and space.

• [Razborov16] Tradeoff between tree-like Resolution size and width.

• [BNT13, BN20, Razborov18] Tradeoffs between notions of space and size for Resolution and

Polynomial Calculus.

O(n)

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.

Builds on [Razborov16]

Supercritical Size-Depth Tradeoffs

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.

Supercritical Size-Depth Tradeoffs

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.

For there is a CNF formula on variables such that

1. There is a Res-proof of size

2. Any Res proof with satisfies

c ≥ 1,ε > 0 F n
nc ⋅ 2O(c)

Π size(Π) ≤ exp(o(n1−ε/c)) 𝖽𝖾𝗉𝗍𝗁(Π) ⋅ log 𝗌𝗂𝗓𝖾(Π) = Ω (nc

c log n)

Supercritical Size-Depth Tradeoffs

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.

For there is a CNF formula on variables such that

1. There is a Res-proof of size

2. Any Res proof with satisfies

c ≥ 1,ε > 0 F n
nc ⋅ 2O(c)

Π size(Π) ≤ exp(o(n1−ε/c))

• Begin with a formula that has small size but requires large depth in Resolution
F

𝖽𝖾𝗉𝗍𝗁(Π) ⋅ log 𝗌𝗂𝗓𝖾(Π) = Ω (nc

c log n)
Proof Idea:

Supercritical Size-Depth Tradeoffs

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.

For there is a CNF formula on variables such that

1. There is a Res-proof of size

2. Any Res proof with satisfies

c ≥ 1,ε > 0 F n
nc ⋅ 2O(c)

Π size(Π) ≤ exp(o(n1−ε/c))

• Begin with a formula that has small size but requires large depth in Resolution

• Pebbling: -size and depth.

F

O(n) Ω(n/log n)

𝖽𝖾𝗉𝗍𝗁(Π) ⋅ log 𝗌𝗂𝗓𝖾(Π) = Ω (nc

c log n)
Proof Idea:

Supercritical Size-Depth Tradeoffs

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.

For there is a CNF formula on variables such that

1. There is a Res-proof of size

2. Any Res proof with satisfies

c ≥ 1,ε > 0 F n
nc ⋅ 2O(c)

Π size(Π) ≤ exp(o(n1−ε/c))

• Begin with a formula that has small size but requires large depth in Resolution

• Pebbling: -size and depth.

• Compress the number of variables from while maintaining the
upper bound and lower bound.

F
O(n) Ω(n/log n)

n → N O(n)
Ω(n/log n)

𝖽𝖾𝗉𝗍𝗁(Π) ⋅ log 𝗌𝗂𝗓𝖾(Π) = Ω (nc

c log n)
Proof Idea:

Supercritical Size-Depth Tradeoffs

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.

For there is a CNF formula on variables such that

1. There is a Res-proof of size

2. Any Res proof with satisfies

c ≥ 1,ε > 0 F n
nc ⋅ 2O(c)

Π size(Π) ≤ exp(o(n1−ε/c))

• Begin with a formula that has small size but requires large depth in Resolution

• Pebbling: -size and depth.

• Compress the number of variables from while maintaining the
upper bound and lower bound.

F
O(n) Ω(n/log n)

n → N O(n)
Ω(n/log n)

n
N = n1/c

𝖽𝖾𝗉𝗍𝗁(Π) ⋅ log 𝗌𝗂𝗓𝖾(Π) = Ω (nc

c log n)
x1
x2
x3
x4
x5
x6

y1
y2
y3

Proof Idea:

Supercritical Size-Depth Tradeoffs

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.

For there is a CNF formula on variables such that

1. There is a Res-proof of size

2. Any Res proof with satisfies

c ≥ 1,ε > 0 F n
nc ⋅ 2O(c)

Π size(Π) ≤ exp(o(n1−ε/c))

• Begin with a formula that has small size but requires large depth in Resolution

• Pebbling: -size and depth.

• Compress the number of variables from while maintaining the
upper bound and lower bound.

• Should be difficult for Resolution to differentiate between the original and

compressed instance.

F
O(n) Ω(n/log n)

n → N O(n)
Ω(n/log n)

n
N = n1/c

𝖽𝖾𝗉𝗍𝗁(Π) ⋅ log 𝗌𝗂𝗓𝖾(Π) = Ω (nc

c log n)
x1
x2
x3
x4
x5
x6

y1
y2
y3

Proof Idea:

Supercritical Size-Depth Tradeoffs

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.

For there is a CNF formula on variables such that

1. There is a Res-proof of size

2. Any Res proof with satisfies

c ≥ 1,ε > 0 F n
nc ⋅ 2O(c)

Π size(Π) ≤ exp(o(n1−ε/c))

• Begin with a formula that has small size but requires large depth in Resolution

• Pebbling: -size and depth.

• Compress the number of variables from while maintaining the
upper bound and lower bound.

• Should be difficult for Resolution to differentiate between the original and

compressed instance.

• How?

F
O(n) Ω(n/log n)

n → N O(n)
Ω(n/log n)

n
N = n1/c

𝖽𝖾𝗉𝗍𝗁(Π) ⋅ log 𝗌𝗂𝗓𝖾(Π) = Ω (nc

c log n)
x1
x2
x3
x4
x5
x6

y1
y2
y3

Proof Idea:

Supercritical Size-Depth Tradeoffs

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.

For there is a CNF formula on variables such that

1. There is a Res-proof of size

2. Any Res proof with satisfies

c ≥ 1,ε > 0 F n
nc ⋅ 2O(c)

Π size(Π) ≤ exp(o(n1−ε/c))

• Begin with a formula that has small size but requires large depth in Resolution

• Pebbling: -size and depth.

• Compress the number of variables from while maintaining the
upper bound and lower bound.

• Should be difficult for Resolution to differentiate between the original and

compressed instance.

• How? — (roughly) compose with Nisan-Wigderson generator

F
O(n) Ω(n/log n)

n → N O(n)
Ω(n/log n)

F

n
N = n1/c

𝖽𝖾𝗉𝗍𝗁(Π) ⋅ log 𝗌𝗂𝗓𝖾(Π) = Ω (nc

c log n)
x1
x2
x3
x4
x5
x6

y1
y2
y3

Proof Idea:

Supercritical Size-Depth Tradeoffs

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.

For there is a CNF formula on variables such that

1. There is a Res-proof of size

2. Any Res proof with satisfies

c ≥ 1,ε > 0 F n
nc ⋅ 2O(c)

Π size(Π) ≤ exp(o(n1−ε/c))

• Begin with a formula that has small size but requires large depth in Resolution

• Pebbling: -size and depth.

• Compress the number of variables from while maintaining the
upper bound and lower bound.

• Should be difficult for Resolution to differentiate between the original and

compressed instance.

• How? — (roughly) compose with Nisan-Wigderson generator

• Replace each old variable with an XOR of new variables

F
O(n) Ω(n/log n)

n → N O(n)
Ω(n/log n)

F
xi yj

n
N = n1/c

𝖽𝖾𝗉𝗍𝗁(Π) ⋅ log 𝗌𝗂𝗓𝖾(Π) = Ω (nc

c log n)
x1
x2
x3
x4
x5
x6

y1
y2
y3

Proof Idea:

Supercritical Size-Depth Tradeoffs

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.

For there is a CNF formula on variables such that

1. There is a Res-proof of size

2. Any Res proof with satisfies

c ≥ 1,ε > 0 F n
nc ⋅ 2O(c)

Π size(Π) ≤ exp(o(n1−ε/c))

• Begin with a formula that has small size but requires large depth in Resolution

• Pebbling: -size and depth.

• Compress the number of variables from while maintaining the
upper bound and lower bound.

• Should be difficult for Resolution to differentiate between the original and

compressed instance.

• How? — (roughly) compose with Nisan-Wigderson generator

• Replace each old variable with an XOR of new variables

F
O(n) Ω(n/log n)

n → N O(n)
Ω(n/log n)

F
xi yj

n
N = n1/c

𝖽𝖾𝗉𝗍𝗁(Π) ⋅ log 𝗌𝗂𝗓𝖾(Π) = Ω (nc

c log n)
x1
x2
x3
x4
x5
x6

y1
y2
y3

x3 → y2 ⊕ y3

Proof Idea:

Supercritical Size-Depth Tradeoffs

𝖽𝖾𝗉𝗍𝗁(Π) ⋅ log 𝗌𝗂𝗓𝖾(Π) = Ω (nc

c log n)

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.

For there is a CNF formula on variables such that

1. There is a Res-proof of size

2. Any Res proof with satisfies

c ≥ 1,ε > 0 F n
nc ⋅ 2O(c)

Π size(Π) ≤ exp(o(n1−ε/c)) 𝖽𝖾𝗉𝗍𝗁(Π) ⋅ log 𝗌𝗂𝗓𝖾(Π) = Ω (nc

c log n)

Supercritical Size-Depth Tradeoffs

Tradeoffs for Res(k), Cutting Planes follow by lifting the Resolution tradeoff.

𝖽𝖾𝗉𝗍𝗁(Π) ⋅ log 𝗌𝗂𝗓𝖾(Π) = Ω (nc

c log n)

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.

For there is a CNF formula on variables such that

1. There is a Res-proof of size

2. Any Res proof with satisfies

c ≥ 1,ε > 0 F n
nc ⋅ 2O(c)

Π size(Π) ≤ exp(o(n1−ε/c)) 𝖽𝖾𝗉𝗍𝗁(Π) ⋅ log 𝗌𝗂𝗓𝖾(Π) = Ω (nc

c log n)

Supercritical Size-Depth Tradeoffs

Tradeoffs for Res(k), Cutting Planes follow by lifting the Resolution tradeoff.

𝖽𝖾𝗉𝗍𝗁(Π) ⋅ log 𝗌𝗂𝗓𝖾(Π) = Ω (nc

c log n)

Can we use this to obtain the tradeoff for Tseitin?

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.

For there is a CNF formula on variables such that

1. There is a Res-proof of size

2. Any Res proof with satisfies

c ≥ 1,ε > 0 F n
nc ⋅ 2O(c)

Π size(Π) ≤ exp(o(n1−ε/c)) 𝖽𝖾𝗉𝗍𝗁(Π) ⋅ log 𝗌𝗂𝗓𝖾(Π) = Ω (nc

c log n)

Supercritical Size-Depth Tradeoffs

Tradeoffs for Res(k), Cutting Planes follow by lifting the Resolution tradeoff.

𝖽𝖾𝗉𝗍𝗁(Π) ⋅ log 𝗌𝗂𝗓𝖾(Π) = Ω (nc

c log n)

Can we use this to obtain the tradeoff for Tseitin?

• Not obviously — Tseitin is exponentially hard for Resolution!

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.

For there is a CNF formula on variables such that

1. There is a Res-proof of size

2. Any Res proof with satisfies

c ≥ 1,ε > 0 F n
nc ⋅ 2O(c)

Π size(Π) ≤ exp(o(n1−ε/c)) 𝖽𝖾𝗉𝗍𝗁(Π) ⋅ log 𝗌𝗂𝗓𝖾(Π) = Ω (nc

c log n)

Supercritical Size-Depth Tradeoffs

Tradeoffs for Res(k), Cutting Planes follow by lifting the Resolution tradeoff.

𝖽𝖾𝗉𝗍𝗁(Π) ⋅ log 𝗌𝗂𝗓𝖾(Π) = Ω (nc

c log n)

Can we use this to obtain the tradeoff for Tseitin?

• Not obviously — Tseitin is exponentially hard for Resolution!

• No small tradeoff to begin with.

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.

For there is a CNF formula on variables such that

1. There is a Res-proof of size

2. Any Res proof with satisfies

c ≥ 1,ε > 0 F n
nc ⋅ 2O(c)

Π size(Π) ≤ exp(o(n1−ε/c)) 𝖽𝖾𝗉𝗍𝗁(Π) ⋅ log 𝗌𝗂𝗓𝖾(Π) = Ω (nc

c log n)

Supercritical Size-Depth Tradeoffs

Tradeoffs for Res(k), Cutting Planes follow by lifting the Resolution tradeoff.

𝖽𝖾𝗉𝗍𝗁(Π) ⋅ log 𝗌𝗂𝗓𝖾(Π) = Ω (nc

c log n)

Can we use this to obtain the tradeoff for Tseitin?

• Not obviously — Tseitin is exponentially hard for Resolution!

• No small tradeoff to begin with.

• Need a more direct approach.

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.

For there is a CNF formula on variables such that

1. There is a Res-proof of size

2. Any Res proof with satisfies

c ≥ 1,ε > 0 F n
nc ⋅ 2O(c)

Π size(Π) ≤ exp(o(n1−ε/c)) 𝖽𝖾𝗉𝗍𝗁(Π) ⋅ log 𝗌𝗂𝗓𝖾(Π) = Ω (nc

c log n)

Supercritical Size-Depth Tradeoffs

Tradeoffs for Res(k), Cutting Planes follow by lifting the Resolution tradeoff.

𝖽𝖾𝗉𝗍𝗁(Π) ⋅ log 𝗌𝗂𝗓𝖾(Π) = Ω (nc

c log n)

Can we use this to obtain the tradeoff for Tseitin?

• Not obviously — Tseitin is exponentially hard for Resolution!

• No small tradeoff to begin with.

• Need a more direct approach.

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.

For there is a CNF formula on variables such that

1. There is a Res-proof of size

2. Any Res proof with satisfies

c ≥ 1,ε > 0 F n
nc ⋅ 2O(c)

Π size(Π) ≤ exp(o(n1−ε/c)) 𝖽𝖾𝗉𝗍𝗁(Π) ⋅ log 𝗌𝗂𝗓𝖾(Π) = Ω (nc

c log n)

Theorem [FGI+21]: Any (Semantic) Cutting Planes refutation of Tseitin requires depth .Ω(n)

Supercritical Size-Depth Tradeoffs

Tradeoffs for Res(k), Cutting Planes follow by lifting the Resolution tradeoff.

𝖽𝖾𝗉𝗍𝗁(Π) ⋅ log 𝗌𝗂𝗓𝖾(Π) = Ω (nc

c log n)

Can we use this to obtain the tradeoff for Tseitin?

• Not obviously — Tseitin is exponentially hard for Resolution!

• No small tradeoff to begin with.

• Need a more direct approach.

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.

For there is a CNF formula on variables such that

1. There is a Res-proof of size

2. Any Res proof with satisfies

c ≥ 1,ε > 0 F n
nc ⋅ 2O(c)

Π size(Π) ≤ exp(o(n1−ε/c)) 𝖽𝖾𝗉𝗍𝗁(Π) ⋅ log 𝗌𝗂𝗓𝖾(Π) = Ω (nc

c log n)

Theorem [FGI+21]: Any (Semantic) Cutting Planes refutation of Tseitin requires depth .Ω(n)

Extends [BGHMP06]

Supercritical Size-Depth Tradeoffs

Tradeoffs for Res(k), Cutting Planes follow by lifting the Resolution tradeoff.

𝖽𝖾𝗉𝗍𝗁(Π) ⋅ log 𝗌𝗂𝗓𝖾(Π) = Ω (nc

c log n)

Can we use this to obtain the tradeoff for Tseitin?

• Not obviously — Tseitin is exponentially hard for Resolution!

• No small tradeoff to begin with.

• Need a more direct approach.

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.

For there is a CNF formula on variables such that

1. There is a Res-proof of size

2. Any Res proof with satisfies

c ≥ 1,ε > 0 F n
nc ⋅ 2O(c)

Π size(Π) ≤ exp(o(n1−ε/c)) 𝖽𝖾𝗉𝗍𝗁(Π) ⋅ log 𝗌𝗂𝗓𝖾(Π) = Ω (nc

c log n)

Theorem [FGI+21]: Any (Semantic) Cutting Planes refutation of Tseitin requires depth .Ω(n)

Extends [BGHMP06]

• Uses a geometric argument.

Open Problems
Res(CP)

Stabbing Planes

Cutting Planes Unary Stabbing
Planes

Unary Cutting
Planes

• Prove or disprove the conjecture!

• Can we improve the simulation to high coefficient

Stabbing Planes?

• Or, alternatively, can we separate high coefficient

Stabbing Planes from low coefficient Stabbing
Planes?

• A generalization of Stabbing Planes to dag-like proofs
is called .

• Can Stabbing Planes simulate ?

• [ABE02] Cutting Planes cannot simulate

Res(𝖢𝖯)
Res(𝖢𝖯)

Res(𝖢𝖯)

Thanks!

CP refutation of P ∩ {ax = b}

∅

P ∩ {ax = b} P ∩ {ax ≥ b + 1}

ax ≥ b + 1

P

Shrijver Lemma
Lemma [Schrijver80]: If there is a refutation of a face in Cutting Planes then there is a
Cutting Planes derivation of from of the same size!

P ∩ {ax ≤ b}
P ∩ {ax ≥ b + 1} P

Idea: Since all points in lie on the line , we can rotate each CG-cut so that
it only depends on and (no longer depends on).

P ∩ {ax = b} ax ≥ b
P ax ≥ b ax ≤ b

