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 Contrast with linear programming: output any  maximizing → x ∈ P cx

P = {x : a1x ≥ b1, …, amx ≥ bm}

Like SAT, practitioners routinely able to solve practical instances of IP 

 How? — Reduce to linear programming!→
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If  is valid for  with  relatively prime and  
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ax ≥ ⌈b⌉ P

Integer Hull of a polytope  is 
P
int(P) := conv(P ∩ ℤn)

• May take exponentially many CG-
cuts [Pudlák93, BPR93]


• Numerically unstable to implement 

•  is a polytope


• An LP solution to  is an ILP solution to  

int(P)

int(P) P
LP(int(P), c) = ILP(P, c)
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Branch and Cut 
Alternate 


• Branch: Choose  such that  
                             .


• Cut: Refine  by adding additional cutting planes.

P1, …, Pk
P ∩ ℤn ⊆ ∪i Pi

P1, …, Pk

Combine cutting planes with branch-and-bound

In practice branching is done by splitting on  and  for , 
ax ≤ b ax ≥ b + 1 a ∈ ℤn b ∈ ℤ
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Modern IP algorithms are a complicated mess of heuristics:


• Choosing how to branch,


• Choosing which cuts to add.

Makes analyzing these algorithms directly challenging!

Observation: If  contains no integer points then any correct IP algorithm running on  must 
identify this fact.  


 the transcript of the algorithm’s execution is a proof that .

P P

⟹ P ∩ ℤn = ∅

Instead of trying to understand an algorithm  directly, formalize the techniques used by the 
algorithms into a proof system .


 Lower bounds on the size of -proofs imply runtime lower bounds for 

A
S

→ S A

Even works in optimization! Algorithm has to “prove” that no better solution exists
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• First exponential lower bounds in [Pudlák93] and [BPR93] for a restricted variant.


• Captures IP algorithms which use only CG-cuts (no branching).
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Is Cutting Planes weaker than Stabbing Planes?


• [BFI+18] conjectured that the Tseitin formulas are a separating example.

Let  be a connected graph with an odd number of vertices. The Tseitin formula for  is 
the system of -linear equations 





asserting that there is a way to assign edges so that each vertex has an odd number of neighbours.

G = (V, E) G
𝔽2

∀v ∈ V : ⨁
uv∈E

xuv = 1

• Conjectured in the 80s to require exponential Cutting Planes proofs.


• [BFI+18] There are -size Cutting Planes proofs of Tseitin. nO(log n)

[DT20] The quasi-polynomial size Stabbing Planes proofs of Tseitin can be translated into quasi-
polynomial size Cutting Planes proofs!
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Can every Stabbing Planes proof be efficiently translated into Cutting Planes?


• Yes! Provided the coefficients of the inequalities are not too large.

Theorem [FGI+ 22]. Let  be a polytope, and suppose that there is a Stabbing Planes 
refutation of  with size  and where every coefficient has magnitude at most . Then there is a 
Cutting Planes refutation of  of size 





where  is the diameter of .

P ⊆ Rn

P s c
P

s(cd(P) n)log s

d(P) P

Corollary: Applying existing lower bounds for Cutting Planes proofs [P93, HP17, FPPR17]:


• The clique-colour formulas requires exponential size bounded-coefficient SP proofs.


• Random -CNF formulas require exponential size bounded-coefficient SP proofs.Θ(log n)
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• Consider a bounded-coefficient Stabbing Planes proof.


• Look at the first query: .

Goal: convert to a facelike query.

• Add translates of the slab until we lie on the face! 

• Recursively refute translates using the old subtree, 
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Open Problems
Res(CP)

Stabbing Planes

Cutting Planes Unary Stabbing 
Planes

Unary Cutting 
Planes

• Prove or disprove the conjecture!

• Can we improve the simulation to high coefficient 

Stabbing Planes?

• Or, alternatively, can we separate high coefficient 

Stabbing Planes from low coefficient Stabbing 
Planes?


• A generalization of Stabbing Planes to dag-like proofs 
is called .


• Can Stabbing Planes simulate ? 


• [ABE02] Cutting Planes cannot simulate 

Res(𝖢𝖯)
Res(𝖢𝖯)

Res(𝖢𝖯)

Thanks!



CP refutation of P ∩ {ax = b}

∅

P ∩ {ax = b} P ∩ {ax ≥ b + 1}

ax ≥ b + 1

P

Shrijver Lemma
Lemma [Schrijver80]: If there is a refutation of a face  in Cutting Planes then there is a 
Cutting Planes derivation of  from  of the same size!

P ∩ {ax ≤ b}
P ∩ {ax ≥ b + 1} P

Idea: Since all points in  lie on the line , we can rotate each CG-cut so that 
it only depends on  and  (no longer depends on ).

P ∩ {ax = b} ax ≥ b
P ax ≥ b ax ≤ b


