The Proof Complexity of Integer Programming

Noah Fleming

Memorial University

Integer Programming

Input

- A system of linear inequalities

$$
a_{1} x \geq b_{1}, \ldots, a_{m} x \geq b_{m}
$$

Integer Programming

Input

- A system of linear inequalities

$$
P=\left\{x: a_{1} x \geq b_{1}, \ldots, a_{m} x \geq b_{m}\right\}
$$

defining a polytope P in \mathbb{R}^{n}

Integer Programming

Input

- A system of linear inequalities

$$
P=\left\{x: a_{1} x \geq b_{1}, \ldots, a_{m} x \geq b_{m}\right\}
$$

defining a polytope P in \mathbb{R}^{n}

- A "direction" $c \in \mathbb{R}^{n}$

Integer Programming

Input

- A system of linear inequalities

$$
P=\left\{x: a_{1} x \geq b_{1}, \ldots, a_{m} x \geq b_{m}\right\}
$$

defining a polytope P in \mathbb{R}^{n}

- A "direction" $c \in \mathbb{R}^{n}$

Output

- An integer point $x \in P$ maximizing $c x$

Integer Programming

Input

- A system of linear inequalities

$$
P=\left\{x: a_{1} x \geq b_{1}, \ldots, a_{m} x \geq b_{m}\right\}
$$

defining a polytope P in \mathbb{R}^{n}

- A "direction" $c \in \mathbb{R}^{n}$

Output

- An integer point $x \in P$ maximizing $c x$

Integer Programming

Input

- A system of linear inequalities

$$
P=\left\{x: a_{1} x \geq b_{1}, \ldots, a_{m} x \geq b_{m}\right\}
$$

defining a polytope P in \mathbb{R}^{n}

- A "direction" $c \in \mathbb{R}^{n}$

Output

- An integer point $x \in P$ maximizing $c x$

Very general framework. However, NP-hard to solve

Integer Programming

Input

- A system of linear inequalities

$$
P=\left\{x: a_{1} x \geq b_{1}, \ldots, a_{m} x \geq b_{m}\right\}
$$

defining a polytope P in \mathbb{R}^{n}

- A "direction" $c \in \mathbb{R}^{n}$

Output

- An integer point $x \in P$ maximizing $c x$

Very general framework. However, NP-hard to solve
\rightarrow Contrast with linear programming: output any $x \in P$ maximizing $c x$

Integer Programming

Input

- A system of linear inequalities

$$
P=\left\{x: a_{1} x \geq b_{1}, \ldots, a_{m} x \geq b_{m}\right\}
$$

defining a polytope P in \mathbb{R}^{n}

- A "direction" $c \in \mathbb{R}^{n}$

Output

- An integer point $x \in P$ maximizing $c x$

Very general framework. However, NP-hard to solve
\rightarrow Contrast with linear programming: output any $x \in P$ maximizing $c x$

Integer Programming

Input

- A system of linear inequalities

$$
P=\left\{x: a_{1} x \geq b_{1}, \ldots, a_{m} x \geq b_{m}\right\}
$$

defining a polytope P in \mathbb{R}^{n}

- A "direction" $c \in \mathbb{R}^{n}$

Output

- An integer point $x \in P$ maximizing $c x$

Very general framework. However, NP-hard to solve
\rightarrow Contrast with linear programming: output any $x \in P$ maximizing $c x$
Like SAT, practitioners routinely able to solve practical instances of IP

Integer Programming

Input

- A system of linear inequalities

$$
P=\left\{x: a_{1} x \geq b_{1}, \ldots, a_{m} x \geq b_{m}\right\}
$$

defining a polytope P in \mathbb{R}^{n}

- A "direction" $c \in \mathbb{R}^{n}$

Output

- An integer point $x \in P$ maximizing $c x$

Very general framework. However, NP-hard to solve
\rightarrow Contrast with linear programming: output any $x \in P$ maximizing $c x$
Like SAT, practitioners routinely able to solve practical instances of IP
\rightarrow How?

Integer Programming

Input

- A system of linear inequalities

$$
P=\left\{x: a_{1} x \geq b_{1}, \ldots, a_{m} x \geq b_{m}\right\}
$$

defining a polytope P in \mathbb{R}^{n}

- A "direction" $c \in \mathbb{R}^{n}$

Output

- An integer point $x \in P$ maximizing $c x$

Very general framework. However, NP-hard to solve
\rightarrow Contrast with linear programming: output any $x \in P$ maximizing $c x$
Like SAT, practitioners routinely able to solve practical instances of IP
\rightarrow How? - Reduce to linear programming!

Integer Programming in Practice

Integer Hull of a polytope P is

$$
\operatorname{int}(P):=\operatorname{conv}\left(P \cap \mathbb{Z}^{n}\right)
$$

Integer Programming in Practice

Integer Hull of a polytope P is

$$
\operatorname{int}(P):=\operatorname{conv}\left(P \cap \mathbb{Z}^{n}\right)
$$

Integer Programming in Practice

Integer Hull of a polytope P is

$$
\operatorname{int}(P):=\operatorname{conv}\left(P \cap \mathbb{Z}^{n}\right)
$$

- $\operatorname{int}(P)$ is a polytope

Integer Programming in Practice

Integer Hull of a polytope P is

$$
\operatorname{int}(P):=\operatorname{conv}\left(P \cap \mathbb{Z}^{n}\right)
$$

- $\operatorname{int}(P)$ is a polytope
- An LP solution to $\operatorname{int}(P)$ is an ILP solution to P

$$
L P(\operatorname{int}(P), c)=I L P(P, c)
$$

Integer Programming in Practice

Integer Hull of a polytope P is

$$
\operatorname{int}(P):=\operatorname{conv}\left(P \cap \mathbb{Z}^{n}\right)
$$

- $\operatorname{int}(P)$ is a polytope
- An LP solution to $\operatorname{int}(P)$ is an ILP solution to P

$$
L P(\operatorname{int}(P), c)=I L P(P, c)
$$

Integer Programming in Practice

Integer Hull of a polytope P is

$$
\operatorname{int}(P):=\operatorname{conv}\left(P \cap \mathbb{Z}^{n}\right)
$$

- $\operatorname{int}(P)$ is a polytope
- An LP solution to $\operatorname{int}(P)$ is an ILP solution to P

$$
L P(\operatorname{int}(P), c)=I L P(P, c)
$$

Modern IP-algorithms try to reduce $P \rightarrow \operatorname{int}(P)$

Integer Programming in Practice

Integer Hull of a polytope P is

$$
\operatorname{int}(P):=\operatorname{conv}\left(P \cap \mathbb{Z}^{n}\right)
$$

- $\operatorname{int}(P)$ is a polytope
- An LP solution to $\operatorname{int}(P)$ is an ILP solution to P

$$
L P(\operatorname{int}(P), c)=I L P(P, c)
$$

Modern IP-algorithms try to reduce $P \rightarrow \operatorname{int}(P)$
How? - [Gomory63, Chvátal73]: Add cutting planes

Integer Programming in Practice

Integer Hull of a polytope P is

$$
\operatorname{int}(P):=\operatorname{conv}\left(P \cap \mathbb{Z}^{n}\right)
$$

- $\operatorname{int}(P)$ is a polytope
- An LP solution to $\operatorname{int}(P)$ is an ILP solution to P

$$
L P(\operatorname{int}(P), c)=I L P(P, c)
$$

Modern IP-algorithms try to reduce $P \rightarrow \operatorname{int}(P)$
How? - [Gomory63, Chvátal73]: Add cutting planes

If $a x \geq b$ is valid for P with $a \in \mathbb{Z}^{n}$ relatively prime and $b \in \mathbb{R}$ then $a x \geq\lceil b\rceil$ is a CG-cut for P

Integer Programming in Practice

Integer Hull of a polytope P is

$$
\operatorname{int}(P):=\operatorname{conv}\left(P \cap \mathbb{Z}^{n}\right)
$$

- $\operatorname{int}(P)$ is a polytope
- An LP solution to $\operatorname{int}(P)$ is an ILP solution to P

$$
L P(\operatorname{int}(P), c)=I L P(P, c)
$$

Modern IP-algorithms try to reduce $P \rightarrow \operatorname{int}(P)$
How? - [Gomory63, Chvátal73]: Add cutting planes

If $a x \geq b$ is valid for P with $a \in \mathbb{Z}^{n}$ relatively prime and $b \in \mathbb{R}$ then $a x \geq\lceil b\rceil$ is a CG-cut for P

Integer Programming in Practice

Integer Hull of a polytope P is

$$
\operatorname{int}(P):=\operatorname{conv}\left(P \cap \mathbb{Z}^{n}\right)
$$

- $\operatorname{int}(P)$ is a polytope
- An LP solution to $\operatorname{int}(P)$ is an ILP solution to P

$$
L P(\operatorname{int}(P), c)=I L P(P, c)
$$

Modern IP-algorithms try to reduce $P \rightarrow \operatorname{int}(P)$
How? - [Gomory63, Chvátal73]: Add cutting planes

If $a x \geq b$ is valid for P with $a \in \mathbb{Z}^{n}$ relatively prime and $b \in \mathbb{R}$ then $a x \geq\lceil b\rceil$ is a CG-cut for P

Integer Programming in Practice

Integer Hull of a polytope P is

$$
\operatorname{int}(P):=\operatorname{conv}\left(P \cap \mathbb{Z}^{n}\right)
$$

- $\operatorname{int}(P)$ is a polytope
- An LP solution to $\operatorname{int}(P)$ is an ILP solution to P

$$
L P(\operatorname{int}(P), c)=I L P(P, c)
$$

Modern IP-algorithms try to reduce $P \rightarrow \operatorname{int}(P)$
How? - [Gomory63, Chvátal73]: Add cutting planes

If $a x \geq b$ is valid for P with $a \in \mathbb{Z}^{n}$ relatively prime and $b \in \mathbb{R}$ then $a x \geq\lceil b\rceil$ is a CG-cut for P

Integer Programming in Practice

Integer Hull of a polytope P is

$$
\operatorname{int}(P):=\operatorname{conv}\left(P \cap \mathbb{Z}^{n}\right)
$$

- $\operatorname{int}(P)$ is a polytope
- An LP solution to $\operatorname{int}(P)$ is an ILP solution to P

$$
L P(\operatorname{int}(P), c)=I L P(P, c)
$$

Modern IP-algorithms try to reduce $P \rightarrow \operatorname{int}(P)$
How? - [Gomory63, Chvátal73]: Add cutting planes

If $a x \geq b$ is valid for P with $a \in \mathbb{Z}^{n}$ relatively prime and $b \in \mathbb{R}$ then $a x \geq\lceil b\rceil$ is a $\mathbf{C G}$-cut for P

Integer Programming in Practice

Integer Hull of a polytope P is

$$
\operatorname{int}(P):=\operatorname{conv}\left(P \cap \mathbb{Z}^{n}\right)
$$

- $\operatorname{int}(P)$ is a polytope
- An LP solution to $\operatorname{int}(P)$ is an ILP solution to P

$$
L P(\operatorname{int}(P), c)=I L P(P, c)
$$

Modern IP-algorithms try to reduce $P \rightarrow \operatorname{int}(P)$
How? - [Gomory63, Chvátal73]: Add cutting planes

If $a x \geq b$ is valid for P with $a \in \mathbb{Z}^{n}$ relatively prime and $b \in \mathbb{R}$ then $a x \geq\lceil b\rceil$ is a CG-cut for P

- May take exponentially many CGcuts [Pudlák93, BPR93]

Integer Programming in Practice

Integer Hull of a polytope P is

$$
\operatorname{int}(P):=\operatorname{conv}\left(P \cap \mathbb{Z}^{n}\right)
$$

- $\operatorname{int}(P)$ is a polytope
- An LP solution to $\operatorname{int}(P)$ is an ILP solution to P

$$
L P(\operatorname{int}(P), c)=I L P(P, c)
$$

Modern IP-algorithms try to reduce $P \rightarrow \operatorname{int}(P)$
How? - [Gomory63, Chvátal73]: Add cutting planes

If $a x \geq b$ is valid for P with $a \in \mathbb{Z}^{n}$ relatively prime and $b \in \mathbb{R}$ then $a x \geq\lceil b\rceil$ is a CG-cut for P

- May take exponentially many CGcuts [Pudlák93, BPR93]
- Numerically unstable to implement

Modern IP Algorithms

Combine cutting planes with branch-and-bound

Modern IP Algorithms

Combine cutting planes with branch-and-bound
Branch and Cut

Modern IP Algorithms

Combine cutting planes with branch-and-bound

Branch and Cut

Alternate

- Branch: Choose P_{1}, \ldots, P_{k} such that

$$
P \cap \mathbb{Z}^{n} \subseteq \cup_{i} P_{i}
$$

Modern IP Algorithms

Combine cutting planes with branch-and-bound

Branch and Cut

Alternate

- Branch: Choose P_{1}, \ldots, P_{k} such that

$$
P \cap \mathbb{Z}^{n} \subseteq \cup_{i} P_{i}
$$

Modern IP Algorithms

Combine cutting planes with branch-and-bound

Branch and Cut

Alternate

- Branch: Choose P_{1}, \ldots, P_{k} such that

$$
P \cap \mathbb{Z}^{n} \subseteq \cup_{i} P_{i}
$$

$P \cap\{y \geq 4\}, P \cap\{x \leq 3\} \cap\{x \leq 5\}, P \cap\{y \leq 3\} \cap\{x \geq 6\}$ All integer points preserved!

Modern IP Algorithms

Combine cutting planes with branch-and-bound

Branch and Cut

Alternate

- Branch: Choose P_{1}, \ldots, P_{k} such that

$$
P \cap \mathbb{Z}^{n} \subseteq \cup_{i} P_{i}
$$

Modern IP Algorithms

Combine cutting planes with branch-and-bound

Branch and Cut

Alternate

- Branch: Choose P_{1}, \ldots, P_{k} such that

$$
P \cap \mathbb{Z}^{n} \subseteq \cup_{i} P_{i} .
$$

- Cut: Refine P_{1}, \ldots, P_{k} by adding additional cutting planes.

Modern IP Algorithms

Combine cutting planes with branch-and-bound

Branch and Cut

Alternate

- Branch: Choose P_{1}, \ldots, P_{k} such that

$$
P \cap \mathbb{Z}^{n} \subseteq \cup_{i} P_{i} .
$$

- Cut: Refine P_{1}, \ldots, P_{k} by adding additional cutting planes.

Modern IP Algorithms

Combine cutting planes with branch-and-bound

Branch and Cut

Alternate

- Branch: Choose P_{1}, \ldots, P_{k} such that

$$
P \cap \mathbb{Z}^{n} \subseteq \cup_{i} P_{i}
$$

- Cut: Refine P_{1}, \ldots, P_{k} by adding additional cutting planes.

In practice branching is done by splitting on $a x \leq b$ and $a x \geq b+1$ for $a \in \mathbb{Z}^{n}, b \in \mathbb{Z}$

Analyzing Modern IP Algorithms

Modern IP algorithms are a complicated mess of heuristics:

- Choosing how to branch,
- Choosing which cuts to add.

Makes analyzing these algorithms directly challenging!

Analyzing Modern IP Algorithms

Modern IP algorithms are a complicated mess of heuristics:

- Choosing how to branch,
- Choosing which cuts to add.

Makes analyzing these algorithms directly challenging!
Observation: If P contains no integer points then any correct IP algorithm running on P must identify this fact.

Analyzing Modern IP Algorithms

Modern IP algorithms are a complicated mess of heuristics:

- Choosing how to branch,
- Choosing which cuts to add.

Makes analyzing these algorithms directly challenging!
Observation: If P contains no integer points then any correct IP algorithm running on P must identify this fact.
\Longrightarrow the transcript of the algorithm's execution is a proof that $P \cap \mathbb{Z}^{n}=\varnothing$.

Analyzing Modern IP Algorithms

Modern IP algorithms are a complicated mess of heuristics:

- Choosing how to branch,
- Choosing which cuts to add.

Makes analyzing these algorithms directly challenging!
Observation: If P contains no integer points then any correct IP algorithm running on P must identify this fact.
\Longrightarrow the transcript of the algorithm's execution is a proof that $P \cap \mathbb{Z}^{n}=\varnothing$.
Even works in optimization! Algorithm has to "prove" that no better solution exists

Analyzing Modern IP Algorithms

Modern IP algorithms are a complicated mess of heuristics:

- Choosing how to branch,
- Choosing which cuts to add.

Makes analyzing these algorithms directly challenging!
Observation: If P contains no integer points then any correct IP algorithm running on P must identify this fact.
\Longrightarrow the transcript of the algorithm's execution is a proof that $P \cap \mathbb{Z}^{n}=\varnothing$.
Even works in optimization! Algorithm has to "prove" that no better solution exists
Instead of trying to understand an algorithm A directly, formalize the techniques used by the algorithms into a proof system S.

Analyzing Modern IP Algorithms

Modern IP algorithms are a complicated mess of heuristics:

- Choosing how to branch,
- Choosing which cuts to add.

Makes analyzing these algorithms directly challenging!
Observation: If P contains no integer points then any correct IP algorithm running on P must identify this fact.
\Longrightarrow the transcript of the algorithm's execution is a proof that $P \cap \mathbb{Z}^{n}=\varnothing$.

Even works in optimization! Algorithm has to "prove" that no better solution exists
Instead of trying to understand an algorithm A directly, formalize the techniques used by the algorithms into a proof system S.
\rightarrow Lower bounds on the size of S-proofs imply runtime lower bounds for A

Cutting Planes

A Cutting Planes refutation of P with $P \cap \mathbb{Z}^{n}=\varnothing$ is a sequence of polytopes

$$
(P=) P_{0}, \ldots, P_{s}(=\varnothing)
$$

where P_{i} is obtained by a CG-cut from P_{i-1}.
The size of the proof is s.

Cutting Planes

A Cutting Planes refutation of P with $P \cap \mathbb{Z}^{n}=\varnothing$ is a sequence of polytopes

$$
(P=) P_{0}, \ldots, P_{s}(=\varnothing)
$$

where P_{i} is obtained by a CG-cut from P_{i-1}.
The size of the proof is s.

Cutting Planes

A Cutting Planes refutation of P with $P \cap \mathbb{Z}^{n}=\varnothing$ is a sequence of polytopes

$$
(P=) P_{0}, \ldots, P_{s}(=\varnothing)
$$

where P_{i} is obtained by a CG-cut from P_{i-1}.
The size of the proof is s.

Cutting Planes

A Cutting Planes refutation of P with $P \cap \mathbb{Z}^{n}=\varnothing$ is a sequence of polytopes

$$
(P=) P_{0}, \ldots, P_{s}(=\varnothing)
$$

where P_{i} is obtained by a CG-cut from P_{i-1}.
The size of the proof is s.

Cutting Planes

A Cutting Planes refutation of P with $P \cap \mathbb{Z}^{n}=\varnothing$ is a sequence of polytopes

$$
(P=) P_{0}, \ldots, P_{s}(=\varnothing)
$$

where P_{i} is obtained by a CG-cut from P_{i-1}.
The size of the proof is s.

Cutting Planes

A Cutting Planes refutation of P with $P \cap \mathbb{Z}^{n}=\varnothing$ is a sequence of polytopes

$$
(P=) P_{0}, \ldots, P_{s}(=\varnothing)
$$

where P_{i} is obtained by a CG-cut from P_{i-1}.
The size of the proof is s.

Cutting Planes

A Cutting Planes refutation of P with $P \cap \mathbb{Z}^{n}=\varnothing$ is a sequence of polytopes

$$
(P=) P_{0}, \ldots, P_{s}(=\varnothing)
$$

where P_{i} is obtained by a CG-cut from P_{i-1}.
The size of the proof is s.

Cutting Planes

A Cutting Planes refutation of P with $P \cap \mathbb{Z}^{n}=\varnothing$ is a sequence of polytopes

$$
(P=) P_{0}, \ldots, P_{s}(=\varnothing)
$$

where P_{i} is obtained by a CG-cut from P_{i-1}.
The size of the proof is s.

Cutting Planes

A Cutting Planes refutation of P with $P \cap \mathbb{Z}^{n}=\varnothing$ is a sequence of polytopes

$$
(P=) P_{0}, \ldots, P_{s}(=\varnothing)
$$

where P_{i} is obtained by a CG-cut from P_{i-1}.
The size of the proof is s.

Cutting Planes

A Cutting Planes refutation of P with $P \cap \mathbb{Z}^{n}=\varnothing$ is a sequence of polytopes

$$
(P=) P_{0}, \ldots, P_{s}(=\varnothing)
$$

where P_{i} is obtained by a CG-cut from P_{i-1}.
The size of the proof is s.

Cutting Planes

A Cutting Planes refutation of P with $P \cap \mathbb{Z}^{n}=\varnothing$ is a sequence of polytopes

$$
(P=) P_{0}, \ldots, P_{s}(=\varnothing)
$$

where P_{i} is obtained by a CG-cut from P_{i-1}.
The size of the proof is s.

Cutting Planes

A Cutting Planes refutation of P with $P \cap \mathbb{Z}^{n}=\varnothing$ is a sequence of polytopes

$$
(P=) P_{0}, \ldots, P_{s}(=\varnothing)
$$

where P_{i} is obtained by a CG-cut from P_{i-1}.
The size of the proof is s.

- Introduced in [Chvátal73].

Cutting Planes

A Cutting Planes refutation of P with $P \cap \mathbb{Z}^{n}=\varnothing$ is a sequence of polytopes

$$
(P=) P_{0}, \ldots, P_{s}(=\varnothing)
$$

where P_{i} is obtained by a CG-cut from P_{i-1}.

- Introduced in [Chvátal73].
- First exponential lower bounds in [Pudlák93] and [BPR93] for a restricted variant.

Cutting Planes

A Cutting Planes refutation of P with $P \cap \mathbb{Z}^{n}=\varnothing$ is a sequence of polytopes

$$
(P=) P_{0}, \ldots, P_{s}(=\varnothing)
$$

where P_{i} is obtained by a CG-cut from P_{i-1}.

- Introduced in [Chvátal73].
- First exponential lower bounds in [Pudlák93] and [BPR93] for a restricted variant.
- Captures IP algorithms which use only CG-cuts (no branching).

Stabbing Planes

- Introduced to model branch-and-cut algorithms [BFI+18].

Stabbing Planes

- Introduced to model branch-and-cut algorithms [BFI+18].
- At each step one chooses an integer-linear inequality $a x \leq b$ recurses on $P \cap\{a x \leq b\}$ and $P \cap\{a x \geq b+1\}$.

Stabbing Planes

- Introduced to model branch-and-cut algorithms [BFI+18].
- At each step one chooses an integer-linear inequality $a x \leq b$ recurses on $P \cap\{a x \leq b\}$ and $P \cap\{a x \geq b+1\}$.

Stabbing Planes

- Introduced to model branch-and-cut algorithms [BFI+18].
- At each step one chooses an integer-linear inequality $a x \leq b$ recurses on $P \cap\{a x \leq b\}$ and $P \cap\{a x \geq b+1\}$.

Stabbing Planes

- Introduced to model branch-and-cut algorithms [BFI+18].
- At each step one chooses an integer-linear inequality $a x \leq b$ recurses on $P \cap\{a x \leq b\}$ and $P \cap\{a x \geq b+1\}$.

Stabbing Planes

- Introduced to model branch-and-cut algorithms [BFI+18].
- At each step one chooses an integer-linear inequality $a x \leq b$ recurses on $P \cap\{a x \leq b\}$ and $P \cap\{a x \geq b+1\}$.

Stabbing Planes

- Introduced to model branch-and-cut algorithms [BFI+18].
- At each step one chooses an integer-linear inequality $a x \leq b$ recurses on $P \cap\{a x \leq b\}$ and $P \cap\{a x \geq b+1\}$.
- Terminate a recursive branch when the polytope is empty.

Stabbing Planes

- Introduced to model branch-and-cut algorithms [BFI+18].
- At each step one chooses an integer-linear inequality $a x \leq b$ recurses on $P \cap\{a x \leq b\}$ and $P \cap\{a x \geq b+1\}$.
- Terminate a recursive branch when the polytope is empty.

A Stabbing Planes refutation of P with $P \cap \mathbb{Z}^{n}$ is a binary tree:

Stabbing Planes

- Introduced to model branch-and-cut algorithms [BFI+18].
- At each step one chooses an integer-linear inequality $a x \leq b$ recurses on $P \cap\{a x \leq b\}$ and $P \cap\{a x \geq b+1\}$.
- Terminate a recursive branch when the polytope is empty.

A Stabbing Planes refutation of P with $P \cap \mathbb{Z}^{n}$ is a binary tree:

- Each internal node has two outgoing edges labelled $a x \leq b$ and $a x \geq b+1$ for some $a \in \mathbb{Z}^{n}, b \in \mathbb{Z}$

Stabbing Planes

- Introduced to model branch-and-cut algorithms [BFI+18].
- At each step one chooses an integer-linear inequality $a x \leq b$ recurses on $P \cap\{a x \leq b\}$ and $P \cap\{a x \geq b+1\}$.
- Terminate a recursive branch when the polytope is empty.

A Stabbing Planes refutation of P with $P \cap \mathbb{Z}^{n}$ is a binary tree:

- Each internal node has two outgoing edges labelled $a x \leq b$ and $a x \geq b+1$ for some $a \in \mathbb{Z}^{n}, b \in \mathbb{Z}$
- For each node v let P_{v} be the polytope obtained by intersecting P with the inequalities labelling the root-to- v path.

Stabbing Planes

- Introduced to model branch-and-cut algorithms [BFI+18].
- At each step one chooses an integer-linear inequality $a x \leq b$ recurses on $P \cap\{a x \leq b\}$ and $P \cap\{a x \geq b+1\}$.
- Terminate a recursive branch when the polytope is empty.

A Stabbing Planes refutation of P with $P \cap \mathbb{Z}^{n}$ is a binary tree:

- Each internal node has two outgoing edges labelled $a x \leq b$ and $a x \geq b+1$ for some $a \in \mathbb{Z}^{n}, b \in \mathbb{Z}$
- For each node v let P_{v} be the polytope obtained by intersecting P with the inequalities labelling the root-to- v path. Each leaf ℓ satisfies $P_{\ell}=\varnothing$.

Stabbing Planes

- Introduced to model branch-and-cut algorithms [BFI+18].
- At each step one chooses an integer-linear inequality $a x \leq b$ recurses on $P \cap\{a x \leq b\}$ and $P \cap\{a x \geq b+1\}$.
- Terminate a recursive branch when the polytope is empty.

A Stabbing Planes refutation of P with $P \cap \mathbb{Z}^{n}$ is a binary tree:

- Each internal node has two outgoing edges labelled $a x \leq b$ and $a x \geq b+1$ for some $a \in \mathbb{Z}^{n}, b \in \mathbb{Z}$
- For each node v let P_{v} be the polytope obtained by intersecting P with the inequalities labelling the root-to- v path. Each leaf ℓ satisfies $P_{\ell}=\varnothing$.
- The size is the number of nodes in the tree

Cutting Planes vs. Stabbing Planes

CP and SP capture separate parts of branch-and-cut

Cutting Planes vs. Stabbing Planes

CP and SP capture separate parts of branch-and-cut

- CP captures CG-cuts,
- SP captures branching.

Cutting Planes vs. Stabbing Planes

CP and SP capture separate parts of branch-and-cut

- CP captures CG-cuts,
- SP captures branching.

Theorem: If P has a size s Cutting Planes proof then there is a size $O(s)$ Stabbing Planes refutation of P.

Cutting Planes vs. Stabbing Planes

CP and SP capture separate parts of branch-and-cut

- CP captures CG-cuts,
- SP captures branching.

Theorem: If P has a size s Cutting Planes proof then there is a size $O(s)$ Stabbing Planes refutation of P.

A Stabbing Planes query $a x \leq b, a x \geq b+1$ is pathlike if either $P_{u} \cap\{a x \leq b\}=\varnothing$ or $P_{u} \cap\{a x \geq b+1\}=\varnothing$.

Cutting Planes vs. Stabbing Planes

CP and SP capture separate parts of branch-and-cut

- CP captures CG-cuts,
- SP captures branching.

Theorem: If P has a size s Cutting Planes proof then there is a size $O(s)$ Stabbing Planes refutation of P.

A Stabbing Planes query $a x \leq b, a x \geq b+1$ is pathlike if either $P_{u} \cap\{a x \leq b\}=\varnothing$ or $P_{u} \cap\{a x \geq b+1\}=\varnothing$.

Cutting Planes vs. Stabbing Planes

CP and SP capture separate parts of branch-and-cut

- CP captures CG-cuts,
- SP captures branching.

Theorem: If P has a size s Cutting Planes proof then there is a size $O(s)$ Stabbing Planes refutation of P.

A Stabbing Planes query $a x \leq b, a x \geq b+1$ is pathlike if either $P_{u} \cap\{a x \leq b\}=\varnothing$ or $P_{u} \cap\{a x \geq b+1\}=\varnothing$.

Cutting Planes vs. Stabbing Planes

CP and SP capture separate parts of branch-and-cut

- CP captures CG-cuts,
- SP captures branching.

Theorem: If P has a size s Cutting Planes proof then there is a size $O(s)$ Stabbing Planes refutation of P.

A Stabbing Planes query $a x \leq b, a x \geq b+1$ is pathlike if either $P_{u} \cap\{a x \leq b\}=\varnothing$ or $P_{u} \cap\{a x \geq b+1\}=\varnothing$.

A Stabbing Planes proof is pathlike if every query is pathlike.

Cutting Planes vs. Stabbing Planes

CP and SP capture separate parts of branch-and-cut

- CP captures CG-cuts,
- SP captures branching.

Theorem: If P has a size s Cutting Planes proof then there is a size $O(s)$ Stabbing Planes refutation of P.

A Stabbing Planes query $a x \leq b, a x \geq b+1$ is pathlike if either $P_{u} \cap\{a x \leq b\}=\varnothing$ or $P_{u} \cap\{a x \geq b+1\}=\varnothing$. A Stabbing Planes proof is pathlike if every query is pathlike.

Theorem: Pathlike Stabbing Planes = Cutting Planes

Cutting Planes vs. Stabbing Planes

CP and SP capture separate parts of branch-and-cut

- CP captures CG-cuts,
- SP captures branching.

Theorem: If P has a size s Cutting Planes proof then there is a size $O(s)$ Stabbing Planes refutation of P.

A Stabbing Planes query $a x \leq b, a x \geq b+1$ is pathlike if either $P_{u} \cap\{a x \leq b\}=\varnothing$ or $P_{u} \cap\{a x \geq b+1\}=\varnothing$. A Stabbing Planes proof is pathlike if every query is pathlike.

Theorem: Pathlike Stabbing Planes = Cutting Planes

Cutting Planes vs. Stabbing Planes

CP and SP capture separate parts of branch-and-cut

- CP captures CG-cuts,
- SP captures branching.

Theorem: If P has a size s Cutting Planes proof then there is a size $O(s)$ Stabbing Planes refutation of P.

A Stabbing Planes query $a x \leq b, a x \geq b+1$ is pathlike if either $P_{u} \cap\{a x \leq b\}=\varnothing$ or $P_{u} \cap\{a x \geq b+1\}=\varnothing$.

A Stabbing Planes proof is pathlike if every query is pathlike.
Theorem: Pathlike Stabbing Planes = Cutting Planes

Cutting Planes vs. Stabbing Planes

CP and SP capture separate parts of branch-and-cut

- CP captures CG-cuts,
- SP captures branching.

Theorem: If P has a size s Cutting Planes proof then there is a size $O(s)$ Stabbing Planes refutation of P.

A Stabbing Planes query $a x \leq b, a x \geq b+1$ is pathlike if either $P_{u} \cap\{a x \leq b\}=\varnothing$ or $P_{u} \cap\{a x \geq b+1\}=\varnothing$.

A Stabbing Planes proof is pathlike if every query is pathlike.
Theorem: Pathlike Stabbing Planes = Cutting Planes

Cutting Planes vs. Stabbing Planes

Is Cutting Planes weaker than Stabbing Planes?

Cutting Planes vs. Stabbing Planes

Is Cutting Planes weaker than Stabbing Planes?

- $[\mathrm{BFI}+18]$ conjectured that the Tseitin formulas are a separating example.

Cutting Planes vs. Stabbing Planes

Is Cutting Planes weaker than Stabbing Planes?

- $[\mathrm{BFI}+18]$ conjectured that the Tseitin formulas are a separating example.

Let $G=(V, E)$ be a connected graph with an odd number of vertices. The Tseitin formula for G is the system of \mathbb{F}_{2}-linear equations

$$
\forall v \in V: \bigoplus_{u v \in F} x_{u v}=1
$$

asserting that there is a way to assign edges so that each vertex has an odd number of neighbours.

Cutting Planes vs. Stabbing Planes

Is Cutting Planes weaker than Stabbing Planes?

- $[\mathrm{BFI}+18]$ conjectured that the Tseitin formulas are a separating example.

Let $G=(V, E)$ be a connected graph with an odd number of vertices. The Tseitin formula for G is the system of \mathbb{F}_{2}-linear equations

$$
\forall v \in V: \bigoplus_{u v \in E} x_{u v}=1
$$

asserting that there is a way to assign edges so that each vertex has an odd number of neighbours.

- Conjectured in the 80s to require exponential Cutting Planes proofs.

Cutting Planes vs. Stabbing Planes

Is Cutting Planes weaker than Stabbing Planes?

- $[\mathrm{BFI}+18]$ conjectured that the Tseitin formulas are a separating example.

Let $G=(V, E)$ be a connected graph with an odd number of vertices. The Tseitin formula for G is the system of \mathbb{F}_{2}-linear equations

$$
\forall v \in V: \bigoplus_{u v \in E} x_{u v}=1
$$

asserting that there is a way to assign edges so that each vertex has an odd number of neighbours.

- Conjectured in the 80s to require exponential Cutting Planes proofs.
- $[\mathrm{BFI}+18]$ There are $n^{O(\log n)}$-size Cutting Planes proofs of Tseitin.

Cutting Planes vs. Stabbing Planes

Is Cutting Planes weaker than Stabbing Planes?

- $[\mathrm{BFI}+18]$ conjectured that the Tseitin formulas are a separating example.

Let $G=(V, E)$ be a connected graph with an odd number of vertices. The Tseitin formula for G is the system of \mathbb{F}_{2}-linear equations

$$
\forall v \in V: \bigoplus_{u v \in E} x_{u v}=1
$$

asserting that there is a way to assign edges so that each vertex has an odd number of neighbours.

- Conjectured in the 80s to require exponential Cutting Planes proofs.
- $[\mathrm{BFI}+18]$ There are $n^{O(\log n)}$-size Cutting Planes proofs of Tseitin.
[DT20] The quasi-polynomial size Stabbing Planes proofs of Tseitin can be translated into quasipolynomial size Cutting Planes proofs!

Cutting Planes vs. Stabbing Planes

Can every Stabbing Planes proof be efficiently translated into Cutting Planes?

Cutting Planes vs. Stabbing Planes

Can every Stabbing Planes proof be efficiently translated into Cutting Planes?

- Yes! Provided the coefficients of the inequalities are not too large.

Cutting Planes vs. Stabbing Planes

Can every Stabbing Planes proof be efficiently translated into Cutting Planes?

- Yes! Provided the coefficients of the inequalities are not too large.

Theorem [FGl+ 22]. Let $P \subseteq \mathbf{R}^{n}$ be a polytope, and suppose that there is a Stabbing Planes refutation of P with size s and where every coefficient has magnitude at most c. Then there is a Cutting Planes refutation of P of size

$$
s(c d(P) \sqrt{n})^{\log s}
$$

where $d(P)$ is the diameter of P.

Cutting Planes vs. Stabbing Planes

Can every Stabbing Planes proof be efficiently translated into Cutting Planes?

- Yes! Provided the coefficients of the inequalities are not too large.

Theorem [FGl+ 22]. Let $P \subseteq \mathbf{R}^{n}$ be a polytope, and suppose that there is a Stabbing Planes refutation of P with size s and where every coefficient has magnitude at most c. Then there is a Cutting Planes refutation of P of size

$$
s(c d(P) \sqrt{n})^{\log s}
$$

where $d(P)$ is the diameter of P.
Corollary: Applying existing lower bounds for Cutting Planes proofs [P93, HP17, FPPR17]:

- The clique-colour formulas requires exponential size bounded-coefficient SP proofs.
- Random $\Theta(\log n)-C N F$ formulas require exponential size bounded-coefficient SP proofs.

Proof Idea: Stabbing Planes* \rightarrow Cutting Planes

Two steps

1. $\mathrm{CP}=$ Pathlike SP

Proof Idea: Stabbing Planes* \rightarrow Cutting Planes

Two steps

1. $\mathrm{CP}=$ Pathlike $\mathrm{SP}=$ Facelike SP.

Proof Idea: Stabbing Planes* \rightarrow Cutting Planes

Two steps

1. $\mathrm{CP}=$ Pathlike $\mathrm{SP}=$ Facelike SP.
2. Bounded-coefficient SP proofs can be made Facelike.

Proof Idea: Stabbing Planes* \rightarrow Cutting Planes

Two steps

1. $\mathrm{CP}=$ Pathlike $\mathrm{SP}=$ Facelike SP.
2. Bounded-coefficient SP proofs can be made Facelike.

A Stabbing Planes query $a x \leq b, a x \geq b+1$ is facelike if at least one of $P_{u} \cap\{a x \leq b\}$ or $P_{u} \cap\{a x \geq b+1\}$ is a face of P_{u}.

Proof Idea: Stabbing Planes* \rightarrow Cutting Planes

Two steps

1. $\mathrm{CP}=$ Pathlike $\mathrm{SP}=$ Facelike SP.
2. Bounded-coefficient SP proofs can be made Facelike.

A Stabbing Planes query $a x \leq b, a x \geq b+1$ is facelike if at least one of $P_{u} \cap\{a x \leq b\}$ or $P_{u} \cap\{a x \geq b+1\}$ is a face of P_{u}.

Pathlike

Proof Idea: Stabbing Planes* \rightarrow Cutting Planes

Two steps

1. $\mathrm{CP}=$ Pathlike $\mathrm{SP}=$ Facelike SP.
2. Bounded-coefficient SP proofs can be made Facelike.

A Stabbing Planes query $a x \leq b, a x \geq b+1$ is facelike if at least one of $P_{u} \cap\{a x \leq b\}$ or $P_{u} \cap\{a x \geq b+1\}$ is a face of P_{u}.

Pathlike

Proof Idea: Stabbing Planes* \rightarrow Cutting Planes

Two steps

1. $\mathrm{CP}=$ Pathlike $\mathrm{SP}=$ Facelike SP.
2. Bounded-coefficient SP proofs can be made Facelike.

A Stabbing Planes query $a x \leq b, a x \geq b+1$ is facelike if at least one of $P_{u} \cap\{a x \leq b\}$ or $P_{u} \cap\{a x \geq b+1\}$ is a face of P_{u}.

A Stabbing Planes proof is facelike if every query is facelike.

- In a facelike query, one child has lower dimension!

Facelike

Proof Idea: Stabbing Planes* \rightarrow Cutting Planes

Two steps

1. $\mathrm{CP}=$ Pathlike $\mathrm{SP}=$ Facelike SP .
2. Bounded-coefficient SP proofs can be made Facelike.

A Stabbing Planes query $a x \leq b, a x \geq b+1$ is facelike if at least one of $P_{u} \cap\{a x \leq b\}$ or $P_{u} \cap\{a x \geq b+1\}$ is a face of P_{u}.

A Stabbing Planes proof is facelike if every query is facelike.

Facelike

- In a facelike query, one child has lower dimension!

Step 1. Facelike Stabbing Planes = Cutting Planes

Idea:

Lemma [Schrijver80]: If there is a refutation of a face $P \cap\{a x \leq b\}$ in Cutting Planes then there is a Cutting Planes derivation of $P \cap\{a x \geq b+1\}$ from P of the same size!

Step 1. Facelike Stabbing Planes = Cutting Planes

Idea:

Lemma [Schrijver80]: If there is a refutation of a face $P \cap\{a x \leq b\}$ in Cutting Planes then there is a Cutting Planes derivation of $P \cap\{a x \geq b+1\}$ from P of the same size!

Step 1. Facelike Stabbing Planes = Cutting Planes

Idea:

Lemma [Schrijver80]: If there is a refutation of a face $P \cap\{a x \leq b\}$ in Cutting Planes then there is a Cutting Planes derivation of $P \cap\{a x \geq b+1\}$ from P of the same size!

Step 1. Facelike Stabbing Planes = Cutting Planes

Idea:

Lemma [Schrijver80]: If there is a refutation of a face $P \cap\{a x \leq b\}$ in Cutting Planes then there is a Cutting Planes derivation of $P \cap\{a x \geq b+1\}$ from P of the same size!

Step 1. Facelike Stabbing Planes = Cutting Planes

Idea:

Lemma [Schrijver80]: If there is a refutation of a face $P \cap\{a x \leq b\}$ in Cutting Planes then there is a Cutting Planes derivation of $P \cap\{a x \geq b+1\}$ from P of the same size!

Step 1. Facelike Stabbing Planes = Cutting Planes

Idea:

Lemma [Schrijver80]: If there is a refutation of a face $P \cap\{a x \leq b\}$ in Cutting Planes then there is a Cutting Planes derivation of $P \cap\{a x \geq b+1\}$ from P of the same size!

Step 1. Facelike Stabbing Planes = Cutting Planes

Idea:

Lemma [Schrijver80]: If there is a refutation of a face $P \cap\{a x \leq b\}$ in Cutting Planes then there is a Cutting Planes derivation of $P \cap\{a x \geq b+1\}$ from P of the same size!

Step 1. Facelike Stabbing Planes = Cutting Planes

Idea:

Lemma [Schrijver80]: If there is a refutation of a face $P \cap\{a x \leq b\}$ in Cutting Planes then there is a Cutting Planes derivation of $P \cap\{a x \geq b+1\}$ from P of the same size!

Step 1. Facelike Stabbing Planes = Cutting Planes

Idea:

Lemma [Schrijver80]: If there is a refutation of a face $P \cap\{a x \leq b\}$ in Cutting Planes then there is a Cutting Planes derivation of $P \cap\{a x \geq b+1\}$ from P of the same size!

Step 1. Facelike Stabbing Planes = Cutting Planes

Idea:

Lemma [Schrijver80]: If there is a refutation of a face $P \cap\{a x \leq b\}$ in Cutting Planes then there is a Cutting Planes derivation of $P \cap\{a x \geq b+1\}$ from P of the same size!

Step 1. Facelike Stabbing Planes = Cutting Planes

Idea:

Lemma [Schrijver80]: If there is a refutation of a face $P \cap\{a x \leq b\}$ in Cutting Planes then there is a Cutting Planes derivation of $P \cap\{a x \geq b+1\}$ from P of the same size!

Theorem: Facelike Stabbing Planes = Cutting Planes.

Step 1. Facelike Stabbing Planes = Cutting Planes

Idea:

Lemma [Schrijver80]: If there is a refutation of a face $P \cap\{a x \leq b\}$ in Cutting Planes then there is a Cutting Planes derivation of $P \cap\{a x \geq b+1\}$ from P of the same size!

Theorem: Facelike Stabbing Planes = Cutting Planes.
Proof sketch.

- Fix a Facelike Stabbing Planes proof.

Step 1. Facelike Stabbing Planes = Cutting Planes

Idea:

Lemma [Schrijver80]: If there is a refutation of a face $P \cap\{a x \leq b\}$ in Cutting Planes then there is a Cutting Planes derivation of $P \cap\{a x \geq b+1\}$ from P of the same size!

Theorem: Facelike Stabbing Planes = Cutting Planes.

Proof sketch.

- Fix a Facelike Stabbing Planes proof.
- Take an in-order traversal, repeatedly applying the lemma.

Step 1. Facelike Stabbing Planes = Cutting Planes

Idea:

Lemma [Schrijver80]: If there is a refutation of a face $P \cap\{a x \leq b\}$ in Cutting Planes then there is a Cutting Planes derivation of $P \cap\{a x \geq b+1\}$ from P of the same size!

Theorem: Facelike Stabbing Planes = Cutting Planes

Proof sketch.

- Fix a Facelike Stabbing Planes proof.
- Take an in-order traversal, repeatedly applying the lemma.
- Repeatedly lift refutations of faces to derivations using the lemma.

Step 1. Facelike Stabbing Planes = Cutting Planes

Idea:

Lemma [Schrijver80]: If there is a refutation of a face $P \cap\{a x \leq b\}$ in Cutting Planes then there is a Cutting Planes derivation of $P \cap\{a x \geq b+1\}$ from P of the same size!

Theorem: Facelike Stabbing Planes = Cutting Planes.
Proof sketch.

- Fix a Facelike Stabbing Planes proof.
- Take an in-order traversal, repeatedly applying the lemma.
- Repeatedly lift refutations of faces to derivations using the lemma.

Step 1. Facelike Stabbing Planes = Cutting Planes

Idea:

Lemma [Schrijver80]: If there is a refutation of a face $P \cap\{a x \leq b\}$ in Cutting Planes then there is a Cutting Planes derivation of $P \cap\{a x \geq b+1\}$ from P of the same size!

Theorem: Facelike Stabbing Planes = Cutting Planes.

Proof sketch.

- Fix a Facelike Stabbing Planes proof.
- Take an in-order traversal, repeatedly applying the lemma.
- Repeatedly lift refutations of faces to derivations using the lemma.

Step 2. Stabbing Planes* = Facelike Stabbing Planes

Proof sketch.

- Consider a bounded-coefficient Stabbing Planes proof.

Step 2. Stabbing Planes* = Facelike Stabbing Planes

Proof sketch.

- Consider a bounded-coefficient Stabbing Planes proof.
- Look at the first query: $a x \leq b, a x \geq b+1$.

Step 2. Stabbing Planes* = Facelike Stabbing Planes

Proof sketch.

- Consider a bounded-coefficient Stabbing Planes proof.
- Look at the first query: $a x \leq b, a x \geq b+1$.

Goal: convert to a facelike query.

Step 2. Stabbing Planes* = Facelike Stabbing Planes

Proof sketch.

- Consider a bounded-coefficient Stabbing Planes proof.
- Look at the first query: $a x \leq b, a x \geq b+1$.

Goal: convert to a facelike query.

- Add translates of the slab until we lie on the face!

Step 2. Stabbing Planes* = Facelike Stabbing Planes

Proof sketch.

- Consider a bounded-coefficient Stabbing Planes proof.
- Look at the first query: $a x \leq b, a x \geq b+1$.

Goal: convert to a facelike query.

- Add translates of the slab until we lie on the face!

Step 2. Stabbing Planes* = Facelike Stabbing Planes

Proof sketch.

- Consider a bounded-coefficient Stabbing Planes proof.
- Look at the first query: $a x \leq b, a x \geq b+1$.

Goal: convert to a facelike query.

- Add translates of the slab until we lie on the face!

Step 2. Stabbing Planes* = Facelike Stabbing Planes

Proof sketch.

- Consider a bounded-coefficient Stabbing Planes proof.
- Look at the first query: $a x \leq b, a x \geq b+1$.

Goal: convert to a facelike query.

- Add translates of the slab until we lie on the face!
- Recursively refute translates using the old subtree,

Step 2. Stabbing Planes* = Facelike Stabbing Planes

Proof sketch.

- Consider a bounded-coefficient Stabbing Planes proof.
- Look at the first query: $a x \leq b, a x \geq b+1$.

Goal: convert to a facelike query.

- Add translates of the slab until we lie on the face!
- Recursively refute translates using the old subtree, recurse on the other side similarly.

Step 2. Stabbing Planes* = Facelike Stabbing Planes

Proof sketch.

- Consider a bounded-coefficient Stabbing Planes proof.
- Look at the first query: $a x \leq b, a x \geq b+1$.

Goal: convert to a facelike query.

- Add translates of the slab until we lie on the face!
- Recursively refute translates using the old subtree, recurse on the other side similarly.

Step 2. Stabbing Planes* = Facelike Stabbing Planes

Proof sketch.

- Consider a bounded-coefficient Stabbing Planes proof.
- Look at the first query: $a x \leq b, a x \geq b+1$.

Goal: convert to a facelike query.

- Add translates of the slab until we lie on the face!
- Recursively refute translates using the old subtree, recurse on the other side similarly.

Depth Blow-Up

Theorem: Facelike Stabbing Planes = Cutting Planes.

- Converts shallow Stabbing Planes proofs into very deep Cutting Planes proofs.

Depth Blow-Up

Theorem: Facelike Stabbing Planes = Cutting Planes.

- Converts shallow Stabbing Planes proofs into very deep Cutting Planes proofs.

- Involves an in-order traversal of the SP proof.

Depth Blow-Up

Theorem: Facelike Stabbing Planes = Cutting Planes.

- Converts shallow Stabbing Planes proofs into very deep Cutting Planes proofs.

- Involves an in-order traversal of the SP proof.
- The Stabbing Planes proofs of Tseitin have size $n^{O(\log n)}$ and depth $O\left(\log ^{2} n\right)$.

Depth Blow-Up

Theorem: Facelike Stabbing Planes = Cutting Planes.

- Converts shallow Stabbing Planes proofs into very deep Cutting Planes proofs.
- Involves an in-order traversal of the SP proof.
- The Stabbing Planes proofs of Tseitin have size $n^{O(\log n)}$ and depth $O\left(\log ^{2} n\right)$.
- Implies a Cutting Planes proof of depth and size $n^{O(\log n)}$.

Depth Blow-Up

Theorem: Facelike Stabbing Planes = Cutting Planes.

- Converts shallow Stabbing Planes proofs into very deep Cutting Planes proofs.
- Involves an in-order traversal of the SP proof.
- The Stabbing Planes proofs of Tseitin have size $n^{O(\log n)}$ and depth $O\left(\log ^{2} n\right)$.
- Implies a Cutting Planes proof of depth and size $n^{O(\log n)}$.
- Tseitin has a Cutting Planes proof of depth $O(n)$ and size 2^{n}.

Depth Blow-Up

Theorem: Facelike Stabbing Planes = Cutting Planes.

- Converts shallow Stabbing Planes proofs into very deep Cutting Planes proofs.

- Involves an in-order traversal of the SP proof.
- The Stabbing Planes proofs of Tseitin have size $n^{O(\log n)}$ and depth $O\left(\log ^{2} n\right)$.
- Implies a Cutting Planes proof of depth and size $n^{O(\log n)}$.
- Tseitin has a Cutting Planes proof of depth $O(n)$ and size 2^{n}.

Conjecture: Any subexponential-size Cutting Planes refutation of a Tseitin formula requires superpolynomial depth

Supercritical Size-Depth Tradeoffs

Conjecture: Any subexponential-size Cutting Planes refutation of a Tseitin formula requires superpolynomial depth

Supercritical Size-Depth Tradeoffs

Conjecture: Any subexponential-size Cutting Planes refutation of a Tseitin formula requires superpolynomial depth

- Tseitin has a Cutting Planes proof of depth $O(n)$ and size 2^{n}.
- Holds for any polytope coming from an unsatisfiable CNF formula.

Supercritical Size-Depth Tradeoffs

Conjecture: Any subexponential-size Cutting Planes refutation of a Tseitin formula requires superpolynomial depth

- Tseitin has a Cutting Planes proof of depth $O(n)$ and size 2^{n}.
- Holds for any polytope coming from an unsatisfiable CNF formula.

Supercritical Size/Depth Tradeoff: bounding the size increases the depth beyond the worst-case O (n)

Supercritical Size-Depth Tradeoffs

Conjecture: Any subexponential-size Cutting Planes refutation of a Tseitin formula requires superpolynomial depth

- Tseitin has a Cutting Planes proof of depth $O(n)$ and size 2^{n}.
- Holds for any polytope coming from an unsatisfiable CNF formula.

Supercritical Size/Depth Tradeoff: bounding the size increases the depth beyond the worst-case $O(n)$

- Very few examples of supercritical tradeoffs.

Supercritical Size-Depth Tradeoffs

Conjecture: Any subexponential-size Cutting Planes refutation of a Tseitin formula requires superpolynomial depth

- Tseitin has a Cutting Planes proof of depth $O(n)$ and size 2^{n}.
- Holds for any polytope coming from an unsatisfiable CNF formula.

Supercritical Size/Depth Tradeoff: bounding the size increases the depth beyond the worst-case $O(n)$

- Very few examples of supercritical tradeoffs.
- [BBI12] Tradeoff between Resolution size and space.

Supercritical Size-Depth Tradeoffs

Conjecture: Any subexponential-size Cutting Planes refutation of a Tseitin formula requires superpolynomial depth

- Tseitin has a Cutting Planes proof of depth $O(n)$ and size 2^{n}.
- Holds for any polytope coming from an unsatisfiable CNF formula.

Supercritical Size/Depth Tradeoff: bounding the size increases the depth beyond the worst-case O (n)

- Very few examples of supercritical tradeoffs.
- [BBI12] Tradeoff between Resolution size and space.
- [Razborov16] Tradeoff between tree-like Resolution size and width.

Supercritical Size-Depth Tradeoffs

Conjecture: Any subexponential-size Cutting Planes refutation of a Tseitin formula requires superpolynomial depth

- Tseitin has a Cutting Planes proof of depth $O(n)$ and size 2^{n}.
- Holds for any polytope coming from an unsatisfiable CNF formula.

Supercritical Size/Depth Tradeoff: bounding the size increases the depth beyond the worst-case O (n)

- Very few examples of supercritical tradeoffs.
- [BBI12] Tradeoff between Resolution size and space.
- [Razborov16] Tradeoff between tree-like Resolution size and width.
- [BNT13, BN20, Razborov18] Tradeoffs between notions of space and size for Resolution and Polynomial Calculus.

Supercritical Size-Depth Tradeoffs

Conjecture: Any subexponential-size Cutting Planes refutation of a Tseitin formula requires superpolynomial depth

- Tseitin has a Cutting Planes proof of depth $O(n)$ and size 2^{n}.
- Holds for any polytope coming from an unsatisfiable CNF formula.

Supercritical Size/Depth Tradeoff: bounding the size increases the depth beyond the worst-case $O(n)$

- Very few examples of supercritical tradeoffs.
- [BBI12] Tradeoff between Resolution size and space.
- [Razborov16] Tradeoff between tree-like Resolution size and width.
- [BNT13, BN20, Razborov18] Tradeoffs between notions of space and size for Resolution and Polynomial Calculus.

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.

Supercritical Size-Depth Tradeoffs

Conjecture: Any subexponential-size Cutting Planes refutation of a Tseitin formula requires superpolynomial depth

- Tseitin has a Cutting Planes proof of depth $O(n)$ and size 2^{n}.
- Holds for any polytope coming from an unsatisfiable CNF formula.

Supercritical Size/Depth Tradeoff: bounding the size increases the depth beyond the worst-case $O(n)$

- Very few examples of supercritical tradeoffs.
- [BBI12] Tradeoff between Resolution size and space.
- [Razborov16] Tradeoff between tree-like Resolution size and width. Builds on [Razborov16]
- [BNT13, BN20, Razborov18] Tradeoffs between notions of space a/d size for Resolution and Polynomial Calculus.

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.

Supercritical Size-Depth Tradeoffs

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.

Supercritical Size-Depth Tradeoffs

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.
For $c \geq 1, \varepsilon>0$ there is a CNF formula F on n variables such that

1. There is a Res-proof of size $n^{c} \cdot 2^{O(c)}$
2. Any Res proof Π with $\operatorname{size}(\Pi) \leq \exp \left(o\left(n^{1-\varepsilon} / c\right)\right)$ satisfies depth $(\Pi) \cdot \log \operatorname{size}(\Pi)=\Omega\left(\frac{n^{c}}{c \log n}\right)$

Supercritical Size-Depth Tradeoffs

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.
For $c \geq 1, \varepsilon>0$ there is a CNF formula F on n variables such that

1. There is a Res-proof of size $n^{c} \cdot 2^{O(c)}$
2. Any Res proof Π with $\operatorname{size}(\Pi) \leq \exp \left(o\left(n^{1-\varepsilon} / c\right)\right)$ satisfies $\operatorname{depth}(\Pi) \cdot \log \operatorname{size}(\Pi)=\Omega\left(\frac{n^{c}}{c \log n}\right)$

Proof Idea:

- Begin with a formula F that has small size but requires large depth in Resolution

Supercritical Size-Depth Tradeoffs

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.
For $c \geq 1, \varepsilon>0$ there is a CNF formula F on n variables such that

1. There is a Res-proof of size $n^{c} \cdot 2^{O(c)}$
2. Any Res proof Π with $\operatorname{siz} e(\Pi) \leq \exp \left(o\left(n^{1-\varepsilon} / c\right)\right)$ satisfies depth $(\Pi) \cdot \log \operatorname{size}(\Pi)=\Omega\left(\frac{n^{c}}{c \log n}\right)$

Proof Idea:

- Begin with a formula F that has small size but requires large depth in Resolution
- Pebbling: $O(n)$-size and $\Omega(n / \log n)$ depth.

Supercritical Size-Depth Tradeoffs

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.
For $c \geq 1, \varepsilon>0$ there is a CNF formula F on n variables such that

1. There is a Res-proof of size $n^{c} \cdot 2^{O(c)}$
2. Any Res proof Π with $\operatorname{siz} e(\Pi) \leq \exp \left(o\left(n^{1-\varepsilon} / c\right)\right)$ satisfies depth $(\Pi) \cdot \log \operatorname{size}(\Pi)=\Omega\left(\frac{n^{c}}{c \log n}\right)$

Proof Idea:

- Begin with a formula F that has small size but requires large depth in Resolution
- Pebbling: $O(n)$-size and $\Omega(n / \log n)$ depth.
- Compress the number of variables from $n \rightarrow N$ while maintaining the $O(n)$ upper bound and $\Omega(n / \log n)$ lower bound.

Supercritical Size-Depth Tradeoffs

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.
For $c \geq 1, \varepsilon>0$ there is a CNF formula F on n variables such that

1. There is a Res-proof of size $n^{c} \cdot 2^{O(c)}$
2. Any Res proof Π with $\operatorname{siz} e(\Pi) \leq \exp \left(o\left(n^{1-\varepsilon} / c\right)\right)$ satisfies depth $(\Pi) \cdot \log \operatorname{size}(\Pi)=\Omega\left(\frac{n^{c}}{c \log n}\right)$

Proof Idea:

- Begin with a formula F that has small size but requires large depth in Resolution
- Pebbling: $O(n)$-size and $\Omega(n / \log n)$ depth.
- Compress the number of variables from $n \rightarrow N$ while maintaining the $O(n)$ upper bound and $\Omega(n / \log n)$ lower bound.

n	
$x_{1} \mathrm{O}$	$N=n^{1 / c}$
$x_{2} \mathrm{O}$	O
$x_{3} \mathrm{O}$	O
$x_{1} \mathrm{O}$	$\mathrm{O} y_{2}$
$x_{5} \mathrm{O}$	$\mathrm{O} y_{3}$
$x_{6} \mathrm{O}$	

Supercritical Size-Depth Tradeoffs

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.
For $c \geq 1, \varepsilon>0$ there is a CNF formula F on n variables such that

1. There is a Res-proof of size $n^{c} \cdot 2^{O(c)}$
2. Any Res proof Π with $\operatorname{siz} e(\Pi) \leq \exp \left(o\left(n^{1-\varepsilon} / c\right)\right)$ satisfies depth $(\Pi) \cdot \log \operatorname{size}(\Pi)=\Omega\left(\frac{n^{c}}{c \log n}\right)$

Proof Idea:

- Begin with a formula F that has small size but requires large depth in Resolution
- Pebbling: $O(n)$-size and $\Omega(n / \log n)$ depth.
- Compress the number of variables from $n \rightarrow N$ while maintaining the $O(n)$ upper bound and $\Omega(n / \log n)$ lower bound.
- Should be difficult for Resolution to differentiate between the original and compressed instance.

n $x_{1} \mathrm{O}$ $x_{\mathrm{O}} \mathrm{O}$ $x_{3} \mathrm{O}$ $x_{4} \mathrm{O}$ $x_{5} \mathrm{O}$ $x_{6} \mathrm{O}$	$N=n^{1 / c}$
O_{1}	$\mathrm{O} y_{1}$
	$\mathrm{O} y_{3}$

Supercritical Size-Depth Tradeoffs

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.
For $c \geq 1, \varepsilon>0$ there is a CNF formula F on n variables such that

1. There is a Res-proof of size $n^{c} \cdot 2^{O(c)}$
2. Any Res proof Π with $\operatorname{siz} e(\Pi) \leq \exp \left(o\left(n^{1-\varepsilon} / c\right)\right)$ satisfies depth $(\Pi) \cdot \log \operatorname{size}(\Pi)=\Omega\left(\frac{n^{c}}{c \log n}\right)$

Proof Idea:

- Begin with a formula F that has small size but requires large depth in Resolution
- Pebbling: $O(n)$-size and $\Omega(n / \log n)$ depth.
- Compress the number of variables from $n \rightarrow N$ while maintaining the $O(n)$ upper bound and $\Omega(n / \log n)$ lower bound.
- Should be difficult for Resolution to differentiate between the original and compressed instance.

n $x_{1} \mathrm{O}$ $x_{2} \mathrm{O}$ $x_{3} \mathrm{O}$ $x_{4} \mathrm{O}$ $x_{5} \mathrm{O}$ $x_{6} \mathrm{O}$	$N=n^{1 / c}$
	$\mathrm{O} y_{1}$
	$\mathrm{O} y_{2}$
y_{3}	

- How?

Supercritical Size-Depth Tradeoffs

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.
For $c \geq 1, \varepsilon>0$ there is a CNF formula F on n variables such that

1. There is a Res-proof of size $n^{c} \cdot 2^{O(c)}$
2. Any Res proof Π with $\operatorname{size}(\Pi) \leq \exp \left(o\left(n^{1-\varepsilon} / c\right)\right)$ satisfies depth $(\Pi) \cdot \log \operatorname{size}(\Pi)=\Omega\left(\frac{n^{c}}{c \log n}\right)$

Proof Idea:

- Begin with a formula F that has small size but requires large depth in Resolution
- Pebbling: $O(n)$-size and $\Omega(n / \log n)$ depth.
- Compress the number of variables from $n \rightarrow N$ while maintaining the $O(n)$ upper bound and $\Omega(n / \log n)$ lower bound.
- Should be difficult for Resolution to differentiate between the original and compressed instance.

- How? - (roughly) compose F with Nisan-Wigderson generator

Supercritical Size-Depth Tradeoffs

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.
For $c \geq 1, \varepsilon>0$ there is a CNF formula F on n variables such that

1. There is a Res-proof of size $n^{c} \cdot 2^{O(c)}$
2. Any Res proof Π with $\operatorname{siz} e(\Pi) \leq \exp \left(o\left(n^{1-\varepsilon} / c\right)\right)$ satisfies depth $(\Pi) \cdot \log \operatorname{size}(\Pi)=\Omega\left(\frac{n^{c}}{c \log n}\right)$

Proof Idea:

- Begin with a formula F that has small size but requires large depth in Resolution
- Pebbling: $O(n)$-size and $\Omega(n / \log n)$ depth.
- Compress the number of variables from $n \rightarrow N$ while maintaining the $O(n)$ upper bound and $\Omega(n / \log n)$ lower bound.
- Should be difficult for Resolution to differentiate between the original and compressed instance.

- How? - (roughly) compose F with Nisan-Wigderson generator
- Replace each old variable x_{i} with an XOR of new variables y_{j}

Supercritical Size-Depth Tradeoffs

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.
For $c \geq 1, \varepsilon>0$ there is a CNF formula F on n variables such that

1. There is a Res-proof of size $n^{c} \cdot 2^{O(c)}$
2. Any Res proof Π with $\operatorname{siz} e(\Pi) \leq \exp \left(o\left(n^{1-\varepsilon} / c\right)\right)$ satisfies depth $(\Pi) \cdot \log \operatorname{size}(\Pi)=\Omega\left(\frac{n^{c}}{c \log n}\right)$

Proof Idea:

- Begin with a formula F that has small size but requires large depth in Resolution
- Pebbling: $O(n)$-size and $\Omega(n / \log n)$ depth.
- Compress the number of variables from $n \rightarrow N$ while maintaining the $O(n)$ upper bound and $\Omega(n / \log n)$ lower bound.
- Should be difficult for Resolution to differentiate between the original and compressed instance.
- How? - (roughly) compose F with Nisan-Wigderson generator

- Replace each old variable x_{i} with an XOR of new variables y_{j}

Supercritical Size-Depth Tradeoffs

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.
For $c \geq 1, \varepsilon>0$ there is a CNF formula F on n variables such that

1. There is a Res-proof of size $n^{c} \cdot 2^{O(c)}$
2. Any Res proof Π with $\operatorname{size}(\Pi) \leq \exp \left(o\left(n^{1-\varepsilon} / c\right)\right)$ satisfies depth $(\Pi) \cdot \log \operatorname{size}(\Pi)=\Omega\left(\frac{n^{c}}{c \log n}\right)$

Supercritical Size-Depth Tradeoffs

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.
For $c \geq 1, \varepsilon>0$ there is a CNF formula F on n variables such that

1. There is a Res-proof of size $n^{c} \cdot 2^{O(c)}$
2. Any Res proof Π with $\operatorname{size}(\Pi) \leq \exp \left(o\left(n^{1-\varepsilon} / c\right)\right)$ satisfies $\operatorname{depth}(\Pi) \cdot \log \operatorname{size}(\Pi)=\Omega\left(\frac{n^{c}}{c \log n}\right)$

Tradeoffs for Res(k), Cutting Planes follow by lifting the Resolution tradeoff.

Supercritical Size-Depth Tradeoffs

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.
For $c \geq 1, \varepsilon>0$ there is a CNF formula F on n variables such that

1. There is a Res-proof of size $n^{c} \cdot 2^{O(c)}$
2. Any Res proof Π with $\operatorname{size}(\Pi) \leq \exp \left(o\left(n^{1-\varepsilon} / c\right)\right)$ satisfies depth $(\Pi) \cdot \log \operatorname{size}(\Pi)=\Omega\left(\frac{n^{c}}{c \log n}\right)$

Tradeoffs for Res(k), Cutting Planes follow by lifting the Resolution tradeoff.
Can we use this to obtain the tradeoff for Tseitin?

Supercritical Size-Depth Tradeoffs

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.
For $c \geq 1, \varepsilon>0$ there is a CNF formula F on n variables such that

1. There is a Res-proof of size $n^{c} \cdot 2^{O(c)}$
2. Any Res proof Π with $\operatorname{siz} e(\Pi) \leq \exp \left(o\left(n^{1-\varepsilon} / c\right)\right)$ satisfies depth $(\Pi) \cdot \log \operatorname{size}(\Pi)=\Omega\left(\frac{n^{c}}{c \log n}\right)$

Tradeoffs for Res(k), Cutting Planes follow by lifting the Resolution tradeoff.
Can we use this to obtain the tradeoff for Tseitin?

- Not obviously - Tseitin is exponentially hard for Resolution!

Supercritical Size-Depth Tradeoffs

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.
For $c \geq 1, \varepsilon>0$ there is a CNF formula F on n variables such that

1. There is a Res-proof of size $n^{c} \cdot 2^{O(c)}$
2. Any Res proof Π with $\operatorname{siz} e(\Pi) \leq \exp \left(o\left(n^{1-\varepsilon} / c\right)\right)$ satisfies $\operatorname{depth}(\Pi) \cdot \log \operatorname{size}(\Pi)=\Omega\left(\frac{n^{c}}{c \log n}\right)$

Tradeoffs for Res(k), Cutting Planes follow by lifting the Resolution tradeoff.
Can we use this to obtain the tradeoff for Tseitin?

- Not obviously - Tseitin is exponentially hard for Resolution!
- No small tradeoff to begin with.

Supercritical Size-Depth Tradeoffs

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.
For $c \geq 1, \varepsilon>0$ there is a CNF formula F on n variables such that

1. There is a Res-proof of size $n^{c} \cdot 2^{O(c)}$
2. Any Res proof Π with $\operatorname{siz} e(\Pi) \leq \exp \left(o\left(n^{1-\varepsilon} / c\right)\right)$ satisfies depth $(\Pi) \cdot \log \operatorname{size}(\Pi)=\Omega\left(\frac{n^{c}}{c \log n}\right)$

Tradeoffs for Res(k), Cutting Planes follow by lifting the Resolution tradeoff.
Can we use this to obtain the tradeoff for Tseitin?

- Not obviously - Tseitin is exponentially hard for Resolution!
- No small tradeoff to begin with.
- Need a more direct approach.

Supercritical Size-Depth Tradeoffs

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.
For $c \geq 1, \varepsilon>0$ there is a CNF formula F on n variables such that

1. There is a Res-proof of size $n^{c} \cdot 2^{O(c)}$
2. Any Res proof Π with $\operatorname{siz} e(\Pi) \leq \exp \left(o\left(n^{1-\varepsilon} / c\right)\right)$ satisfies $\operatorname{depth}(\Pi) \cdot \log \operatorname{size}(\Pi)=\Omega\left(\frac{n^{c}}{c \log n}\right)$

Tradeoffs for Res(k), Cutting Planes follow by lifting the Resolution tradeoff.

Can we use this to obtain the tradeoff for Tseitin?

- Not obviously - Tseitin is exponentially hard for Resolution!
- No small tradeoff to begin with.
- Need a more direct approach.

Theorem [FGI+21]: Any (Semantic) Cutting Planes refutation of Tseitin requires depth $\Omega(n)$.

Supercritical Size-Depth Tradeoffs

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.
For $c \geq 1, \varepsilon>0$ there is a CNF formula F on n variables such that

1. There is a Res-proof of size $n^{c} \cdot 2^{O(c)}$
2. Any Res proof Π with $\operatorname{size}(\Pi) \leq \exp \left(o\left(n^{1-\varepsilon} / c\right)\right)$ satisfies depth $(\Pi) \cdot \log \operatorname{size}(\Pi)=\Omega\left(\frac{n^{c}}{c \log n}\right)$

Tradeoffs for Res(k), Cutting Planes follow by lifting the Resolution tradeoff.
Can we use this to obtain the tradeoff for Tseitin?

- Not obviously - Tseitin is exponentially hard for Resolution!
- No small tradeoff to begin with.
- Need a more direct approach.

Theorem [FGI+21]: Any (Semantic) Cutting Planes refutation of Tseitin requires depth $\Omega(n)$.

Supercritical Size-Depth Tradeoffs

Theorem [FPR22]: Supercritical size/depth tradeoff for Resolution, Res(k), Cutting Planes.
For $c \geq 1, \varepsilon>0$ there is a CNF formula F on n variables such that

1. There is a Res-proof of size $n^{c} \cdot 2^{O(c)}$
2. Any Res proof Π with $\operatorname{size}(\Pi) \leq \exp \left(o\left(n^{1-\varepsilon} / c\right)\right)$ satisfies depth $(\Pi) \cdot \log \operatorname{size}(\Pi)=\Omega\left(\frac{n^{c}}{c \log n}\right)$

Tradeoffs for Res(k), Cutting Planes follow by lifting the Resolution tradeoff.
Can we use this to obtain the tradeoff for Tseitin?

- Not obviously - Tseitin is exponentially hard for Resolution!
- No small tradeoff to begin with.
- Need a more direct approach.

Theorem [FGI+21]: Any (Semantic) Cutting Planes refutation of Tseitin requires depth $\Omega(n)$.

- Uses a geometric argument.

Open Problems

- Prove or disprove the conjecture!
- Can we improve the simulation to high coefficient Stabbing Planes?
- Or, alternatively, can we separate high coefficient Stabbing Planes from low coefficient Stabbing Planes?
- A generalization of Stabbing Planes to dag-like proofs is called Res(CP).
- Can Stabbing Planes simulate Res(CP)?
- [ABE02] Cutting Planes cannot simulate Res(CP)

Thanks!

Shrijver Lemma

Lemma [Schrijver80]: If there is a refutation of a face $P \cap\{a x \leq b\}$ in Cutting Planes then there is a Cutting Planes derivation of $P \cap\{a x \geq b+1\}$ from P of the same size!

Idea: Since all points in $P \cap\{a x=b\}$ lie on the line $a x \geq b$, we can rotate each CG-cut so that it only depends on P and $a x \geq b$ (no longer depends on $a x \leq b$).

