SAT Beyond Boolean Interpretations

A. Pavan¹ (r) Kuldeep S. Meel² (r) <u>N. V. Vinodchandran^{3*}</u> (r) Arnab Bhattacharyya²

¹ Iowa State University
² National University of Singapore
³ University of Nebraska-Lincoln

Simons 2023: Satisfiability: Theory, Practice, and Beyond

* Vinodchandran Variyam

Slide 1/ 13

・ロト・(型ト・(三ト・(三ト))・ つへ()

Boolean Interpretations

 $F := (x_1) \land (x_2) \land (\neg x_1 \lor \neg x_2)$

SAT: Given a Boolean formula F. Decide whether there is a truth assignment to the variables so that F is evaluated to True.

Boolean Interpretations

 $F := (x_1) \land (x_2) \land (\neg x_1 \lor \neg x_2)$

SAT: Given a Boolean formula F. Decide whether there is a truth assignment to the variables so that F is evaluated to True.

- Boolean Interpretation
 - $K = \{0, 1\}$
 - $\neg := \mathsf{NOT}$ function
 - $\wedge := \mathsf{AND}$ function
 - \lor := OR function
 - 0 < 1 (total order)

SAT: Given a Boolean formula *F*. Compute $\max_{\pi} \{\pi(F)\}$ over all interpretations $\pi : X \to K$.

X is the set of variables and $\pi(F)$ is the natural extension of π to F.

F is satisfiable if and only if $\max_{\pi} \{\pi(F)\} = 1$.

Beyond Boolean Interpretations

 $F := (x_1) \land (x_2) \land (\neg x_1 \lor \neg x_2)$

Viterbi semiring interpretation

- K = [0,1] (with natural total order)
- $\wedge := \mathsf{MULT}$ function
- \lor := MAX function
- $\neg x := 1 x$

Given F: Compute $\max_{\pi} \{ \pi(F) \}$ over all interpretations $\pi : X \to K$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

Beyond Boolean Interpretations

 $F := (x_1) \land (x_2) \land (\neg x_1 \lor \neg x_2)$

Viterbi semiring interpretation

- K = [0, 1] (with natural total order)
- $\wedge := \mathsf{MULT}$ function
- \lor := MAX function
- $\neg x := 1 x$

Given F: Compute $\max_{\pi} \{ \pi(F) \}$ over all interpretations $\pi : X \to K$.

For F above:

- max{
$$x_1x_2(1-x_1), x_1x_2(1-x_2)$$
}

-
$$\pi(x_1) = 0.5; \ \pi(x_2) = 1$$

-
$$\pi(F) = 0.5 \cdot 1 \cdot 0.5 = 0.25$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

<

Beyond Boolean Interpretations

 $F := (x_1) \land (x_2) \land (\neg x_1 \lor \neg x_2)$

Viterbi semiring interpretation

- K = [0,1] (with natural total order)
- $\land:=$ MULT function
- \lor := MAX function
- $\neg x := 1 x$

Given F: Compute $\max_{\pi} \{ \pi(F) \}$ over all interpretations $\pi : X \to K$.

For F above:

- max{
$$x_1x_2(1-x_1), x_1x_2(1-x_2)$$
}

-
$$\pi(x_1) = 0.5; \ \pi(x_2) = 1$$

-
$$\pi(F) = 0.5 \cdot 1 \cdot 0.5 = 0.25$$

F is satisfiable (Boolean) $\Leftrightarrow \max_{\pi} \{\pi(F)\} = 1$ (Viterbi)

Interpretation of Negation

How do we interpret $\neg : K \to K$?

 $\neg(x) = 1 - x$ is one of them.

For our upper bounds any "reasonable" interpretation of negation suffice.

$$\neg \neg (x) = x \neg (0) = 1$$

Useful Semirings

- Viterbi semiring $\mathbb{V} = ([0, 1], \max, \cdot, 0, 1).$
 - Database provenance, where $x \in [0, 1]$ is interpreted as a *confidence score*.
 - Probabilistic parsing, probabilistic CSPs, Hidden Markov Models.
- Fuzzy semiring $\mathbb{F} = ([0, 1], \max, \min, 0, 1)$.
- Access control semiring $\mathbb{A}_k = ([k], \max, \min, 0, k)$
 - Security Specification. Each i ∈ [k] is associated with a access control level with natural ordering. 0 corresponds to public access and k corresponds to no access at all.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

<

Computational Problem OptSemVal

Fix a semiring K of your choice.

OptSemVal: Given a formula F (in negation normal form), compute $\max_{\pi} \{\pi(F)\}$ over all interpretations $\pi : X \to K$.

Computational Problem OptSemVal

Fix a semiring K of your choice.

OptSemVal: Given a formula F (in negation normal form), compute $\max_{\pi} \{\pi(F)\}$ over all interpretations $\pi : X \to K$.

What is the complexity of OptSemVal?

▲口▶ ▲御▶ ▲臣▶ ▲臣▶ 三臣 - のへの

Viterbi Interpretations

$\mathsf{FP}^{\mathsf{NP}[\mathsf{log}]} \leq \mathsf{OptSemVal} \leq \mathsf{FP}^{\mathsf{NP}}.$

OptSemVal over other Semirings

Fuzzy, Access Control \equiv Boolean (SAT)

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Slide 8/ 13

 $\mathsf{MaxSAT} \leq \mathsf{OptSemVal}$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

 $\mathsf{MaxSAT} \leq \mathsf{OptSemVal}$

Confidence Bounding Lemma: Let F be a CNF formula with m clauses and r the maximum number of satisfiable clauses (over the Boolean semiring). Then for any (Viterbi) interpretation π

$$\pi(F) \leq \frac{1}{4^{m-r}}$$

 $\mathsf{MaxSAT} \leq \mathsf{OptSemVal}$

Confidence Bounding Lemma: Let F be a CNF formula with m clauses and r the maximum number of satisfiable clauses (over the Boolean semiring). Then for any (Viterbi) interpretation π

$$\pi(F) \leq \frac{1}{4^{m-r}}$$

Reduction $F \to F'$: $C_i \to (C_i \lor y_i)$ for each *i* and add *m* additional unit clauses $\neg y_i$.

 $\mathsf{MaxSAT} \leq \mathsf{OptSemVal}$

Confidence Bounding Lemma: Let F be a CNF formula with m clauses and r the maximum number of satisfiable clauses (over the Boolean semiring). Then for any (Viterbi) interpretation π

$$\pi(F) \leq \frac{1}{4^{m-r}}$$

Reduction $F \to F'$: $C_i \to (C_i \lor y_i)$ for each *i* and add *m* additional unit clauses $\neg y_i$.

Claim: OptSemVal(F') = $1/4^{m-r}$ where r is the maximum number of satisfiable clauses for F.

- We can give an interpretation π so that $\pi(F') = 1/4^{m-r}$
- That is the best possible since

lacktriangleright number of clauses of
$$F' = 2m$$

maximum number of clauses that can be satisfied is m + r.

$\mathsf{OptSemVal} \in \mathsf{FP}^{\mathsf{NP}}$

Define a binary search language $L_{opt} = \{ \langle F, v \rangle \mid \mathsf{OptSemVal}(F) \ge v \}.$

- Perform binary search over [0, 1] by making queries to L_{opt}

$\mathsf{OptSemVal} \in \mathsf{FP}^{\mathsf{NP}}$

Define a binary search language $L_{opt} = \{\langle F, v \rangle \mid \mathsf{OptSemVal}(F) \ge v\}$.

- Perform binary search over [0, 1] by making queries to L_{opt}

Challenge: OptSemVal(F) could potentially be any real number. Do not know when to stop the binary search.

$\mathsf{OptSemVal} \in \mathsf{FP}^{\mathsf{NP}}$

Define a binary search language $L_{opt} = \{\langle F, v \rangle \mid \mathsf{OptSemVal}(F) \ge v\}$.

- Perform binary search over [0, 1] by making queries to L_{opt}

Challenge: OptSemVal(F) could potentially be any real number. Do not know when to stop the binary search.

Claim: OptSemVal(F) $\in \mathcal{F}_N$ for $N \in 2^{\text{poly}(size(F))}$.

 \mathcal{F}_N : Farey Sequence of order N. Fractions of the form A/B, where $1 \leq A, B \leq N$ and gcd(A, B) = 1.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

<

$\mathsf{OptSemVal} \in \mathsf{FP}^{\mathsf{NP}}$

Define a binary search language $L_{opt} = \{\langle F, v \rangle \mid \mathsf{OptSemVal}(F) \ge v\}$.

- Perform binary search over [0, 1] by making queries to L_{opt}

Challenge: OptSemVal(F) could potentially be any real number. Do not know when to stop the binary search.

Claim: OptSemVal(F) $\in \mathcal{F}_N$ for $N \in 2^{\text{poly}(size(F))}$.

 \mathcal{F}_N : Farey Sequence of order N. Fractions of the form A/B, where $1 \leq A, B \leq N$ and gcd(A, B) = 1.

Other technical challenges exist (eg: $L_{opt} \in NP$). But we can brute-force through them for the idea to work.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

<

Approximation of OptSemVal over Viterbi

3CNF formulae with m clauses

- Upperbound: There is a polynomial-time, 0.716^{*m*}-approximation algorithm.
 - A random interpretation achieves this.

・ロト・日本・日本・日本・日本・日本

Approximation of OptSemVal over Viterbi

3CNF formulae with m clauses

- Upperbound: There is a polynomial-time, 0.716^{*m*}-approximation algorithm.
 - A random interpretation achieves this.
- Hardness: No polynomial-time 0.845^{*m*}-approximation algorithm unless P = NP.

▲□▶▲□▶▲□▶▲□▶ □ のQの

Future Work

Technical Questions

- Can we close the gap between lower and upper bound for Viterbi?
- Efficient implementation of the $\mathrm{FP}^{\mathrm{NP}}$ algorithm using SAT solvers?

Future Work

Technical Questions

- Can we close the gap between lower and upper bound for Viterbi?
- Efficient implementation of the $\mathrm{FP}^{\mathrm{NP}}$ algorithm using SAT solvers?

Non-technical Question

Explore usefulness of optimization problems that are introduced in other areas (reasoning about neural networks?).

Increasing interest in Beyond-Boolean interpretations in databases.

Simons Program Fall 2023: Logic and Algorithms in Database Theory and Al

One of the themes: "Extensions of logics to semirings and aggregation."

▲□▶▲□▶▲□▶▲□▶ □ のQの

Thank you!

Work appeared in AAAI 2023

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Slide 13/ 13