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Boolean Interpretations

F := (x1) ∧ (x2) ∧ (¬x1 ∨ ¬x2)

SAT: Given a Boolean formula F . Decide whether there is a truth
assignment to the variables so that F is evaluated to True.

- Boolean Interpretation

- K = {0, 1}
- ¬:= NOT function
- ∧:= AND function
- ∨:= OR function
- 0 < 1 (total order)

SAT: Given a Boolean formula F . Compute maxπ{π(F )} over all
interpretations π : X → K .

X is the set of variables and π(F ) is the natural extension of π to F .

F is satisfiable if and only if maxπ{π(F )} = 1.
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Beyond Boolean Interpretations

F := (x1) ∧ (x2) ∧ (¬x1 ∨ ¬x2)

Viterbi semiring interpretation

- K = [0, 1] (with natural total order)

- ∧:= MULT function

- ∨:= MAX function

- ¬x := 1− x

Given F : Compute maxπ{π(F )} over all interpretations π : X → K .

For F above:

- max{x1x2(1− x1), x1x2(1− x2)}
- π(x1) = 0.5; π(x2) = 1

- π(F ) = 0.5 · 1 · 0.5 = 0.25

F is satisfiable (Boolean) ⇔ maxπ{π(F )} = 1 (Viterbi)
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Interpretation of Negation

How do we interpret ¬ : K → K?

¬(x) = 1− x is one of them.

For our upper bounds any “reasonable” interpretation of negation suffice.

¬¬(x) = x
¬(0) = 1

Slide 4/ 13



Useful Semirings

- Viterbi semiring V = ([0, 1],max, ·, 0, 1).

- Database provenance, where x ∈ [0, 1] is interpreted as a
confidence score.

- Probabilistic parsing, probabilistic CSPs, Hidden Markov
Models.

- Fuzzy semiring F = ([0, 1],max,min, 0, 1).

- Access control semiring Ak = ([k],max,min, 0, k)

- Security Specification. Each i ∈ [k] is associated with a access
control level with natural ordering. 0 corresponds to public
access and k corresponds to no access at all.
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Computational Problem OptSemVal

Fix a semiring K of your choice.

OptSemVal:
Given a formula F (in negation normal form), compute maxπ{π(F )} over
all interpretations π : X → K .

What is the complexity of OptSemVal?
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Viterbi Interpretations

FPNP[log] ≤ OptSemVal ≤ FPNP.
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OptSemVal over other Semirings

Fuzzy, Access Control ≡ Boolean (SAT)
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Hardness for Viterbi

MaxSAT ≤ OptSemVal

Confidence Bounding Lemma: Let F be a CNF formula with m clauses
and r the maximum number of satisfiable clauses (over the Boolean
semiring). Then for any (Viterbi) interpretation π

π(F ) ≤ 1

4m−r

Reduction F → F ′: Ci → (Ci ∨ yi ) for each i and add m additional unit
clauses ¬yi .

Claim: OptSemVal(F ′) = 1/4m−r where r is the maximum number of
satisfiable clauses for F .

- We can give an interpretation π so that π(F ′) = 1/4m−r

- That is the best possible since

I number of clauses of F ′ = 2m
I maximum number of clauses that can be satisfied is m + r
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Upperbound - Overview

OptSemVal ∈ FPNP

Define a binary search language Lopt = {〈F , v〉 | OptSemVal(F ) ≥ v}.
- Perform binary search over [0, 1] by making queries to Lopt

Challenge: OptSemVal(F ) could potentially be any real number. Do
not know when to stop the binary search.

Claim: OptSemVal(F ) ∈ FN for N ∈ 2poly(size(F )).

FN : Farey Sequence of order N. Fractions of the form A/B, where
1 ≤ A,B ≤ N and gcd(A,B) = 1.

Other technical challenges exist (eg: Lopt ∈ NP). But we can brute-force
through them for the idea to work.
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Approximation of OptSemVal over Viterbi

3CNF formulae with m clauses

- Upperbound: There is a polynomial-time, 0.716m-approximation
algorithm.

- A random interpretation achieves this.

- Hardness: No polynomial-time 0.845m-approximation algorithm
unless P = NP.
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Future Work

Technical Questions

- Can we close the gap between lower and upper bound for Viterbi?

- Efficient implementation of the FPNP algorithm using SAT solvers?

Non-technical Question

Explore usefulness of optimization problems that are introduced in other
areas (reasoning about neural networks?).

Increasing interest in Beyond-Boolean interpretations in databases.

Simons Program Fall 2023: Logic and Algorithms in Database Theory
and AI

One of the themes: “Extensions of logics to semirings and aggregation.”
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Thank you!

Work appeared in AAAI 2023
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