SAT Beyond Boolean Interpretations

A. Pavan ${ }^{1}$ © Kuldeep S. Meel ${ }^{2}$ © N. V. Vinodchandran ${ }^{3 *}$ © Arnab Bhattacharyya ${ }^{2}$

${ }^{1}$ Iowa State University
${ }^{2}$ National University of Singapore
${ }^{3}$ University of Nebraska-Lincoln

Simons 2023: Satisfiability: Theory, Practice, and Beyond

* Vinodchandran Variyam

Boolean Interpretations

$F:=\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right)$
SAT: Given a Boolean formula F. Decide whether there is a truth assignment to the variables so that F is evaluated to True.

Boolean Interpretations

$$
F:=\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right)
$$

SAT: Given a Boolean formula F. Decide whether there is a truth assignment to the variables so that F is evaluated to True.

- Boolean Interpretation
- $K=\{0,1\}$
- $\neg:=$ NOT function
- $\wedge:=$ AND function
- $V:=$ OR function
- $0<1$ (total order)

SAT: Given a Boolean formula F. Compute $\max _{\pi}\{\pi(F)\}$ over all interpretations $\pi: X \rightarrow K$.
X is the set of variables and $\pi(F)$ is the natural extension of π to F.
F is satisfiable if and only if $\max _{\pi}\{\pi(F)\}=1$.

Beyond Boolean Interpretations

$$
F:=\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right)
$$

Viterbi semiring interpretation

- $K=[0,1]$ (with natural total order)
- $\wedge:=$ MULT function
- $V:=$ MAX function
- $\neg x:=1-x$

Given F : Compute $\max _{\pi}\{\pi(F)\}$ over all interpretations $\pi: X \rightarrow K$.

Beyond Boolean Interpretations

$$
F:=\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right)
$$

Viterbi semiring interpretation

- $K=[0,1]$ (with natural total order)
- $\wedge:=$ MULT function
- $V:=$ MAX function
- $\neg x:=1-x$

Given F : Compute $\max _{\pi}\{\pi(F)\}$ over all interpretations $\pi: X \rightarrow K$.
For F above:
$-\max \left\{x_{1} x_{2}\left(1-x_{1}\right), x_{1} x_{2}\left(1-x_{2}\right)\right\}$

- $\pi\left(x_{1}\right)=0.5 ; \pi\left(x_{2}\right)=1$
- $\pi(F)=0.5 \cdot 1 \cdot 0.5=0.25$

Beyond Boolean Interpretations

$$
F:=\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right)
$$

Viterbi semiring interpretation

- $K=[0,1]$ (with natural total order)
- $\wedge:=$ MULT function
- $V:=$ MAX function
- $\neg x:=1-x$

Given F : Compute $\max _{\pi}\{\pi(F)\}$ over all interpretations $\pi: X \rightarrow K$.
For F above:
$-\max \left\{x_{1} x_{2}\left(1-x_{1}\right), x_{1} x_{2}\left(1-x_{2}\right)\right\}$

- $\pi\left(x_{1}\right)=0.5 ; \pi\left(x_{2}\right)=1$
- $\pi(F)=0.5 \cdot 1 \cdot 0.5=0.25$
F is satisfiable (Boolean) $\Leftrightarrow \max _{\pi}\{\pi(F)\}=1$ (Viterbi)

Interpretation of Negation

How do we interpret $\neg: K \rightarrow K$?
$\neg(x)=1-x$ is one of them.
For our upper bounds any "reasonable" interpretation of negation suffice.

$$
\begin{aligned}
\neg \neg(x) & =x \\
\neg(0) & =1
\end{aligned}
$$

Useful Semirings

- Viterbi semiring $\mathbb{V}=([0,1]$, max, $\cdot, 0,1)$.
- Database provenance, where $x \in[0,1]$ is interpreted as a confidence score.
- Probabilistic parsing, probabilistic CSPs, Hidden Markov Models.
- Fuzzy semiring $\mathbb{F}=([0,1]$, max, min, 0,1$)$.
- Access control semiring $\mathbb{A}_{k}=([k], \max , \min , 0, k)$
- Security Specification. Each $i \in[k]$ is associated with a access control level with natural ordering. 0 corresponds to public access and k corresponds to no access at all.

Computational Problem OptSemVal

Fix a semiring K of your choice.
OptSemVal:
Given a formula F (in negation normal form), compute $\max _{\pi}\{\pi(F)\}$ over all interpretations $\pi: X \rightarrow K$.

Computational Problem OptSemVal

Fix a semiring K of your choice.
OptSemVal:
Given a formula F (in negation normal form), compute $\max _{\pi}\{\pi(F)\}$ over all interpretations $\pi: X \rightarrow K$.

What is the complexity of OptSemVal?

Viterbi Interpretations

$\mathrm{FP}^{\mathrm{NP}[\mathrm{log}]} \leq$ OptSemVal $\leq \mathrm{FP}^{\mathrm{NP}}$.

OptSemVal over other Semirings

Fuzzy, Access Control \equiv Boolean (SAT)

Hardness for Viterbi

MaxSAT \leq OptSemVal

Hardness for Viterbi

MaxSAT \leq OptSemVal

Confidence Bounding Lemma: Let F be a CNF formula with m clauses and r the maximum number of satisfiable clauses (over the Boolean semiring). Then for any (Viterbi) interpretation π

$$
\pi(F) \leq \frac{1}{4^{m-r}}
$$

Hardness for Viterbi

MaxSAT \leq OptSemVal

Confidence Bounding Lemma: Let F be a CNF formula with m clauses and r the maximum number of satisfiable clauses (over the Boolean semiring). Then for any (Viterbi) interpretation π

$$
\pi(F) \leq \frac{1}{4^{m-r}}
$$

Reduction $F \rightarrow F^{\prime}: C_{i} \rightarrow\left(C_{i} \vee y_{i}\right)$ for each i and add m additional unit clauses $\neg y_{i}$.

Hardness for Viterbi

MaxSAT \leq OptSemVal

Confidence Bounding Lemma: Let F be a CNF formula with m clauses and r the maximum number of satisfiable clauses (over the Boolean semiring). Then for any (Viterbi) interpretation π

$$
\pi(F) \leq \frac{1}{4^{m-r}}
$$

Reduction $F \rightarrow F^{\prime}: C_{i} \rightarrow\left(C_{i} \vee y_{i}\right)$ for each i and add m additional unit clauses $\neg y_{i}$.

Claim: OptSemVal $\left(F^{\prime}\right)=1 / 4^{m-r}$ where r is the maximum number of satisfiable clauses for F.

- We can give an interpretation π so that $\pi\left(F^{\prime}\right)=1 / 4^{m-r}$
- That is the best possible since
- number of clauses of $F^{\prime}=2 m$
- maximum number of clauses that can be satisfied is $m+r$.

Upperbound - Overview

OptSemVal \in FP $^{N P}$
Define a binary search language $L_{o p t}=\{\langle F, v\rangle \mid \operatorname{OptSemVal}(F) \geq v\}$.

- Perform binary search over $[0,1]$ by making queries to $L_{o p t}$

Upperbound - Overview

OptSemVal \in FP $^{N P}$

Define a binary search language $L_{\text {opt }}=\{\langle F, v\rangle \mid \operatorname{OptSemVal}(F) \geq v\}$.

- Perform binary search over $[0,1]$ by making queries to $L_{o p t}$

Challenge: OptSemVal (F) could potentially be any real number. Do not know when to stop the binary search.

Upperbound - Overview

OptSemVal \in FP $^{N P}$

Define a binary search language $L_{\text {opt }}=\{\langle F, v\rangle \mid \operatorname{OptSemVal}(F) \geq v\}$.

- Perform binary search over $[0,1]$ by making queries to $L_{o p t}$

Challenge: OptSemVal (F) could potentially be any real number. Do not know when to stop the binary search.
Claim: $\operatorname{OptSem} \operatorname{Val}(F) \in \mathcal{F}_{N}$ for $N \in 2^{\text {poly }(\operatorname{size}(F))}$.
\mathcal{F}_{N} : Farey Sequence of order N. Fractions of the form A / B, where $1 \leq A, B \leq N$ and $\operatorname{gcd}(A, B)=1$.

Upperbound - Overview

OptSemVal \in FP $^{N P}$

Define a binary search language $L_{\text {opt }}=\{\langle F, v\rangle \mid \operatorname{OptSemVal}(F) \geq v\}$.

- Perform binary search over $[0,1]$ by making queries to $L_{o p t}$

Challenge: OptSemVal (F) could potentially be any real number. Do not know when to stop the binary search.
Claim: $\operatorname{OptSemVal}(F) \in \mathcal{F}_{N}$ for $N \in 2^{\text {poly }(\operatorname{size}(F))}$.
\mathcal{F}_{N} : Farey Sequence of order N. Fractions of the form A / B, where $1 \leq A, B \leq N$ and $\operatorname{gcd}(A, B)=1$.

Other technical challenges exist (eg: $L_{\text {opt }} \in \mathrm{NP}$). But we can brute-force through them for the idea to work.

Approximation of OptSemVal over Viterbi

3CNF formulae with m clauses

- Upperbound: There is a polynomial-time, 0.716^{m}-approximation algorithm.
- A random interpretation achieves this.

Approximation of OptSemVal over Viterbi

3CNF formulae with m clauses

- Upperbound: There is a polynomial-time, 0.716^{m}-approximation algorithm.
- A random interpretation achieves this.
- Hardness: No polynomial-time 0.845^{m}-approximation algorithm unless $P=N P$.

Future Work

Technical Questions

- Can we close the gap between lower and upper bound for Viterbi?
- Efficient implementation of the $\mathrm{FP}^{\mathrm{NP}}$ algorithm using SAT solvers?

Future Work

Technical Questions

- Can we close the gap between lower and upper bound for Viterbi?
- Efficient implementation of the $\mathrm{FP}^{\mathrm{NP}}$ algorithm using SAT solvers?

Non-technical Question

Explore usefulness of optimization problems that are introduced in other areas (reasoning about neural networks?).

Increasing interest in Beyond-Boolean interpretations in databases.
Simons Program Fall 2023: Logic and Algorithms in Database Theory and Al

One of the themes: "Extensions of logics to semirings and aggregation."

Thank you!

Work appeared in AAAI 2023

