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Model-based combinatorial solving paradigms

SAT

lots of x1 ∨ x2 ∨ x3

Integer Programming

lots of 3x1 − 2x2 + 5x3 ≤ 10

Constraint Programming

not so many constraints in heterogeneous syntax
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Constraint Programming Models

Round-robin tournament (TTPPV)
array[Teams,Rounds] of var Teams: opponent;

array[Teams,Rounds] of var 1..2: venue;

forall (i in Teams, k in Rounds) (venue[i,k] = pv[i,opponent[i,k]]);

forall (i in Teams, k in Rounds) (opponent[i,k] 6= i);

forall (i in Teams, k in Rounds) (opponent[opponent[i,k],k] = i);

forall (i in Teams) (alldifferent([opponent[i,k] | k in Rounds]));

forall (i in Teams) (regular( [venue[i,k] | k in Rounds], automaton));

Moving furniture
array[Objects] of var 0..availableTime: start;

var 0..availableTime: end;

cumulative(start, duration, handlers, availableHandlers);

cumulative(start, duration, trolleys, availableTrolleys);

forall (o in Objects) (start[o] + duration[o] ≤ end);

solve minimize end;
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Constraint Programming

Q- What is the distinctive driving force behind CP?

A- Direct access to problem structure from high-level constraints

How does one nominate these high-level constraints?

complex enough to provide structural insight

simple enough for some desired computing tasks to remain tractable

What sort of thing does one wish to compute about constraints?

satisfiability: “Is there any solution to constraint c?”

domain filtering: “Any solution to c s.t. variable x takes value d?”

· · ·
“How many solutions are there to c?”

“How many solutions in which x = d?”
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Using Global Constraints (a.k.a. Structure) in CP

Consider a simple constraint on finite-domain variables X and Y .

domain

Y

X

d
o

m
a
in
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domain filtering ≡ projecting solutions on individual variables

G. Pesant (Weighted) Counting and Marginals in CP SAT and Beyond, April 2023 7 / 65



Using Global Constraints (a.k.a. Structure) in CP

Consider a simple constraint on finite-domain variables X and Y .

X

Y

same ”outside information”, but very different set of solutions
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Using Global Constraints (a.k.a. Structure) in CP

Now consider the set of solutions as a multivariate discrete distribution.
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marginals ≡ projecting that distribution on individual variables
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Technically, we need to count solutions: 5 out of 22 solutions
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regular constraint

Definition

The regular(X ,Π) constraint holds if the values taken by the (finite)
sequence of finite-domain variables X = 〈x1, x2, . . . , xk〉 spell out a word
belonging to the regular language defined by the deterministic finite
automaton Π = (Q,Σ, δ, q0,F )

Example
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Domain Filtering on regular constraints
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Counting Solutions of regular constraints

Layered graph
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“#ip;#op”

#ip nb of incoming paths
from initial state

#op nb of outgoing paths to
final state

Recurrence relation

#ip(1, q0) = 1

#ip(`+ 1, q′) =
∑

(v`,q ,v`+1,q′ )∈A

#ip(`, q), 1 ≤ ` ≤ n
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Counting All Solutions
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Counting solutions such that x3 =red (marginal, bias)

θx3(red) =

2

+4+2+2
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Marginal probability of x3 =red in a solution chosen uniformly at random

So, counting solutions doesn’t cost much more here.
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Weighted Counting

Layered graph
x
1

x
2

x
3

x
4

x
5

L
2

L
3

L
4

L
5

L
6

L
1

 1;7

 1;6

 1;1

 1;5

 1;5

 1;4

 1;1

 
 
 1;5

 1;2

 5;2

 3;1

 1;2

 1;2  4;1

 19;1

 1;1

 8;1

 6;1

 2;2

 1;19

each arc a now has a positive
weight wa

weight of path = product of
arc weights

Each node contains:

#ip sum of weighted incoming
paths from initial state

#op sum of weighted outgoing
paths to final state

Recurrence relation

#ip(1, q0) = 1

#ip(`+ 1, q′) =
∑

a:(v`,q ,v`+1,q′ )∈A

wa ×#ip(`, q), 1 ≤ ` ≤ n
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alldifferent constraint

Definition

The alldifferent(X ) constraint holds if the values taken by the set of
finite domain variables X = {x1, x2, . . . , xk} are distinct.

Value graph

x4

x5

x6

x1

x3

d2

d3

d4

d5

x2

d1

d6

Adjacency Matrix

A =



1 1 1 0 0 0
0 1 1 0 0 0
1 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 1 1
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alldifferent constraint

Domain filtering

bipartite graph matching + depth-first search

But now counting solutions cost significantly more
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Counting with alldifferent

Its number of solutions is the same as. . .

the number of perfect matchings in the bipartite graph

the permanent of the adjacency matrix
per(A) =

∑
σ∈Sn

∏
i ai ,σ(i)

Remark

It is a #P-complete problem, that is, it cannot be computed in polynomial
time (under reasonable theoretical assumptions)
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Sampling

Rasmussen’s Estimator

if n = 0 then
XA = 1

else
W = {j : a1,j = 1}
if W = ∅ then

XA = 0
else

Choose j u.a.r. from W
Compute XA1,j

XA = |W | · XA1,j
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Rasmussen’s estimator

Example

A =



1 1 1 0 0 0
0 1 1 0 0 0
1 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 1 1



|W |
3

1
1
1
2
1

XA = 6
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Example
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Rasmussen’s estimator properties

Properties

It works well for “almost” all dense matrices

Poor results in some special cases

U =


1 1 . . . 1

1 . . . 1
. . .

...
1
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Adding domain filtering

Modified Rasmussen

if n = 0 then
XA = 1

else
Domain filtering on A
Choose i u.a.r. from {1 . . . n}
W = {j : ai ,j = 1}
if W = ∅ then

XA = 0
else

Choose j u.a.r. from W
Compute XAi,j

XA = |W | · XAi,j

helps avoiding dead ends
(W = ∅)

Number of solutions

#alldiff(x1, . . . , xn) ≈ E (XA)

Marginals by sampling

θxi (d) ≈ |Sxi ,d ||S |
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Weighted Counting with alldifferent

Weighted Rasmussen

if n = 0 then
XA = 1

else
Domain filtering on A
Choose i u.a.r. from {1 . . . n}
W = {j : ai ,j > 0}
if W = ∅ then

XA = 0
else

Choose j from W randomly
according to the distribution
of weights
Compute XAi,j

XA = (
∑

j∈W ai ,j) · XAi,j

nonnegative matrix entries ai ,j
as weights
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Counting with alldifferent

alldifferent(X1,X2,X3,X4)

X1 ∈ {a, b, c}
X2 ∈ {b, d}
X3 ∈ {b, d}
X4 ∈ {a, c , d}

=⇒ A :

a b c d

X1 1 1 1 0
X2 0 1 0 1
X3 0 1 0 1
X4 1 0 1 1

There are known upper bounds for the permanent of 0-1 matrices.
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Counting with alldifferent

Minc-Brègman

perm(A) ≤
m∏
i=1

(ri !)
1/ri

where ri = number of 1’s in row i

Liang-Bai

perm(A)2 ≤
m∏
i=1

qi (ri − qi + 1)

where qi = min{d ri+1
2 e, d

i
2e}
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Weighted Counting with alldifferent

alldifferent(X1,X2,X3,X4)

X1 ∈ {a, b, c}
X2 ∈ {b, d}
X3 ∈ {b, d}
X4 ∈ {a, c , d}

=⇒ A :

a b c d

X1 .3 .6 .1 0
X2 0 .2 0 .8
X3 0 .5 0 .5
X4 .4 0 .3 .3

Upper bound for the permanent of nonnegative matrices:

Soules (U3)

perm(A) ≤
m∏
i=1

ti · g(si/ti )

where si = sum of elements in row i
and ti = maximum element in row i
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Weighted Counting with alldifferent

alldifferent(X1,X2,X3,X4)

X1 ∈ {a, b, c}
X2 ∈ {b, d}
X3 ∈ {b, d}
X4 ∈ {a, c , d}

θX1
(a)?

=⇒ A :

a b c d

X1 .3 .6 .1 0
X2 0 .2 0 .8
X3 0 .5 0 .5
X4 .4 0 .3 .3

Upper bound for the permanent of nonnegative matrices:

Soules (U3)

perm(A) ≤
m∏
i=1

ti · g(si/ti )

where si = sum of elements in row i
and ti = maximum element in row i
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spanning tree constraint

Definition

Given an undirected graph G (V ,E ) and set variable T ⊆ E , constraint
spanning tree(G ,T ) restricts T to be a spanning tree of G .

v1 v2

v5 v4 v3

(a) G

v1 v2

v5 v4 v3

(b) T
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v1 v2

v5 v4 v3

v1 v2

v5 v4 v3

v1 v2

v5 v4 v3

v1 v2

v5 v4 v3

v1 v2

v5 v4 v3

v1 v2

v5 v4 v3

v1 v2

v5 v4 v3

v1 v2

v5 v4 v3

v1 v2

v5 v4 v3

v1 v2

v5 v4 v3

v1 v2

v5 v4 v3

v1 v2

v5 v4 v3

v1 v2

v5 v4 v3

v1 v2

v5 v4 v3

v1 v2

v5 v4 v3

v1 v2

v5 v4 v3

v1 v2

v5 v4 v3

v1 v2

v5 v4 v3

v1 v2

v5 v4 v3

v1 v2

v5 v4 v3
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Matrix-Tree Theorem

v1 v2

v5 v4 v3

Laplacian matrix of the graph:

3 -1 0 -1 -1

-1 3 -1 -1 0

0 -1 2 -1 0

-1 -1 -1 4 -1

-1 0 0 -1 2
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Counting all solutions

Kirchhoff’s Matrix-Tree Theorem

Any minor of the Laplacian is equal to the number of spanning trees
(in absolute value)

3 -1 0 -1 -1

-1 3 -1 -1 0

0 -1 2 -1 0

-1 -1 -1 4 -1

-1 0 0 -1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 21
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Counting solutions excluding a given edge (i , j)

#spanning trees(G\{(1,5)})
#spanning trees(G)

v1 v2

v5 v4 v3

3 -1 0 -1 -1

-1 3 -1 -1 0

0 -1 2 -1 0

-1 -1 -1 4 -1

-1 0 0 -1 2





2 -1 0 -1 0

-1 3 -1 -1 0

0 -1 2 -1 0

-1 -1 -1 4 -1

0 0 0 -1 1




Laplacian(G ) Laplacian(G \ {(1, 5)})
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Counting solutions excluding a given edge (i , j)

let’s take a minor with row/column i removed (here, i = 1) :

2 -1 0 -1 0

-1 3 -1 -1 0

0 -1 2 -1 0

-1 -1 -1 4 -1

0 0 0 -1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
this determinant differs in only one entry from that for G
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Counting solutions excluding a given edge (i , j)

Sherman-Morrison formula

det(M ′) = (1 + e>j M−1(u − (M)j))det(M).

In our case this simplifies to det(M ′) = (1−m−1jj )det(M).

So

#spanning trees(G \ {(i , j)})
#spanning trees(G )

=
(1−m−1jj )det(M)

det(M)
= 1−m−1jj
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Counting solutions excluding a given edge (i , j)

One matrix inversion for all edges incident to a given vertex

v1 v2

v5 v4 v3

Example

Let M be the sub-matrix of L obtained by removing its first row and

column as before. Then M−1 =


12/21 9/21 8/21 3/21

9/21 19/21 8/21 4/21
6/21 8/21 10/21 5/21
3/21 4/21 5/21 13/21
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minimum spanning tree constraint

v1 v2

v5 v4 v3

2

3
1 1

1

13

3 spanning trees of cost 5.

6 spanning trees of cost 6.

7 spanning trees of cost 7.

3 spanning trees of cost 8.

2 spanning trees of cost 9.
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minimum spanning tree constraint

v1 v2

v5 v4 v3

2

1
1

1

v1 v2

v5 v4 v3

2

1 1

1

v1 v2

v5 v4 v3

2

1 1
1

Trees of cost 5

v1 v2

v5 v4 v3

1
1

13

v1 v2

v5 v4 v3

1 1

13

v1 v2

v5 v4 v3

1 1
1

3

v1 v2

v5 v4 v3

3
1

1

1

v1 v2

v5 v4 v3

3
1 1

1

v1 v2

v5 v4 v3

3
1 1

1

Trees of cost 6
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Generalized Matrix-Tree Theorem

v1 v2

v5 v4 v3

2

3
1 1

1

13

Generalized Laplacian matrix of the graph:
x2 + x3 + x1 −x2 0 −x3 −x1
−x2 x2 + 2x1 −x1 −x1 0

0 −x1 2x1 −x1 0
−x3 −x1 −x1 2x3 + 2x1 −x3
−x1 0 0 −x3 x1 + x3
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Generalized Matrix-Tree Theorem

x2 + x3 + x1 −x2 0 −x3 −x1

−x2 x2 + 2x1 −x1 −x1 0

0 −x1 2x1 −x1 0

−x3 −x1 −x1 2x3 + 2x1 −x3

−x1 0 0 −x3 x1 + x3

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

= 3x5 + 6x6 + 7x7 + 3x8 + 2x9
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Generalized Matrix-Tree Theorem

3x5 + 6x6 + 7x7 + 3x8 + 2x9

3 spanning trees of cost 5

6 spanning trees of cost 6

7 spanning trees of cost 7

3 spanning trees of cost 8

2 spanning trees of cost 9
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Generalized Matrix-Tree Theorem

3x5 + 6x6 + 7x7 + 3x8 + 2x9

3 spanning trees of cost 5

6 spanning trees of cost 6

7 spanning trees of cost 7

3 spanning trees of cost 8

2 spanning trees of cost 9
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Counting (good) solutions

In practice we don’t compute determinants or inverses
over matrices with polynomial entries:

we fix x to some real value in ]0, 1]. . .

x ' 0
min-cost trees

x = 0.3 x = 1
All trees

. . . fall back to scalar entries and then invert some matrices.
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knapsack constraint

Definition

The knapsack(x, c, `, u) constraint holds if ` ≤
∑n

i=1 cixi ≤ u.

To count solutions, we can proceed as for regular constraints
(compact representation of solutions) but it now runs in
pseudo-polynomial time (w.r.t. ` and u).

Can still be fine if numerical values are not too large, and otherwise. . .
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Counting for knapsack

Express variable in terms of other variables:
` ≤

∑n
i=1 cixi ≤ u is rewritten as

xj = 1
cj

(xn+1 −
∑j−1

i=1 cixi −
∑n

i=j+1 cixi ) with xn+1 ∈ [`, u].

Relax domains to intervals

Assume values in domains are equiprobable (uniform distribution)

xj follows normal distribution (C.L.T.)

But our assumption doesn’t hold for weighted counting
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Counting for knapsack

Example

Histogram is actual distribution of 3x + 4y + 2z for x , y , z ∈ [0, 5].
Curve is approximation given by Gaussian curve
with mean µ = 22.5 and variance σ2 = 84.583.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0  5  10  15  20  25  30  35  40  45  50

d
e

n
s
it
y

x

Approximation of a Combination of Uniformly Distributed Random Variables
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CP-BP Framework

Moving beyond

standard support propagation

to

belief (marginal) propagation
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Marginal (Belief) Propagation

X

 a b c d e

X

 a b c d e

X

 a b c d e

X

 a b c d e

Z

 a b c d e

Z

 a b c d e
Z

 a b c d e

Z

 a b c d e

W

 a b c d e

Y

 a b c d e

propagate marginal distributions over single variables

iteratively adjust each constraint’s marginals

until some stopping criterion
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Marginal (Belief) Propagation

W

 a b c d e

Y

 a b c d e

X

 a b c d e

Z

 a b c d e

propagate marginal distributions over single variables

iteratively adjust each constraint’s marginals

until some stopping criterion
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How do we compute such marginal distributions?

Corresponds to weighted model counting on each constraint
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Belief Propagation over the CP Model

constraints over variables a, b, c , d ∈ {1, 2, 3, 4}:
i alldifferent(a, b, c)

ii a + b + c + d = 7

iii c ≤ d

θiiic (3)

support (solution) weight

d = 3 1
d = 4 1∑

= 2

2 out of 10 solutions to iii
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Belief Propagation over the CP Model

constraints over variables a, b, c , d ∈ {1, 2, 3, 4}:
i alldifferent(a, b, c)

ii a + b + c + d = 7

iii c ≤ d

1 2 3 4
a θia 1/4 1/4 1/4 1/4

θiia 10/20 6/20 3/20 1/20

b θib 1/4 1/4 1/4 1/4

θiib 10/20 6/20 3/20 1/20

c θic 1/4 1/4 1/4 1/4

θiic 10/20 6/20 3/20 1/20

θiiic 4/10 3/10 2/10 1/10

d θiid 10/20 6/20 3/20 1/20

θiiid 1/10 2/10 3/10 4/10
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Belief Propagation over the CP Model

constraints over variables a, b, c , d ∈ {1, 2, 3, 4}:
i alldifferent(a, b, c)

ii a + b + c + d = 7

iii c ≤ d

1 2 3 4

c θic 1/4 1/4 1/4 1/4
θiic 10/20 6/20 3/20 1/20
θiiic 4/10 3/10 2/10 1/10

θc 40/800 18/800 6/800 1/800
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Belief Propagation over the CP Model

constraints over variables a, b, c , d ∈ {1, 2, 3, 4}:
i alldifferent(a, b, c)

ii a + b + c + d = 7

iii c ≤ d

1 2 3 4

c θic 1/4 1/4 1/4 1/4
θiic 10/20 6/20 3/20 1/20
θiiic 4/10 3/10 2/10 1/10

θc .62 .28 .09 .01
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Belief Propagation over the CP Model

constraints over variables a, b, c , d ∈ {1, 2, 3, 4}:
i alldifferent(a, b, c)

ii a + b + c + d = 7

iii c ≤ d

Iteration 1

1 2 3 4

θa .50 .30 .15 .05
θb .50 .30 .15 .05
θc .62 .28 .09 .01
θd .29 .34 .26 .11
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Belief Propagation over the CP Model

constraints over variables a, b, c , d ∈ {1, 2, 3, 4}:
i alldifferent(a, b, c)

ii a + b + c + d = 7

iii c ≤ d

1 2 3 4
.
.
.

d θiid 10/20 6/20 3/20 1/20

θiiic (3)

support (solution) weight

d = 3 3/20
d = 4 1/20∑

= 4/20
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Belief Propagation over the CP Model

constraints over variables a, b, c , d ∈ {1, 2, 3, 4}:
i alldifferent(a, b, c)

ii a + b + c + d = 7

iii c ≤ d

Iteration 10

1 2 3 4

θa .01 .52 .46 .01
θb .01 .52 .46 .01
θc .98 .02 .00 .00
θd .90 .10 .00 .00
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Belief Propagation over the CP Model

constraints over variables a, b, c , d ∈ {1, 2, 3, 4}:
i alldifferent(a, b, c)

ii a + b + c + d = 7

iii c ≤ d

True marginals (solutions 2,3,1,1 and 3,2,1,1)

1 2 3 4

θa 0 1/2 1/2 0
θb 0 1/2 1/2 0
θc 1 0 0 0
θd 1 0 0 0
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Branching for Combinatorial Search

Binary branching: xi = dj ∨ xi 6= dj

min-entropy

1 choose variable minimizing the entropy of the marginal distribution
over its domain:

i = argminx∈X −
∑

d∈D(x) θx(d) log(θx(d))

2 choose value maximizing the marginal:

j = argmaxd∈D(xi ) θxi (d)
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(Near-)Uniform Sampling

sample solutions uniformly at random

Given true marginal distributions:

pick any variable;
pick a value according to its marginal distribution;
adjust distributions and repeat.

CP Belief Propagation could lead to near-uniform sampling.
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Neuro-Symbolic AI

Neural networks (NN) dealing with hard/deterministic combinatorial
structure

Ex: computer code generation, safe robotics, drug discovery

Data-driven + Model-driven

Combinatorial solvers

can tell whether or not a NN output satisfies the constraints

are expensive to run (answer an NP-hard question)
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Neuro-Symbolic AI

Neural networks (NN) dealing with hard/deterministic combinatorial
structure

Ex: computer code generation, safe robotics, drug discovery

Data-driven + Model-driven

CP (among combinatorial solvers)

can identify certain NN outputs that cannot satisfy the constraints

runs in polytime because we don’t ask for a sat check
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Neuro-Symbolic AI

Neural networks (NN) dealing with hard/deterministic combinatorial
structure

Ex: computer code generation, safe robotics, drug discovery

Data-driven + Model-driven

Marginals-augmented CP

more discriminating between possible NN outputs

combines more naturally with NN outputs

runs in polytime as well

G. Pesant (Weighted) Counting and Marginals in CP SAT and Beyond, April 2023 60 / 65



Inference: Adjusting NN’s Learned pmf given Constraints

inputs to CP-BP solver

constraints that you wish to enforce

sequence so far (fixed variables)

probability mass function for next token (unary constraint)
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Inference: Adjusting NN’s Learned pmf given Constraints

output of CP-BP solver, after iterated BP (no branching)

adjusted probability mass function (marginals),
from which the next token is sampled
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Inference: Adjusting NN’s Learned pmf given Constraints

results

generated sequence satisfies constraints
without straying too far from training data
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Training: Fine-Tuning an RNN given Constraints, using RL

reward function for action a

rnn+marginals+violations: log(p(a|s)) + c1 · (c2 · θ̂(a)−
∑

v(a))
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Conclusion

Q- What is the distinctive driving force behind CP?

A- Direct access to problem structure from high-level constraints

What can we do with this knowledge?

stronger search-space reduction

better guidance to find solutions

near-uniform sampling of solution set

natural interface with neural networks

. . .
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