Exploiting Combinatorial Structure in Constraint Programming:

Beyond Domain Filtering to Counting and Marginals

Gilles Pesant

Polytechnique Montréal, Montreal, Canada gilles.pesant@polymtl.ca

Satisfiability: Theory, Practice, and Beyond Simons Institute, UC Berkeley, USA

April 17-21 2023

Outline

(1) Exposed Combinatorial Structure in CP
(2) (Weighted) Counting

- Compact representation of the solution set
- Sampling (interleaved with domain filtering)
- Use existing theoretical result
- Domain relaxation
(3) CP-BP Framework
- A Small Example
- Branching for Combinatorial Search
- (Near-)Uniform Sampling
- Neuro-Symbolic AI
(4) Conclusion

Outline

(1) Exposed Combinatorial Structure in CP

(2) (Weighted) Counting

- Compact representation of the solution set
- Sampling (interleaved with domain filtering)
- Use existing theoretical result
- Domain relaxation
(3) CP-BP Framework
- A Small Example
- Branching for Combinatorial Search
- (Near-)Uniform Sampling
- Neuro-Symbolic AI

4 Conclusion

Model-based combinatorial solving paradigms

$$
\begin{aligned}
& \text { SAT } \\
& \text { lots of } \quad x_{1} \vee x_{2} \vee \overline{x_{3}}
\end{aligned}
$$

Integer Programming

lots of
$3 x_{1}-2 x_{2}+5 x_{3} \leq 10$

Constraint Programming

not so many
constraints in heterogeneous syntax

Constraint Programming Models

Round-robin tournament (TTPPV)

```
array[Teams,Rounds] of var Teams: opponent;
array[Teams,Rounds] of var 1..2: venue;
forall (i in Teams, k in Rounds) (venue[i,k] = pv[i,opponent[i,k]]);
forall (i in Teams, k in Rounds) (opponent[i,k] f i);
forall (i in Teams, k in Rounds) (opponent[opponent[i,k],k] = i);
forall (i in Teams) (alldifferent([opponent[i,k] | k in Rounds]));
forall (i in Teams) (regular( [venue[i,k] | k in Rounds], automaton));
```


Moving furniture

array[Objects] of var O..availableTime: start;
var O..availableTime: end;
cumulative(start, duration, handlers, availableHandlers);
cumulative(start, duration, trolleys, availableTrolleys);
forall (o in Objects) (start[o] + duration[o] \leq end);
solve minimize end;

Constraint Programming

Q- What is the distinctive driving force behind CP?
A- Direct access to problem structure from high-level constraints

Constraint Programming

Q- What is the distinctive driving force behind CP?
A- Direct access to problem structure from high-level constraints

How does one nominate these high-level constraints?

- complex enough to provide structural insight
- simple enough for some desired computing tasks to remain tractable

Constraint Programming

Q- What is the distinctive driving force behind CP?
A- Direct access to problem structure from high-level constraints

How does one nominate these high-level constraints?

- complex enough to provide structural insight
- simple enough for some desired computing tasks to remain tractable

What sort of thing does one wish to compute about constraints?

- satisfiability: "Is there any solution to constraint c?"
- domain filtering: "Any solution to c s.t. variable x takes value d ?"
- ...
- "How many solutions are there to c ?"
- "How many solutions in which $x=d$?"

Using Global Constraints (a.k.a. Structure) in CP

Consider a simple constraint on finite-domain variables X and Y.

Using Global Constraints (a.k.a. Structure) in CP

Consider a simple constraint on finite-domain variables X and Y.

domain filtering \equiv projecting solutions on individual variables

Using Global Constraints (a.k.a. Structure) in CP

Consider a simple constraint on finite-domain variables X and Y.

X
same "outside information", but very different set of solutions

Using Global Constraints (a.k.a. Structure) in CP

Now consider the set of solutions as a multivariate discrete distribution.

marginals \equiv projecting that distribution on individual variables

Using Global Constraints (a.k.a. Structure) in CP

Now consider the set of solutions as a multivariate discrete distribution.

A possible branching heuristic: on a mode of the marginal distributions

Using Global Constraints (a.k.a. Structure) in CP

Now consider the set of solutions as a multivariate discrete distribution.

A possible branching heuristic: on a mode of the marginal distributions

Using Global Constraints (a.k.a. Structure) in CP

Now consider the set of solutions as a multivariate discrete distribution.

Technically, we need to count solutions: 5 out of 22 solutions

Outline

(1) Exposed Combinatorial Structure in CP

(2) (Weighted) Counting

- Compact representation of the solution set
- Sampling (interleaved with domain filtering)
- Use existing theoretical result
- Domain relaxation
(3) CP-BP Framework
- A Small Example
- Branching for Combinatorial Search
- (Near-)Uniform Sampling
- Neuro-Symbolic AI
(9) Conclusion

Outline

(1) Exposed Combinatorial Structure in CP

(2) (Weighted) Counting

- Compact representation of the solution set
- Sampling (interleaved with domain filtering)
- Use existing theoretical result
- Domain relaxation
(3) CP-BP Framework
- A Small Example
- Branching for Combinatorial Search
- (Near-)Uniform Sampling
- Neuro-Symbolic AI
(4) Conclusion

regular constraint

Definition

The regular (X, Π) constraint holds if the values taken by the (finite) sequence of finite-domain variables $X=\left\langle x_{1}, x_{2}, \ldots, x_{k}\right\rangle$ spell out a word belonging to the regular language defined by the deterministic finite automaton $\Pi=\left(Q, \Sigma, \delta, q_{0}, F\right)$

Example

Domain Filtering on regular constraints

One-to-one correspondence between paths and solutions

Counting Solutions of regular constraints

Layered graph

Each node contains:

"\#ip;\#op"
\#ip nb of incoming paths from initial state
\#op nb of outgoing paths to final state

Recurrence relation

$$
\begin{aligned}
\# i p\left(1, q_{0}\right) & =1 \\
\# i p\left(\ell+1, q^{\prime}\right) & =\sum_{\left(v_{\ell, q}, v_{\ell+1, q^{\prime}}\right) \in A} \# i p(\ell, q), \quad 1 \leq \ell \leq n
\end{aligned}
$$

Counting All Solutions

Counting solutions such that $x_{3}=d \quad$ (marginal, bias)

$$
\begin{gathered}
\theta_{x_{3}}(\text { red })= \\
\frac{2}{19}
\end{gathered}
$$

Counting solutions such that $x_{3}=d \quad$ (marginal, bias)

$$
\begin{gathered}
\theta_{x_{3}}(\text { red })= \\
\frac{2+4}{19}
\end{gathered}
$$

Counting solutions such that $x_{3}=d \quad$ (marginal, bias)

$$
\begin{array}{r}
\theta_{x_{3}}(\text { red })= \\
\frac{2+4+2}{19}
\end{array}
$$

Counting solutions such that $x_{3}=$
 (marginal, bias)

$$
\begin{aligned}
& \theta_{x_{3}}(\mathrm{red})= \\
& \quad \frac{2+4+2+2}{19}=\frac{10}{19}
\end{aligned}
$$

Marginal probability of $x_{3}=$ red in a solution chosen uniformly at random

Counting solutions such that $x_{3}=$
 (marginal, bias)

$$
\begin{aligned}
& \theta_{x_{3}}(\mathrm{red})= \\
& \quad \frac{2+4+2+2}{19}=\frac{10}{19}
\end{aligned}
$$

Marginal probability of $x_{3}=$ red in a solution chosen uniformly at random So, counting solutions doesn't cost much more here.

Weighted Counting

Layered graph

each arc a now has a positive weight w_{a} weight of path $=$ product of arc weights

Each node contains:

\#ip sum of weighted incoming paths from initial state
\#op sum of weighted outgoing paths to final state

Recurrence relation

$$
\begin{aligned}
\# i p\left(1, q_{0}\right) & =1 \\
\# i p\left(\ell+1, q^{\prime}\right) & =\quad \sum \quad w_{a} \times \# i p(\ell, q), \quad 1 \leq \ell \leq n
\end{aligned}
$$

$$
a:\left(v_{\ell, q}, v_{\ell+1, q^{\prime}}\right) \in A
$$

Outline

(1) Exposed Combinatorial Structure in CP
(2) (Weighted) Counting

- Compact representation of the solution set
- Sampling (interleaved with domain filtering)
- Use existing theoretical result
- Domain relaxation
(3) CP-BP Framework
- A Small Example
- Branching for Combinatorial Search
- (Near-)Uniform Sampling
- Neuro-Symbolic AI

4) Conclusion

alldifferent constraint

Definition

The alldifferent (X) constraint holds if the values taken by the set of finite domain variables $X=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ are distinct.

Value graph

Adjacency Matrix

$$
\mathbf{A}=\left(\begin{array}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

alldifferent constraint

Definition

The alldifferent (X) constraint holds if the values taken by the set of finite domain variables $X=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ are distinct.

Value graph

Adjacency Matrix

$$
\mathbf{A}=\left(\begin{array}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

alldifferent constraint

Domain filtering bipartite graph matching + depth-first search

alldifferent constraint

Domain filtering

bipartite graph matching + depth-first search

But now counting solutions cost significantly more

Counting with alldifferent

Its number of solutions is the same as...

- the number of perfect matchings in the bipartite graph
- the permanent of the adjacency matrix

$$
\operatorname{per}(A)=\sum_{\sigma \in S_{n}} \prod_{i} a_{i, \sigma(i)}
$$

Counting with alldifferent

Its number of solutions is the same as...

- the number of perfect matchings in the bipartite graph
- the permanent of the adjacency matrix

$$
\operatorname{per}(A)=\sum_{\sigma \in S_{n}} \prod_{i} a_{i, \sigma(i)}
$$

Remark

It is a \#P-complete problem, that is, it cannot be computed in polynomial time (under reasonable theoretical assumptions)

Sampling

Rasmussen's Estimator

$$
\begin{aligned}
& \text { if } n=0 \text { then } \\
& \mid \quad X_{A}=1
\end{aligned}
$$

else

$$
W=\left\{j: a_{1, j}=1\right\}
$$

if $W=\emptyset$ then

$$
X_{A}=0
$$

else
Choose j u.a.r. from W
Compute $X_{A_{1, j}}$ $X_{A}=|W| \cdot X_{A_{1, j}}$

Rasmussen's estimator

Example

$$
\mathbf{A}=\left(\begin{array}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

Rasmussen's estimator

Example

$$
\mathbf{A}=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right) \quad \begin{gathered}
|W| \\
3 \\
1
\end{gathered}
$$

Rasmussen's estimator

Example

$$
\mathbf{A}=\left(\begin{array}{llll}
& & & \\
& & & \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right) \quad \begin{gathered}
|W| \\
3
\end{gathered}
$$

Rasmussen's estimator

Example

$$
\mathbf{A}=\left(\begin{array}{ccc}
& & \\
& & \\
& & \\
& & \\
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right) \quad \begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
$$

Rasmussen's estimator

Example

$$
\mathbf{A}=\left(\begin{array}{lll}
& & \\
& & \\
& 1 & 1 \\
1 & 1
\end{array}\right) \quad \begin{aligned}
& 3 \\
& 1 \\
& 1 \\
& 1 \\
& 2
\end{aligned}
$$

Rasmussen's estimator

Example

$$
\mathbf{A}=\left(\begin{array}{c}
|W| \\
\\
\\
\\
\\
1
\end{array}\right) \quad \begin{gathered}
\mid W \\
1 \\
1 \\
1 \\
2 \\
1
\end{gathered}
$$

Rasmussen's estimator

Example

$$
\mathbf{A}=\left(\begin{array}{c}
|W| \\
\\
\end{array}\right)
$$

```
XA}=
```


Rasmussen's estimator properties

Properties

- It works well for "almost" all dense matrices
- Poor results in some special cases

$$
\mathbf{U}=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
& 1 & \ldots & 1 \\
& & \ddots & \vdots \\
& & & 1
\end{array}\right)
$$

Adding domain filtering

Modified Rasmussen

if $n=0$ then
$X_{A}=1$
else
Domain filtering on A
Choose i u.a.r. from $\{1 \ldots n\}$
$W=\left\{j: a_{i, j}=1\right\}$
if $W=\emptyset$ then
| $X_{A}=0$
else
Choose j u.a.r. from W Compute $X_{A_{i, j}}$ $X_{A}=|W| \cdot X_{A_{i, j}}$
,
helps avoiding dead ends $(W=\emptyset)$
"

Adding domain filtering

Modified Rasmussen

if $n=0$ then
| $X_{A}=1$
else
Domain filtering on A
Choose i u.a.r. from $\{1 \ldots n\}$
$W=\left\{j: a_{i, j}=1\right\}$
if $W=\emptyset$ then
$X_{A}=0$
else
Choose j u.a.r. from W Compute $X_{A_{i, j}}$ $X_{A}=|W| \cdot X_{A_{i, j}}$
helps avoiding dead ends

$$
(W=\emptyset)
$$

Number of solutions

$$
\# \text { alldiff }\left(x_{1}, \ldots, x_{n}\right) \approx E\left(X_{A}\right)
$$

Marginals by sampling

$$
\theta_{x_{i}}(d) \approx \frac{\left|S_{x_{i}, d}\right|}{|S|}
$$

Weighted Counting with alldifferent

Weighted Rasmussen

if $n=0$ then
| $X_{A}=1$
else
Domain filtering on A
Choose i u.a.r. from $\{1 \ldots n\}$
$W=\left\{j: a_{i, j}>0\right\}$
if $W=\emptyset$ then

$$
X_{A}=0
$$

else
Choose j from W randomly according to the distribution of weights
Compute $X_{A_{i, j}}$ $X_{A}=\left(\sum_{j \in W} a_{i, j}\right) \cdot X_{A_{i, j}}$

Outline

(1) Exposed Combinatorial Structure in CP

(2) (Weighted) Counting

- Compact representation of the solution set
- Sampling (interleaved with domain filtering)
- Use existing theoretical result
- Domain relaxation

3 CP-BP Framework

- A Small Example
- Branching for Combinatorial Search
- (Near-)Uniform Sampling
- Neuro-Symbolic AI
(4) Conclusion

Counting with alldifferent

alldifferent $\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$

There are known upper bounds for the permanent of 0-1 matrices.

Counting with alldifferent

Minc-Brègman

$$
\operatorname{perm}(A) \leq \prod_{i=1}^{m}\left(r_{i}!\right)^{1 / r_{i}}
$$

where $r_{i}=$ number of 1 's in row i
Liang-Bai

$$
\operatorname{perm}(A)^{2} \leq \prod_{i=1}^{m} q_{i}\left(r_{i}-q_{i}+1\right)
$$

where $q_{i}=\min \left\{\left\lceil\frac{r_{i}+1}{2}\right\rceil,\left\lceil\frac{i}{2}\right\rceil\right\}$

Weighted Counting with alldifferent

alldifferent $\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$

$$
\begin{aligned}
& X_{1} \in\{a, b, c\} \\
& X_{2} \in\{b, d\} \\
& X_{3} \in\{b, d\} \\
& X_{4} \in\{a, c, d\}
\end{aligned}
$$

\Longrightarrow| | | a | b | c | d |
| :---: | :---: | ---: | ---: | ---: | ---: |
| | X_{1} | .3 | .6 | .1 | 0 |
| X_{2} | 0 | .2 | 0 | .8 | |
| | X_{3} | 0 | .5 | 0 | .5 |
| | X_{4} | .4 | 0 | .3 | .3 |

Upper bound for the permanent of nonnegative matrices:

Soules (U^{3})

$$
\operatorname{perm}(A) \leq \prod_{i=1}^{m} t_{i} \cdot g\left(s_{i} / t_{i}\right)
$$

where $s_{i}=$ sum of elements in row i
and $t_{i}=$ maximum element in row i

Weighted Counting with alldifferent

alldifferent $\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$

$$
\begin{array}{lll}
X_{1} \in\{a, b, c\} & \\
X_{2} \in\{b, d\} & \theta_{X_{1}(a)}^{\longrightarrow} \\
X_{3} \in\{b, d\} & \\
X_{4} \in\{a, c, d\} &
\end{array}
$$

		a	b	c	d
$A:$	X_{1}	.3	.6	.1	0
	X_{2}	0	.2	0	.8
	X_{3}	0	.5	0	.5
	X_{4}	.4	0	.3	.3

Upper bound for the permanent of nonnegative matrices:

Soules (U^{3})

$$
\operatorname{perm}(A) \leq \prod_{i=1}^{m} t_{i} \cdot g\left(s_{i} / t_{i}\right)
$$

where $s_{i}=$ sum of elements in row i and $t_{i}=$ maximum element in row i

spanning_tree constraint

Definition

Given an undirected graph $G(V, E)$ and set variable $T \subseteq E$, constraint spanning_tree (G, T) restricts T to be a spanning tree of G.

(a) G

(b) T

Matrix-Tree Theorem

Laplacian matrix of the graph:

$$
\left(\begin{array}{ccccc}
3 & -1 & 0 & -1 & -1 \\
-1 & 3 & -1 & -1 & 0 \\
0 & -1 & 2 & -1 & 0 \\
-1 & -1 & -1 & 4 & -1 \\
-1 & 0 & 0 & -1 & 2
\end{array}\right)
$$

Counting all solutions

Kirchhoff's Matrix-Tree Theorem

Any minor of the Laplacian is equal to the number of spanning trees (in absolute value)

21

Counting solutions excluding a given edge (i, j)

\#spanning trees $(G \backslash\{(1,5)\})$

$$
\left(\begin{array}{ccccc}
3 & -1 & 0 & -1 & -1 \\
-1 & 3 & -1 & -1 & 0 \\
0 & -1 & 2 & -1 & 0 \\
-1 & -1 & -1 & 4 & -1 \\
-1 & 0 & 0 & -1 & 2
\end{array}\right)\left(\begin{array}{ccccc}
2 & -1 & 0 & -1 & 0 \\
-1 & 3 & -1 & -1 & 0 \\
0 & -1 & 2 & -1 & 0 \\
-1 & -1 & -1 & 4 & -1 \\
0 & 0 & 0 & -1 & 1
\end{array}\right)
$$

Counting solutions excluding a given edge (i, j)

let's take a minor with row/column i removed (here, $\mathrm{i}=1$):

this determinant differs in only one entry from that for G

Counting solutions excluding a given edge (i, j)

Sherman-Morrison formula

$$
\operatorname{det}\left(M^{\prime}\right)=\left(1+e_{j}^{\top} M^{-1}\left(u-(M)_{j}\right)\right) \operatorname{det}(M)
$$

In our case this simplifies to $\operatorname{det}\left(M^{\prime}\right)=\left(1-m_{j j}^{-1}\right) \operatorname{det}(M)$.

So

$$
\frac{\# \text { spanning trees }(G \backslash\{(i, j)\})}{\# \text { spanning } \operatorname{trees}(G)}=\frac{\left(1-m_{j j}^{-1}\right) \operatorname{det}(M)}{\operatorname{det}(M)}=1-m_{j j}^{-1}
$$

Counting solutions excluding a given edge (i, j)

One matrix inversion for all edges incident to a given vertex

Example

Let M be the sub-matrix of L obtained by removing its first row and
column as before. Then $M^{-1}=\left(\begin{array}{rrrr}12 / 21 & 9 / 21 & 8 / 21 & 3 / 21 \\ 9 / 21 & 19 / 21 & 8 / 21 & 4 / 21 \\ 6 / 21 & 8 / 21 & 10 / 21 & 5 / 21 \\ 3 / 21 & 4 / 21 & 5 / 21 & 13 / 21\end{array}\right)$

_spanning_tree constraint

- 3 spanning trees of cost 5 .
- 6 spanning trees of cost 6 .
- 7 spanning trees of cost 7 .
- 3 spanning trees of cost 8 .
- 2 spanning trees of cost 9 .

_spanning_tree constraint

Trees of cost 5

Trees of cost 6

Generalized Matrix-Tree Theorem

Generalized Laplacian matrix of the graph:

$$
\left(\begin{array}{ccccc}
x^{2}+x^{3}+x^{1} & -x^{2} & 0 & -x^{3} & -x^{1} \\
-x^{2} & x^{2}+2 x^{1} & -x^{1} & -x^{1} & 0 \\
0 & -x^{1} & 2 x^{1} & -x^{1} & 0 \\
-x^{3} & -x^{1} & -x^{1} & 2 x^{3}+2 x^{1} & -x^{3} \\
-x^{1} & 0 & 0 & -x^{3} & x^{1}+x^{3}
\end{array}\right)
$$

Generalized Matrix-Tree Theorem

$$
\left|\begin{array}{ccccc}
x^{2}+x^{3}+x^{1} & x^{2} & 0 & -x^{3} & -x^{1} \\
-x^{2} & x^{2}+2 x^{1} & -x^{1} & -x^{1} & 0 \\
0 & -x^{1} & 2 x^{1} & -x^{1} & 0 \\
-x^{3} & -x^{1} & -x^{1} & 2 x^{3}+2 x^{1} & -x^{3} \\
--x^{1} & 0 & 0 & -x^{3} & x^{1}+x^{3}
\end{array}\right|
$$

$$
=3 x^{5}+6 x^{6}+7 x^{7}+3 x^{8}+2 x^{9}
$$

Generalized Matrix-Tree Theorem

$$
3 x^{5}+6 x^{6}+7 x^{7}+3 x^{8}+2 x^{9}
$$

- 3 spanning trees of cost 5
- 6 spanning trees of cost 6
- 7 spanning trees of cost 7
- 3 spanning trees of cost 8
- 2 spanning trees of cost 9

Generalized Matrix-Tree Theorem

$$
3 x^{5}+6 x^{6}+7 x^{7}+3 x^{8}+2 x^{9}
$$

- 3 spanning trees of cost 5
- 6 spanning trees of cost 6
- 7 spanning trees of cost 7
- 3 spanning trees of cost 8
- 2 spanning trees of cost 9

Counting (good) solutions

In practice we don't compute determinants or inverses
over matrices with polynomial entries:
we fix x to some real value in $] 0,1] \ldots$

... fall back to scalar entries and then invert some matrices.

Outline

(1) Exposed Combinatorial Structure in CP

(2) (Weighted) Counting

- Compact representation of the solution set
- Sampling (interleaved with domain filtering)
- Use existing theoretical result
- Domain relaxation
(3) CP-BP Framework
- A Small Example
- Branching for Combinatorial Search
- (Near-)Uniform Sampling
- Neuro-Symbolic AI
(4) Conclusion

knapsack constraint

Definition

The knapsack $(\mathbf{x}, \mathbf{c}, \ell, u)$ constraint holds if $\ell \leq \sum_{i=1}^{n} c_{i} x_{i} \leq u$.

To count solutions, we can proceed as for regular constraints (compact representation of solutions) but it now runs in pseudo-polynomial time (w.r.t. ℓ and u).

Can still be fine if numerical values are not too large, and otherwise...

Counting for knapsack

- Express variable in terms of other variables:
$\ell \leq \sum_{i=1}^{n} c_{i} x_{i} \leq u$ is rewritten as
$x_{j}=\frac{1}{c_{j}}\left(x_{n+1}-\sum_{i=1}^{j-1} c_{i} x_{i}-\sum_{i=j+1}^{n} c_{i} x_{i}\right)$ with $x_{n+1} \in[\ell, u]$.
- Relax domains to intervals
- Assume values in domains are equiprobable (uniform distribution)
- x_{j} follows normal distribution (C.L.T.)

But our assumption doesn't hold for weighted counting

Counting for knapsack

Example

Histogram is actual distribution of $3 x+4 y+2 z$ for $x, y, z \in[0,5]$. Curve is approximation given by Gaussian curve with mean $\mu=22.5$ and variance $\sigma^{2}=84.583$.

Outline

(1) Exposed Combinatorial Structure in CP

(2) (Weighted) Counting

- Compact representation of the solution set
- Sampling (interleaved with domain filtering)
- Use existing theoretical result
- Domain relaxation
(3) CP-BP Framework
- A Small Example
- Branching for Combinatorial Search
- (Near-)Uniform Sampling
- Neuro-Symbolic AI
(4) Conclusion

CP-BP Framework

Moving beyond standard support propagation to
belief (marginal) propagation

Marginal (Belief) Propagation

- propagate marginal distributions over single variables
- iteratively adjust each constraint's marginals
- until some stopping criterion

Marginal (Belief) Propagation

- propagate marginal distributions over single variables
- iteratively adjust each constraint's marginals
- until some stopping criterion

How do we compute such marginal distributions?

Corresponds to weighted model counting on each constraint

Outline

(1) Exposed Combinatorial Structure in CP

(5) (Weighted) Counting

- Compact representation of the solution set
- Sampling (interleaved with domain filtering)
- Use existing theoretical result
- Domain relaxation
(3) CP-BP Framework
- A Small Example
- Branching for Combinatorial Search
- (Near-)Uniform Sampling
- Neuro-Symbolic AI
(4) Conclusion

Belief Propagation over the CP Model

constraints over variables $a, b, c, d \in\{1,2,3,4\}$:

(1) alldifferent (a, b, c)
(1) $a+b+c+d=7$
(i) $c \leq d$

$$
\begin{array}{rr}
\text { support (solution) } & \text { weight } \\
\hline d=3 & 1 \\
d=4 & 1 \\
\hline & \sum=2
\end{array}
$$

2 out of 10 solutions to iii

Belief Propagation over the CP Model

constraints over variables $a, b, c, d \in\{1,2,3,4\}$:

(1) alldifferent (a, b, c)
(1) $a+b+c+d=7$
(1) $c \leq d$

		1	2	3	4
\boldsymbol{a}	θ_{a}^{i}	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$
	$\theta_{a}^{i l}$	$10 / 20$	$6 / 20$	$3 / 20$	$1 / 20$
b	θ_{b}^{i}	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$
	$\theta_{b}^{i i}$	$10 / 20$	$6 / 20$	$3 / 20$	$1 / 20$
\boldsymbol{C}	θ_{c}^{1}	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$
	$\theta_{c}^{i i}$	$10 / 20$	$6 / 20$	$3 / 20$	$1 / 20$
	$\theta_{c}^{i i i}$	$4 / 10$	$3 / 10$	$\mathbf{2 / 1 0}$	$1 / 10$
d	$\theta_{d}^{i i}$	$10 / 20$	$6 / 20$	$3 / 20$	$1 / 20$
	$\theta_{d}^{i i i}$	$1 / 10$	$2 / 10$	$3 / 10$	$4 / 10$

Belief Propagation over the CP Model

constraints over variables $a, b, c, d \in\{1,2,3,4\}$:

(1) alldifferent (a, b, c)
(1) $a+b+c+d=7$
(i) $c \leq d$

		1	2	3	4
c	θ_{c}^{i}	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$
	$\theta_{c}^{i i}$	$10 / 20$	$6 / 20$	$3 / 20$	$1 / 20$
	$\theta_{c}^{i i i}$	$4 / 10$	$3 / 10$	$2 / 10$	$1 / 10$
	θ_{c}	$\mathbf{4 0 / 8 0 0}$	$\mathbf{1 8 / 8 0 0}$	$\mathbf{6} / \mathbf{8 0 0}$	$\mathbf{1 / 8 0 0}$

Belief Propagation over the CP Model

constraints over variables $a, b, c, d \in\{1,2,3,4\}$:

(1) alldifferent (a, b, c)
(1) $a+b+c+d=7$
(1) $c \leq d$

		1	2	3	4
c	θ_{c}^{i}	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$
	$\theta_{c}^{i i}$	$10 / 20$	$6 / 20$	$3 / 20$	$1 / 20$
	$\theta_{c}^{i i i}$	$4 / 10$	$3 / 10$	$2 / 10$	$1 / 10$
	θ_{c}	$\mathbf{. 6 2}$	$\mathbf{. 2 8}$	$\mathbf{. 0 9}$	$\mathbf{. 0 1}$

Belief Propagation over the CP Model

constraints over variables $a, b, c, d \in\{1,2,3,4\}$:

(1) alldifferent (a, b, c)
(1) $a+b+c+d=7$
(1) $c \leq d$

Iteration 1

	1	2	3	4
θ_{a}	.50	.30	.15	.05
θ_{b}	.50	.30	.15	.05
θ_{c}	. $\mathbf{6 2}$.28	.09	.01
θ_{d}	.29	.34	.26	.11

Belief Propagation over the CP Model

constraints over variables $a, b, c, d \in\{1,2,3,4\}$:

(1) alldifferent (a, b, c)
(1) $a+b+c+d=7$
(1) $c \leq d$

		1	2	3	4
	\vdots				
d	$\theta_{d}^{i d}$	$10 / 20$	$6 / 20$	$3 / 20$	$1 / 20$

Belief Propagation over the CP Model

constraints over variables $a, b, c, d \in\{1,2,3,4\}$:

(1) alldifferent (a, b, c)
(1) $a+b+c+d=7$
(1) $c \leq d$

Iteration 10

	1	2	3	4
θ_{a}	.01	.52	.46	.01
θ_{b}	.01	.52	.46	.01
θ_{c}	.98	.02	.00	.00
θ_{d}	.90	.10	.00	.00

Belief Propagation over the CP Model

constraints over variables $a, b, c, d \in\{1,2,3,4\}$:

(1) alldifferent (a, b, c)
(1) $a+b+c+d=7$
(i) $c \leq d$

True marginals (solutions 2,3,1,1 and 3,2,1,1)

	1	2	3	4
θ_{a}	0	$1 / 2$	$1 / 2$	0
θ_{b}	0	$1 / 2$	$1 / 2$	0
θ_{c}	1	0	0	0
θ_{d}	1	0	0	0

Outline

(1) Exposed Combinatorial Structure in CP

(5) (Weighted) Counting

- Compact representation of the solution set
- Sampling (interleaved with domain filtering)
- Use existing theoretical result
- Domain relaxation
(3) CP-BP Framework
- A Small Example
- Branching for Combinatorial Search
- (Near-)Uniform Sampling
- Neuro-Symbolic AI
(9) Conclusion

Branching for Combinatorial Search

Binary branching: $\quad x_{i}=d_{j} \quad \vee \quad x_{i} \neq d_{j}$

min-entropy

(1) choose variable minimizing the entropy of the marginal distribution over its domain:

$$
i=\operatorname{argmin}_{x \in X}-\sum_{d \in D(x)} \theta_{x}(d) \log \left(\theta_{x}(d)\right)
$$

(2) choose value maximizing the marginal:

$$
j=\operatorname{argmax}_{d \in D\left(x_{i}\right)} \theta_{x_{i}}(d)
$$

Outline

(1) Exposed Combinatorial Structure in CP

(5) (Weighted) Counting

- Compact representation of the solution set
- Sampling (interleaved with domain filtering)
- Use existing theoretical result
- Domain relaxation
(3) CP-BP Framework
- A Small Example
- Branching for Combinatorial Search
- (Near-)Uniform Sampling
- Neuro-Symbolic AI
(4) Conclusion

(Near-)Uniform Sampling

sample solutions uniformly at random

Given true marginal distributions:
pick any variable; pick a value according to its marginal distribution; adjust distributions and repeat.

CP Belief Propagation could lead to near-uniform sampling.

Outline

(1) Exposed Combinatorial Structure in CP

(5) (Weighted) Counting

- Compact representation of the solution set
- Sampling (interleaved with domain filtering)
- Use existing theoretical result
- Domain relaxation
(3) CP-BP Framework
- A Small Example
- Branching for Combinatorial Search
- (Near-)Uniform Sampling
- Neuro-Symbolic AI
(4) Conclusion

Neuro-Symbolic AI

Neural networks (NN) dealing with hard/deterministic combinatorial structure

Ex: computer code generation, safe robotics, drug discovery

Data-driven + Model-driven

Combinatorial solvers

- can tell whether or not a NN output satisfies the constraints
- are expensive to run (answer an $\mathcal{N} \mathcal{P}$-hard question)

Neuro-Symbolic AI

Neural networks (NN) dealing with hard/deterministic combinatorial structure

Ex: computer code generation, safe robotics, drug discovery

Data-driven + Model-driven

CP (among combinatorial solvers)

- can identify certain NN outputs that cannot satisfy the constraints
- runs in polytime because we don't ask for a SAT check

Neuro-Symbolic AI

Neural networks (NN) dealing with hard/deterministic combinatorial structure

Ex: computer code generation, safe robotics, drug discovery

Data-driven + Model-driven

Marginals-augmented CP

- more discriminating between possible NN outputs
- combines more naturally with NN outputs
- runs in polytime as well

Inference: Adjusting NN's Learned PMF given Constraints

CMT

inputs to CP-BP solver

- constraints that you wish to enforce
- sequence so far (fixed variables)
- probability mass function for next token (unary constraint)

Inference: Adjusting NN's Learned PMF given Constraints

CMT

output of CP-BP solver, after iterated BP (no branching)

- adjusted probability mass function (marginals), from which the next token is sampled

Inference: Adjusting NN's Learned PMF given Constraints

CMT

results

- generated sequence satisfies constraints without straying too far from training data

Training: Fine-Tuning an RNN given Constraints, using RL

reward function for action a

rnn+marginals+violations: $\log (p(a \mid s))+c_{1} \cdot\left(c_{2} \cdot \hat{\theta}(a)-\sum v(a)\right)$

Outline

(1) Exposed Combinatorial Structure in CP
(2) (Weighted) Counting

- Compact representation of the solution set
- Sampling (interleaved with domain filtering)
- Use existing theoretical result
- Domain relaxation
(3) CP-BP Framework
- A Small Example
- Branching for Combinatorial Search
- (Near-)Uniform Sampling
- Neuro-Symbolic AI
(4) Conclusion

Conclusion

Q- What is the distinctive driving force behind CP?
A- Direct access to problem structure from high-level constraints

What can we do with this knowledge?

- stronger search-space reduction
- better guidance to find solutions
- near-uniform sampling of solution set
- natural interface with neural networks
- ...

Acknowledgements

Alliance de recherche numérique du Canada

Digital Research Alliance of Canada

