Introduction	Model	Best Responses	Line	Random Networks	Link Types	The End
00	0	00	00	000	0	0

Experimentation on Networks

Simon Board Moritz Meyer-ter-Vehn

UCLA

October 13, 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Introduction	Model	Best Responses	Line	Random Networks	Link Types	The End
•0	0	00	00	000	0	0

Motivation

Discovery and diffusion of innovations

- Farmers learn about new crop from neighbors (Griliches)
- Doctors learn about new drug from colleagues (Coleman et al)

Discovery and diffusion are tightly intertwined

- Both necessary for sustained progress (Mokyr)
- But social info crowds out acquisition (Grossman-Stiglitz)

Research questions

- How does social info crowd out private experimentation?
- How does network density impact aggregate learning?
- How does network architecture impact social welfare?

Introduction	Model	Best Responses	Line	Random Networks	Link Types	The End
00	0	00	00	000	0	0

Contribution

Canonical model of strategic experimentation

- Agents learn from own and neighbors' successes.
- ▶ Widely used class of networks (clique, trees, core-periphery).
- Agents forward-looking and fully Bayesian.

Takeaways

- Asymptotic learning decreasing in network density.
- Welfare single-peaked in network density.
- Compare learning dynamics and welfare across trees.

Some literature

Bala, Goyal (98), Rosenberg, Solan, Vieille (09), Sahlish (15)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▶ Keller, Rady, Cripps (05), Bonatti, Horner (11, 17)

Network

- Agents i = 1, ..., I in (possibly) random network G.
- Realized network g; neighbors $N_i(g)$.

Learning Game

- State $\theta \in \{L, H\}$ with prior $Pr(H) = p_0$.
- ▶ Private effort $A_{i,t} \in [0,1]$ at $t \in [0,\infty)$ at flow cost c.
- Successes at $\{T_i^{\iota}\}$ with rate $A_{i,t}\mathbb{I}_{\{\theta=H\}}$; payoff x > c to i.
- Observe own and neighbors' successes, and G but not g.

Agent *i*'s problem

$$V_i = \max_{\{A_{i,t}\}_{t \ge 0}} E\left[x \sum_{\iota=1}^{\infty} e^{-rT_i^{\iota}} - c \int_0^{\infty} e^{-rt} A_{i,t} dt\right]$$

Introduction	Model	Best Responses	Line	Random Networks	Link Types	The End
00	0	•0	00	000	0	0

Best Responses

The Experimentation Problem

- ▶ First success times: T_i for agent i, and S_i for her neighbors.
- Continuation value after success: y = (x c)/r.
- ▶ Before T_i, S_i , experimentation a_t^{\emptyset} and social learning

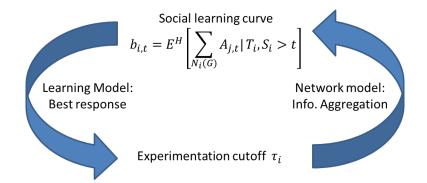
$$b_{i,t} := E^H \left[\sum_{j \in N_i(G)} A_{j,t} \middle| T_i, S_i > t \right]$$

Cutoff Strategies

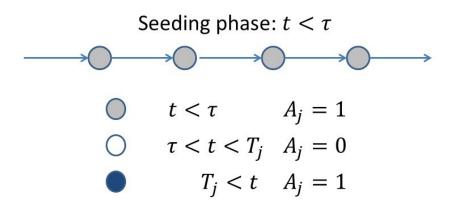
- A cutoff strategy $a_{i,t}^{\emptyset} = \mathbb{I}_{\{t < \tau_i\}}$ is uniquely optimal.
- At optimal cutoff τ_i , experimentation incentives vanish:

$$\psi_{i,\tau_i} := p_{i,\tau_i} \left(x + y - \frac{\beta_{i,\tau_i}}{\beta_{i,\tau_i} + r} y \right) - c = 0$$

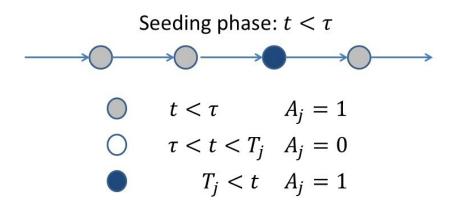
Illustration of Equilibrium Analysis



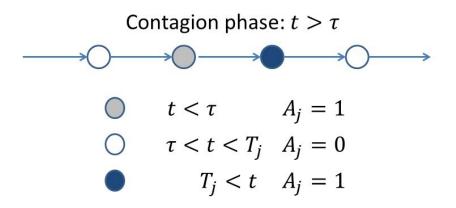
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @



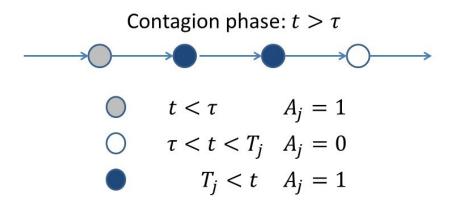
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで



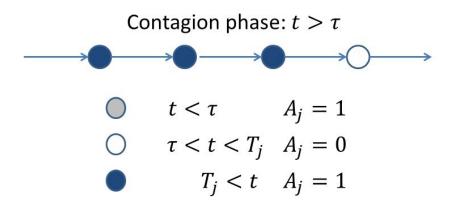
▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > のへで



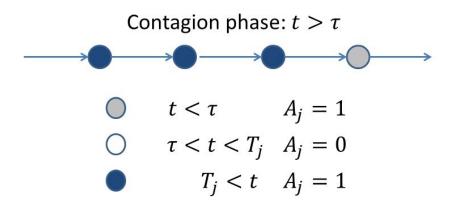
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで



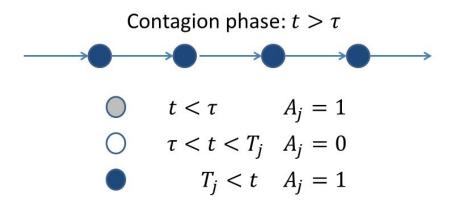
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @



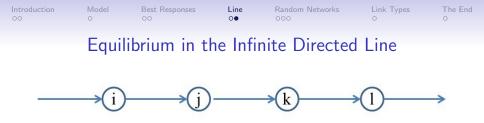
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @



• Assume symmetric cutoffs τ , and focus on $t > \tau$

Expected effort of i's neighbor j

$$a_t = E^H[A_{j,t}|t < T_i, S_i] = 1 - \Pr^H(t < T_k|t < T_j) = 1 - e^{-\tau}$$

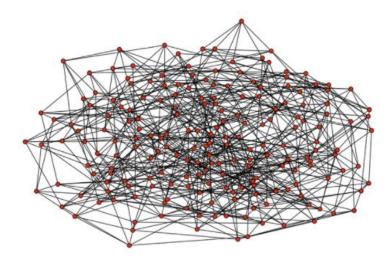
Equilibrium

$$P^{\emptyset}(2\tau)\left(x+\frac{r}{r+(1-e^{-\tau})}y\right)=c$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction	Model	Best Responses	Line	Random Networks	Link Types	The End
00	0	00	00	000	0	0

Illustration: Regular Random Network I = 200, n = 6



◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Introduction	Model	Best Responses	Line	Random Networks	Link Types	The End
00	0	00	00	000	0	0

Large Regular Random Networks

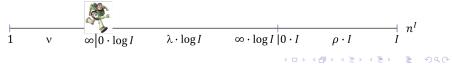
The Configuration Model

- I agents with n^I link stubs.
- Randomly connect pairs of stubs into undirected links.
- Unique equilibrium is symmetric; cutoff τ^I and value V^I .

Sequences of networks $\{n^I\}$ as $I\to\infty$

- Limit information $B := \lim \int_0^\infty b_t^I$ and welfare $V := \lim V^I$.
- Network density measures

$$\nu:=\lim n^I \qquad \lambda:=\lim (n^I/\log I) \qquad \rho:=1-e^{-\lim (n^I/I)}$$

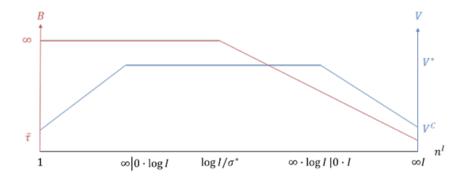


Introduction	Model	Best Responses	Line	Random Networks	Link Types	The End
00	0	00	00	000	0	0

Learning and Welfare as function of Density

Theorem 1.

Information B falls in density; attains ∞ iff $\lambda \leq 1/\sigma^*$ and $\rho = 0$. Welfare V is hump-shaped; attains V^* iff $\nu = \infty$ and $\rho = 0$.



・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э.

Introduction	Model	Best Responses	Line	Random Networks	Link Types	The End
00	0	00	00	000	0	0

Learning and Welfare as function of Density

Theorem 1.

Information B falls in density; attains ∞ iff $\lambda \leq 1/\sigma^*$ and $\rho = 0$. Welfare V is hump-shaped; attains V^* iff $\nu = \infty$ and $\rho = 0$.

Indifference when learning state at time- σ^*

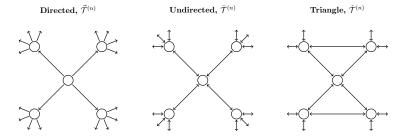
$$p_0\left(x + (1 - e^{-r\sigma^*})y\right) = c$$
 (or $\sigma^* = 0$ if $p_0 \ge \bar{p}$)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Tension between Learning and Welfare: Network must be...

- sparse to sustain information generation.
- ... dense for fast diffusion and welfare benchmark.

(Infinite Regular) Trees $\mathcal{T}^{(n)}$



Motivation

- Directed (Twitter), undirected (LinkedIn), cluster (Facebook)
- Approximate large random network (Sadler '20, BMtV '21)
- Highly tractable because of independence across neighbors

How does social learning depend on type of tree?

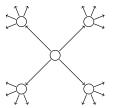
Introduction Model Best Responses Line Random Networks Link Types Th 00 0 00 00 00 000 ● 0

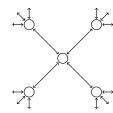
(Infinite Regular) Trees $\mathcal{T}^{(n)}$

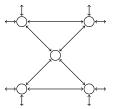
Directed, $\vec{\mathcal{T}}^{(n)}$

Undirected, $\bar{T}^{(n)}$

Triangle, $\hat{T}^{(n)}$







▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem 3.

 $\vec{V}^{(n)} > \bar{V}^{(n)} > \hat{V}^{(n)}$ $\vec{V}^{(n)} < \bar{V}^{(n+1)} < \hat{V}^{(n+2)}$

Introduction	Model	Best Responses	Line	Random Networks	Link Types	The End
00	0	00	00	000	0	•

Conclusion

An equilibrium model of experimentation on networks

- Forward-looking, fully Bayesian agents.
- Perfect good news learning lead to cutoff strategies.

Findings

- Asymptotic information decreases in network density.
- Welfare single-peaked in network density.
- Compare learning dynamics and welfare across trees.

Check out the paper for ...

- Core-periphery networks
- Learning dynamics