
Beyond SAT - Proofs for QBF, and more

Meena Mahajan

The Institute of Mathematical Sciences (HBNI), Chennai, India.

18 April 2023

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Talk Plan

Quanified Boolean Formulas (QBFs) and Formal Proofs

QBF basics

A Proof Complexity perspective

A QBF-Solving perspective

A Computational Complexity perspective

Some Questions / Directions / Speculations ...

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Talk Plan

Quanified Boolean Formulas (QBFs) and Formal Proofs

QBF basics

A Proof Complexity perspective

A QBF-Solving perspective

A Computational Complexity perspective

Some Questions / Directions / Speculations ...

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Talk Plan

Quanified Boolean Formulas (QBFs) and Formal Proofs

QBF basics

A Proof Complexity perspective

A QBF-Solving perspective

A Computational Complexity perspective

Some Questions / Directions / Speculations ...

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Quantified Boolean Formulas

Propositional satisfiability:
Is ϕ(x1, x2, . . . , xn) satisfiable?

Restated as QBF:
Is ∃x1∃x2 . . . ∃xnϕ(x1, x2, . . . , xn) true?

Generalise: allow ∀ quantifiers as well. For Qi ∈ {∃,∀},
Is Q1x1Q2x2 . . .Qnxnϕ(x1, x2, . . . , xn) true?

Same expressiveness as SAT, but more succinct.

Deciding True/False: PSPACE-complete.

We consider QBFs that are

totally quantified (no unbound variables),
(each such QBF either true or false)
in prenex form,
with inner propositional formula in CNF.

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Quantified Boolean Formulas

Propositional satisfiability:
Is ϕ(x1, x2, . . . , xn) satisfiable?

Restated as QBF:
Is ∃x1∃x2 . . . ∃xnϕ(x1, x2, . . . , xn) true?

Generalise: allow ∀ quantifiers as well. For Qi ∈ {∃,∀},
Is Q1x1Q2x2 . . .Qnxnϕ(x1, x2, . . . , xn) true?

Same expressiveness as SAT, but more succinct.

Deciding True/False: PSPACE-complete.

We consider QBFs that are

totally quantified (no unbound variables),
(each such QBF either true or false)
in prenex form,
with inner propositional formula in CNF.

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

The two-player evaluation game

QBF Q~x · F (~x)

Two players, P∃ and P∀, step through quantifier prefix left-to-right.
P∃ picks values for ∃ variables, P∀ for ∀ variables.

Assignment constructed on a run: ã.

P∃ wins a run of the game if F (ã) true. Otherwise P∀ wins.

Q~x · F (x) true if and only if P∃ has a winning strategy.
(model, Skolem function)

Q~x · F (x) false if and only if P∀ has a winning strategy.
(countermodel, Herbrand function)

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Talk Plan

Quanified Boolean Formulas QBFs and Formal Proofs

X QBF basics

A Proof Complexity perspective

A QBF-Solving perspective

A Computational Complexity perspective

Some Questions / Directions / Speculations ...

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Proof System

What we expect from a proof system:

Proofs should be short.

Proofs should be efficiently verifiable.

Soundness – no proofs of false statements.

Completeness – proofs of all true statements.

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Proof Systems for refuting QBFs

Propositional Proof Systems handle special case of QBFs.
They prove ∃ · CNF sentences false.

Augment to handle full prenex false QBFs.

Ensuring soundness: (augmented) rules allow extraction of a P∀
winning strategy (Herbrand function) from a proof.

Ensuring Completeness: different paradigms.

Expansion (∀ → ∧) – obvious semantics of universal variables
Universal reduction – preserves P∃ winning strategy if one exists
Literal Merging – implicitly remember P∀ winning strategy may be
complex
Explicitly building up P∀ winning strategy

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Proof Systems for refuting QBFs

Propositional Proof Systems handle special case of QBFs.
They prove ∃ · CNF sentences false.

Augment to handle full prenex false QBFs.

Ensuring soundness: (augmented) rules allow extraction of a P∀
winning strategy (Herbrand function) from a proof.

Ensuring Completeness: different paradigms.

Expansion (∀ → ∧) – obvious semantics of universal variables
Universal reduction – preserves P∃ winning strategy if one exists
Literal Merging – implicitly remember P∀ winning strategy may be
complex
Explicitly building up P∀ winning strategy

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Proof Systems for refuting QBFs

Propositional Proof Systems handle special case of QBFs.
They prove ∃ · CNF sentences false.

Augment to handle full prenex false QBFs.

Ensuring soundness: (augmented) rules allow extraction of a P∀
winning strategy (Herbrand function) from a proof.

Ensuring Completeness: different paradigms.

Expansion (∀ → ∧) – obvious semantics of universal variables
Universal reduction – preserves P∃ winning strategy if one exists
Literal Merging – implicitly remember P∀ winning strategy may be
complex
Explicitly building up P∀ winning strategy

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Proof Systems for refuting QBFs (by example)

∃x ∀u ∃y (x ∨ u ∨ y)(x̄ ∨ ū ∨ y)(ȳ)

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Proof Systems for refuting QBFs (by example)

∃x ∀u ∃y (x ∨ u ∨ y)(x̄ ∨ ū ∨ y)(ȳ)

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Proof Systems for refuting QBFs (by example)

∃x ∀u ∃y (x ∨ u ∨ y)(x̄ ∨ ū ∨ y)(ȳ)

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Proof Systems for refuting QBFs (by example)

∃x ∀u ∃y (x ∨ u ∨ y)(x̄ ∨ ū ∨ y)(ȳ)

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Proof Systems for refuting QBFs (by example)

∃x ∀u ∃y (x ∨ u ∨ y)(x̄ ∨ ū ∨ y)(ȳ)

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Some QBF Proof Systems – The simulation order

∀Exp+Res

IR

IRMMRes

LDQRes

QRes

QURes

LQU+Res

eFrege+∀Red

QRAT

(Accident of nomenclature: What is truly Resolution for QBFs?)
SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Augmenting PPS to QBF proof systems

Expansion works for any PPS.

Universal reduction, P + ∀red, works for most line-based PPS.

Literal merging: seems specific to Resolution, and not yet fully
understood.

Explicitly building up P∀ strategies: seems specific to Resolution, but
not fully understood.

Are there other undiscovered paradigms?

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Techniques for Lower Bounds

Transfer propositional hardness.

Transfer computational hardness.

Identify semantic hardness.

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Lower Bounds: Transferring Propositional Hardness

Inside every reasonable QBF proof system P,
there is an easily-described embedded PPS Q.

In a reasonable QBF proof system P, with underlying PPS Q,
for every UNSAT formula F ,
refuting ∃.F in P no easier than proving unsatisfiability of F in Q.

So we already have lower bounds.

Not “genuine QBF hardness”.

Feasible Interpolation gives lower bounds in many QBF systems.
Again, not “genuine QBF hardness”.

Prover-Delayer game-based arguments give lower bounds in treelike
QRes. Again, not “genuine QBF hardness”.

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Lower Bounds: Transferring Propositional Hardness

Inside every reasonable QBF proof system P,
there is an easily-described embedded PPS Q.

In a reasonable QBF proof system P, with underlying PPS Q,
for every UNSAT formula F ,
refuting ∃.F in P no easier than proving unsatisfiability of F in Q.

So we already have lower bounds.

Not “genuine QBF hardness”.

Feasible Interpolation gives lower bounds in many QBF systems.
Again, not “genuine QBF hardness”.

Prover-Delayer game-based arguments give lower bounds in treelike
QRes. Again, not “genuine QBF hardness”.

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Lower Bounds: Transferring Propositional Hardness

Inside every reasonable QBF proof system P,
there is an easily-described embedded PPS Q.

In a reasonable QBF proof system P, with underlying PPS Q,
for every UNSAT formula F ,
refuting ∃.F in P no easier than proving unsatisfiability of F in Q.

So we already have lower bounds.

Not “genuine QBF hardness”.

Feasible Interpolation gives lower bounds in many QBF systems.
Again, not “genuine QBF hardness”.

Prover-Delayer game-based arguments give lower bounds in treelike
QRes. Again, not “genuine QBF hardness”.

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Lower Bounds: Transferring Propositional Hardness

Inside every reasonable QBF proof system P,
there is an easily-described embedded PPS Q.

In a reasonable QBF proof system P, with underlying PPS Q,
for every UNSAT formula F ,
refuting ∃.F in P no easier than proving unsatisfiability of F in Q.

So we already have lower bounds.

Not “genuine QBF hardness”.

Feasible Interpolation gives lower bounds in many QBF systems.
Again, not “genuine QBF hardness”.

Prover-Delayer game-based arguments give lower bounds in treelike
QRes. Again, not “genuine QBF hardness”.

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

What is “Genuine QBF Hardness”?

Genuine QBF hardness –
not hardness stemming merely from underlying propositional hardness.
Formalising genuineness –

in expansion systems, seems natural.

in reduction systems: the NP-oracle.
Discount deduction steps that employ reasoning checkable by
reduction to SAT.

Effectively, count only reduction steps.

in systems using merging: Discount deduction steps that employ
reasoning without affecting partial information about P∀ winning
strategy.

Why stop at NP-oracle? Other oracles – hierarchy....

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

What is “Genuine QBF Hardness”?

Genuine QBF hardness –
not hardness stemming merely from underlying propositional hardness.
Formalising genuineness –

in expansion systems, seems natural.

in reduction systems: the NP-oracle.
Discount deduction steps that employ reasoning checkable by
reduction to SAT.

Effectively, count only reduction steps.

in systems using merging: Discount deduction steps that employ
reasoning without affecting partial information about P∀ winning
strategy.

Why stop at NP-oracle? Other oracles – hierarchy....

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Lower Bounds: Transferring Computational Hardness – 1

In many QBF systems, computational hardness can be transferred:
Efficient Strategy Extraction.

Key idea: Proofs contains information about P∀ winning strategies.

For a proof system P, find the correct circuit model M.
Refutations in P yield circuits in M for P∀ winning strategies.

Find function f in P/poly hard in M.

Using P/poly circuit description, construct false Σ3 formula where
winning strategy must compute f .

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Lower Bounds: Transferring Computational Hardness – 1

In many QBF systems, computational hardness can be transferred:
Efficient Strategy Extraction.

Key idea: Proofs contains information about P∀ winning strategies.

For a proof system P, find the correct circuit model M.
Refutations in P yield circuits in M for P∀ winning strategies.

Find function f in P/poly hard in M.

Using P/poly circuit description, construct false Σ3 formula where
winning strategy must compute f .

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Lower Bounds: Transferring Computational Hardness – 1

In many QBF systems, computational hardness can be transferred:
Efficient Strategy Extraction.

Key idea: Proofs contains information about P∀ winning strategies.

For a proof system P, find the correct circuit model M.
Refutations in P yield circuits in M for P∀ winning strategies.

Find function f in P/poly hard in M.

Using P/poly circuit description, construct false Σ3 formula where
winning strategy must compute f .

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Lower Bounds: Transferring Computational Hardness – 2

In C-Frege+∀red systems, only two sources of hardness:

propositional hardness of a related formula, or
C lower bounds.

From a proof in C-Frege+∀red, efficiently extract

a set of witnessing circuits in C, and
a propositional proof that the circuits compute a P∀ winning strategy
(witness validation).

No short proofs for QBFs if every countermodel is either
computationally hard, or hard to validate, or both.

(Thus, lower bounds even for AC 0[p]-Frege+∀red.)

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Lower Bounds: Transferring Computational Hardness – 3

Hardness via Size-Width relation: doesn’t work for QRes.

A modified adaptation works for QURes; gives lower bounds for
bounded alternation formulas.
Key idea: Circuit characterisation of QURes proofs.

Fits the template of transferring computational hardness.

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Lower Bounds: Identify semantic hardness

In systems between QRes and EFrege+∀red, a seemingly third source
of hardness.

Formulas with no underlying propositional hardness, and with trivial
winning strategies, can be hard.

size (of proof), cost (of formula), capacity (of proof system)
strategy size, strategy weight
formula gauge

Is this really a third source, or is it just that we haven’t identified the
right circuit model?

eg The Equality Formulas: cost, weight, gauge, high.
But winning strategies trivial, projections.
Still, hard in a multi-output decision-list model – explains QURes
hardness.

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Lower Bounds: Identify semantic hardness

In systems between QRes and EFrege+∀red, a seemingly third source
of hardness.

Formulas with no underlying propositional hardness, and with trivial
winning strategies, can be hard.

size (of proof), cost (of formula), capacity (of proof system)
strategy size, strategy weight
formula gauge

Is this really a third source, or is it just that we haven’t identified the
right circuit model?

eg The Equality Formulas: cost, weight, gauge, high.
But winning strategies trivial, projections.
Still, hard in a multi-output decision-list model – explains QURes
hardness.

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Questions

Exploit game semantics better to design new proof systems.

Harness the power of algebraic reasoning.
(QBF analogues of static pps?)

Identify more candidate hard formulas.

Exploit succinctness of QBF as opposed to CNF-SAT instance.
Mathematical principles? (PHP, Tseitin, mutilated chessboard, ...)
Based on computation?

Formalise the “random formula” model.

Characterise more proof systems via appropriate circuit classes.

Understand the sources of hardness.

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Talk Plan

Quanified Boolean Formulas QBFs and Formal Proofs

X QBF basics

X A Proof Complexity perspective

A QBF-Solving perspective

A Computational Complexity perspective

Some Questions / Directions / Speculations ...

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Proof Systems and QBF solving

CDCL: a nondeterministic template for an algorithm for (UN)SAT.

CDCL ≡ Resolution.

Analog in QBF world?

Which of the QBF Resolution proof systems reflects Q-CDCL?

Lifting CDCL to QBF: potentially many ways.

Which algorithm is the right lift? truly Q-CDCL?

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

QBF solving

Expansion-based solvers

Extending CDCL:

decision order policy
reduction policy
propagation policy
conflict analysis
pre-processing

Dependency Schemes

Dependency Learning

· · ·

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

QBF Proof Systems and Solvers

∀Exp+Res

IR

IRMMRes

LDQRes

QRes

QURes

LQU+Res

eFrege+∀Red

QRAT

QCDCL

RAReQS

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

QBF Proof Systems and Solvers

∀Exp+Res

IR

IRMMRes

LDQRes

QRes

QURes

LQU+Res

eFrege+∀Red

QRAT

QCDCL

RAReQS

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Q-CDCL: Some surprises? distractions?

Evaluating QBF as a 2-player game: inherently sequential.
Hence Level-Order for decisions reasonable.

But proof-theoretically, Any-Order is also sound.

Solvers don’t know a priori whether input is true or false.
Treat every assignment as a conflict – either for P∃ or for P∀.
Learn clauses or cubes. Use cubes too in trails.

(Suggested Nomenclature: CDL – Conflict-Driven Learning.

Conflict-Driven Clause Learning and Conflict-Driven Cube Learning.)

For false(true) QBFs, learning clauses (cubes) suffices.
But learning cubes (clauses) can shorten runs.

Dependency schemes never lengthen, and can shorten, proofs.
But in the QCDCL proof system formalising runs of solvers (with
level-ordered decisions) on false QBFs, not always so –
Using / avoiding dependency schemes gives incomparable systems.

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Q-CDCL: Some surprises? distractions?

Evaluating QBF as a 2-player game: inherently sequential.
Hence Level-Order for decisions reasonable.

But proof-theoretically, Any-Order is also sound.

Solvers don’t know a priori whether input is true or false.
Treat every assignment as a conflict – either for P∃ or for P∀.
Learn clauses or cubes. Use cubes too in trails.

(Suggested Nomenclature: CDL – Conflict-Driven Learning.

Conflict-Driven Clause Learning and Conflict-Driven Cube Learning.)

For false(true) QBFs, learning clauses (cubes) suffices.
But learning cubes (clauses) can shorten runs.

Dependency schemes never lengthen, and can shorten, proofs.
But in the QCDCL proof system formalising runs of solvers (with
level-ordered decisions) on false QBFs, not always so –
Using / avoiding dependency schemes gives incomparable systems.

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Q-CDCL: Some surprises? distractions?

Evaluating QBF as a 2-player game: inherently sequential.
Hence Level-Order for decisions reasonable.

But proof-theoretically, Any-Order is also sound.

Solvers don’t know a priori whether input is true or false.
Treat every assignment as a conflict – either for P∃ or for P∀.
Learn clauses or cubes. Use cubes too in trails.

(Suggested Nomenclature: CDL – Conflict-Driven Learning.

Conflict-Driven Clause Learning and Conflict-Driven Cube Learning.)

For false(true) QBFs, learning clauses (cubes) suffices.
But learning cubes (clauses) can shorten runs.

Dependency schemes never lengthen, and can shorten, proofs.
But in the QCDCL proof system formalising runs of solvers (with
level-ordered decisions) on false QBFs, not always so –
Using / avoiding dependency schemes gives incomparable systems.

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Questions

Can solvers based on general “QCDCL proof systems” actually be
implemented?

Can solvers based on other QBF proof systems actually be
implemented?

What proof systems characterise the heuristics in determinised
QCDCL-style solvers?

How can Dependency Learning be captured in a proof system?

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Talk Plan

Quanified Boolean Formulas QBFs and Formal Proofs

X QBF basics

X A Proof Complexity perspective

X A QBF-Solving perspective

A Computational Complexity perspective

Some Questions / Directions / Speculations ...

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Sliding the Cook-Reckhow framework

Proof Verification Complexity
Size Complexity Class

poly P NP known

poly P coNP =⇒ coNP=NP
complementing nondeterministic time

poly P PSPACE =⇒ (N)PSPACE=NP
(NPSPACE,coNPSPACE)

collapsing nondeterministic space to time

poly P NEXP do not exist
time hierarchy

exp P NEXP known

exp P coNEXP =⇒ coNEXP=NEXP
complementing nondeterministic time

? ? EXP =⇒ EXP=PSPACE
collapsing time to space;

removing alternation in space

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Sliding the Cook-Reckhow framework

Proof Verification Complexity
Size Complexity Class

poly P NP known

poly P coNP =⇒ coNP=NP
complementing nondeterministic time

poly P PSPACE =⇒ (N)PSPACE=NP
(NPSPACE,coNPSPACE)

collapsing nondeterministic space to time

poly P NEXP do not exist
time hierarchy

exp P NEXP known

exp P coNEXP =⇒ coNEXP=NEXP
complementing nondeterministic time

? ? EXP =⇒ EXP=PSPACE
collapsing time to space;

removing alternation in space

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Sliding the Cook-Reckhow framework

Proof Verification Complexity
Size Complexity Class

poly P NP known

poly P coNP =⇒ coNP=NP
complementing nondeterministic time

poly P PSPACE =⇒ (N)PSPACE=NP
(NPSPACE,coNPSPACE)

collapsing nondeterministic space to time

poly P NEXP do not exist
time hierarchy

exp P NEXP known

exp P coNEXP =⇒ coNEXP=NEXP
complementing nondeterministic time

? ? EXP =⇒ EXP=PSPACE
collapsing time to space;

removing alternation in space

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Sliding the Cook-Reckhow framework

Proof Verification Complexity
Size Complexity Class

poly P NP known

poly P coNP =⇒ coNP=NP
complementing nondeterministic time

poly P PSPACE =⇒ (N)PSPACE=NP
(NPSPACE,coNPSPACE)

collapsing nondeterministic space to time

poly P NEXP do not exist
time hierarchy

exp P NEXP known

exp P coNEXP =⇒ coNEXP=NEXP
complementing nondeterministic time

? ? EXP =⇒ EXP=PSPACE
collapsing time to space;

removing alternation in space

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Sliding the Cook-Reckhow framework

Proof Verification Complexity
Size Complexity Class

poly P NP known

poly P coNP =⇒ coNP=NP
complementing nondeterministic time

poly P PSPACE =⇒ (N)PSPACE=NP
(NPSPACE,coNPSPACE)

collapsing nondeterministic space to time

poly P NEXP do not exist
time hierarchy

exp P NEXP known

exp P coNEXP =⇒ coNEXP=NEXP
complementing nondeterministic time

? ? EXP =⇒ EXP=PSPACE
collapsing time to space;

removing alternation in space

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Sliding the Cook-Reckhow framework

Proof Verification Complexity
Size Complexity Class

poly P NP known

poly P coNP =⇒ coNP=NP
complementing nondeterministic time

poly P PSPACE =⇒ (N)PSPACE=NP
(NPSPACE,coNPSPACE)

collapsing nondeterministic space to time

poly P NEXP do not exist
time hierarchy

exp P NEXP known

exp P coNEXP =⇒ coNEXP=NEXP
complementing nondeterministic time

? ? EXP =⇒ EXP=PSPACE
collapsing time to space;

removing alternation in space

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Sliding the Cook-Reckhow framework

Proof Verification Complexity
Size Complexity Class

poly P NP known

poly P coNP =⇒ coNP=NP
complementing nondeterministic time

poly P PSPACE =⇒ (N)PSPACE=NP
(NPSPACE,coNPSPACE)

collapsing nondeterministic space to time

poly P NEXP do not exist
time hierarchy

exp P NEXP known

exp P coNEXP =⇒ coNEXP=NEXP
complementing nondeterministic time

? ? EXP =⇒ EXP=PSPACE
collapsing time to space;

removing alternation in space

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Multiparty games, DQBF, NEXP

NP: one-player games; SAT

PSPACE: (bounded) two-player games; QBF

NEXP: multiplayer-games; DQBF (Dependency QBFs)

∀x1∀x2 . . . ∀xn∃y1(S1)∃y2(S2) . . . ym(Sm)ϕ(x1, . . . , xn, y1, . . . , ym)

Proof systems for DQBF: Augment&Lift QBF proof systems. How?
Expansion-based systems work.
For many reduction-based systems, either soundness or completeness
breaks down.

Are DQBF solvers for real?!

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Questions

Succinct proofs?

Proof systems/Solvers for fragments of NEXP?

QBF proof systems by restricting DQBF/NEXP-style systems rather
than augmenting PPS?

Appropriate formulations of proof-search?

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Talk Plan

Quanified Boolean Formulas QBFs and Formal Proofs

X QBF basics

X A Proof Complexity perspective

X A QBF-Solving perspective

X A Computational Complexity perspective

Some Questions / Directions / Speculations ...

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

Some Directions

(More) Lower bounds for (more) QBF proof systems

Understanding QBF solvers better

“Uniformly” generating partial strategies - can proof complexity help?

QBFs for optimisation - underlying proof systems

DQBF solvers and proof systems

SAT Workshop, Simons@UCB, 17-21 Apr 2023 Meena Mahajan

	Title Stuff
	QBFs: defs, semantics, complexity
	 A Proof Complexity perspective
	A QBF-Solving perspective
	A Computational Complexity perspective
	Directions

