Beyond SAT - Proofs for QBF, and more

Meena Mahajan

The Institute of Mathematical Sciences (HBNI), Chennai, India.

18 April 2023

Talk Plan

Quanified Boolean Formulas (QBFs) and Formal Proofs

- A Proof Complexity perspective
- A QBF-Solving perspective
- A Computational Complexity perspective

Talk Plan

Quanified Boolean Formulas (QBFs) and Formal Proofs

- QBF basics
- A Proof Complexity perspective
- A QBF-Solving perspective
- A Computational Complexity perspective

Talk Plan

Quanified Boolean Formulas (QBFs) and Formal Proofs

- QBF basics
- A Proof Complexity perspective
- A QBF-Solving perspective
- A Computational Complexity perspective
- Some Questions / Directions / Speculations ...

Quantified Boolean Formulas

- Propositional satisfiability:

Is $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ satisfiable?
Restated as QBF: Is $\exists x_{1} \exists x_{2} \ldots \exists x_{n} \varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ true?

- Generalise: allow \forall quantifiers as well. For $Q_{i} \in\{\exists, \forall\}$, Is $Q_{1} x_{1} Q_{2} x_{2} \ldots Q_{n} x_{n} \varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ true?
- Same expressiveness as SAT, but more succinct.
- Deciding True/False: PSPACE-complete.

Quantified Boolean Formulas

- Propositional satisfiability: Is $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ satisfiable?
Restated as QBF: Is $\exists x_{1} \exists x_{2} \ldots \exists x_{n} \varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ true?
- Generalise: allow \forall quantifiers as well. For $Q_{i} \in\{\exists, \forall\}$, Is $Q_{1} x_{1} Q_{2} x_{2} \ldots Q_{n} x_{n} \varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ true?
- Same expressiveness as SAT, but more succinct.
- Deciding True/False: PSPACE-complete.
- We consider QBFs that are
- totally quantified (no unbound variables), (each such QBF either true or false)
- in prenex form,
- with inner propositional formula in CNF.

The two-player evaluation game

- QBF $Q \vec{x} \cdot F(\vec{x})$
- Two players, P_{\exists} and P_{\forall}, step through quantifier prefix left-to-right. P_{\exists} picks values for \exists variables, P_{\forall} for \forall variables.
Assignment constructed on a run: ã.
P_{\exists} wins a run of the game if $F(\tilde{a})$ true. Otherwise P_{\forall} wins.
- $Q \vec{x} \cdot F(x)$ true if and only if P_{\exists} has a winning strategy. (model, Skolem function)
- $Q \vec{x} \cdot F(x)$ false if and only if P_{\forall} has a winning strategy. (countermodel, Herbrand function)

Talk Plan

Quanified Boolean Formulas QBFs and Formal Proofs
\checkmark QBF basics

- A Proof Complexity perspective
- A QBF-Solving perspective
- A Computational Complexity perspective
- Some Questions / Directions / Speculations ...

Proof System

What we expect from a proof system:

- Proofs should be short.
- Proofs should be efficiently verifiable.
- Soundness - no proofs of false statements.
- Completeness - proofs of all true statements.

Proof Systems for refuting QBFs

- Propositional Proof Systems handle special case of QBFs. They prove \exists. CNF sentences false.
- Augment to handle full prenex false QBFs.

Proof Systems for refuting QBFs

- Propositional Proof Systems handle special case of QBFs. They prove \exists. CNF sentences false.
- Augment to handle full prenex false QBFs.
- Ensuring soundness: (augmented) rules allow extraction of a P_{\forall} winning strategy (Herbrand function) from a proof.

Proof Systems for refuting QBFs

- Propositional Proof Systems handle special case of QBFs. They prove $\exists \cdot$ CNF sentences false.
- Augment to handle full prenex false QBFs.
- Ensuring soundness: (augmented) rules allow extraction of a P_{\forall} winning strategy (Herbrand function) from a proof.
- Ensuring Completeness: different paradigms.
- Expansion $(\forall \rightarrow \wedge)$ - obvious semantics of universal variables
- Universal reduction - preserves P_{\exists} winning strategy if one exists
- Literal Merging - implicitly remember P_{\forall} winning strategy may be complex
- Explicitly building up P_{\forall} winning strategy

Proof Systems for refuting QBFs (by example)

$$
\exists x \forall u \exists y \quad(x \vee u \vee y)(\bar{x} \vee \bar{u} \vee y)(\bar{y})
$$

Proof Systems for refuting QBFs (by example)

$$
\exists x \forall u \exists y \quad(x \vee u \vee y)(\bar{x} \vee \bar{u} \vee y)(\bar{y})
$$

Proof Systems for refuting QBFs (by example)

$$
\exists x \forall u \exists y \quad(x \vee u \vee y)(\bar{x} \vee \bar{u} \vee y)(\bar{y})
$$

Proof Systems for refuting QBFs (by example)

$$
\exists x \forall u \exists y \quad(x \vee u \vee y)(\bar{x} \vee \bar{u} \vee y)(\bar{y})
$$

Proof Systems for refuting QBFs (by example)

$$
\exists x \forall u \exists y \quad(x \vee u \vee y)(\bar{x} \vee \bar{u} \vee y)(\bar{y})
$$

Some QBF Proof Systems - The simulation order

(Accident of nomenclature: What is truly Resolution for QBFs?)

Augmenting PPS to QBF proof systems

- Expansion works for any PPS.
- Universal reduction, $P+\forall$ red, works for most line-based PPS.
- Literal merging: seems specific to Resolution, and not yet fully understood.
- Explicitly building up P_{\forall} strategies: seems specific to Resolution, but not fully understood.
Are there other undiscovered paradigms?

Techniques for Lower Bounds

- Transfer propositional hardness.
- Transfer computational hardness.
- Identify semantic hardness.

Lower Bounds: Transferring Propositional Hardness

- Inside every reasonable QBF proof system P, there is an easily-described embedded PPS Q.
- In a reasonable QBF proof system P, with underlying PPS Q, for every UNSAT formula F, refuting $\exists . F$ in P no easier than proving unsatisfiability of F in Q.

Lower Bounds: Transferring Propositional Hardness

- Inside every reasonable QBF proof system P, there is an easily-described embedded PPS Q.
- In a reasonable QBF proof system P, with underlying PPS Q, for every UNSAT formula F, refuting $\exists . F$ in P no easier than proving unsatisfiability of F in Q.

So we already have lower bounds.

Lower Bounds: Transferring Propositional Hardness

- Inside every reasonable QBF proof system P, there is an easily-described embedded PPS Q.
- In a reasonable QBF proof system P, with underlying PPS Q, for every UNSAT formula F, refuting $\exists . F$ in P no easier than proving unsatisfiability of F in Q.

So we already have lower bounds.

- Not "genuine QBF hardness".

Lower Bounds: Transferring Propositional Hardness

- Inside every reasonable QBF proof system P, there is an easily-described embedded PPS Q.
- In a reasonable QBF proof system P, with underlying PPS Q, for every UNSAT formula F, refuting $\exists . F$ in P no easier than proving unsatisfiability of F in Q.

So we already have lower bounds.

- Not "genuine QBF hardness".
- Feasible Interpolation gives lower bounds in many QBF systems. Again, not "genuine QBF hardness".
- Prover-Delayer game-based arguments give lower bounds in treelike QRes. Again, not "genuine QBF hardness".

What is "Genuine QBF Hardness"?

Genuine QBF hardness -
not hardness stemming merely from underlying propositional hardness.
Formalising genuineness -

- in expansion systems, seems natural.
- in reduction systems: the NP-oracle.

Discount deduction steps that employ reasoning checkable by reduction to SAT.

Effectively, count only reduction steps.

- in systems using merging: Discount deduction steps that employ reasoning without affecting partial information about P_{\forall} winning strategy.

What is "Genuine QBF Hardness"?

Genuine QBF hardness -
not hardness stemming merely from underlying propositional hardness.
Formalising genuineness -

- in expansion systems, seems natural.
- in reduction systems: the NP-oracle.

Discount deduction steps that employ reasoning checkable by reduction to SAT.

Effectively, count only reduction steps.

- in systems using merging: Discount deduction steps that employ reasoning without affecting partial information about P_{\forall} winning strategy.
- Why stop at NP-oracle? Other oracles - hierarchy....

Lower Bounds: Transferring Computational Hardness - 1

In many QBF systems, computational hardness can be transferred: Efficient Strategy Extraction.

- Key idea: Proofs contains information about P_{\forall} winning strategies.

Lower Bounds: Transferring Computational Hardness - 1

In many QBF systems, computational hardness can be transferred: Efficient Strategy Extraction.

- Key idea: Proofs contains information about P_{\forall} winning strategies.
- For a proof system P, find the correct circuit model M. Refutations in P yield circuits in M for P_{\forall} winning strategies.

Lower Bounds: Transferring Computational Hardness - 1

In many QBF systems, computational hardness can be transferred: Efficient Strategy Extraction.

- Key idea: Proofs contains information about P_{\forall} winning strategies.
- For a proof system P, find the correct circuit model M. Refutations in P yield circuits in M for P_{\forall} winning strategies.
- Find function f in $\mathrm{P} /$ poly hard in M.
- Using $\mathrm{P} /$ poly circuit description, construct false Σ_{3} formula where winning strategy must compute f.

Lower Bounds: Transferring Computational Hardness - 2

- In \mathcal{C}-Frege $+\forall$ red systems, only two sources of hardness:
- propositional hardness of a related formula, or
- \mathcal{C} lower bounds.
- From a proof in \mathcal{C}-Frege $+\forall$ red, efficiently extract
- a set of witnessing circuits in \mathcal{C}, and
- a propositional proof that the circuits compute a P_{\forall} winning strategy (witness validation).
- No short proofs for QBFs if every countermodel is either computationally hard, or hard to validate, or both.
(Thus, lower bounds even for $A C^{0}[p]$-Frege $+\forall$ red.)

Lower Bounds: Transferring Computational Hardness - 3

- Hardness via Size-Width relation: doesn't work for QRes.
- A modified adaptation works for QURes; gives lower bounds for bounded alternation formulas.
Key idea: Circuit characterisation of QURes proofs.
- Fits the template of transferring computational hardness.

Lower Bounds: Identify semantic hardness

- In systems between QRes and EFrege+ \forall red, a seemingly third source of hardness.
- Formulas with no underlying propositional hardness, and with trivial winning strategies, can be hard.
- size (of proof), cost (of formula), capacity (of proof system)
- strategy size, strategy weight
- formula gauge

Lower Bounds: Identify semantic hardness

- In systems between QRes and EFrege+ \forall red, a seemingly third source of hardness.
- Formulas with no underlying propositional hardness, and with trivial winning strategies, can be hard.
- size (of proof), cost (of formula), capacity (of proof system)
- strategy size, strategy weight
- formula gauge
- Is this really a third source, or is it just that we haven't identified the right circuit model?
- eg The Equality Formulas: cost, weight, gauge, high.

But winning strategies trivial, projections.
Still, hard in a multi-output decision-list model - explains QURes hardness.

Questions

- Exploit game semantics better to design new proof systems.
- Harness the power of algebraic reasoning. (QBF analogues of static pps?)
- Identify more candidate hard formulas.
- Exploit succinctness of QBF as opposed to CNF-SAT instance.
- Mathematical principles? (PHP, Tseitin, mutilated chessboard, ...)
- Based on computation?
- Formalise the "random formula" model.
- Characterise more proof systems via appropriate circuit classes.
- Understand the sources of hardness.

Talk Plan

Quanified Boolean Formulas QBFs and Formal Proofs
\checkmark QBF basics
\checkmark A Proof Complexity perspective

- A QBF-Solving perspective
- A Computational Complexity perspective
- Some Questions / Directions / Speculations ...

Proof Systems and QBF solving

- CDCL: a nondeterministic template for an algorithm for (UN)SAT.
- CDCL \equiv Resolution.

Analog in QBF world?
Which of the QBF Resolution proof systems reflects Q-CDCL?

- Lifting CDCL to QBF: potentially many ways.

Which algorithm is the right lift? truly Q-CDCL?

QBF solving

- Expansion-based solvers
- Extending CDCL:
- decision order policy
- reduction policy
- propagation policy
- conflict analysis
- pre-processing
- Dependency Schemes
- Dependency Learning
- ...

QBF Proof Systems and Solvers

QBF Proof Systems and Solvers

Q-CDCL: Some surprises? distractions?

- Evaluating QBF as a 2-player game: inherently sequential. Hence Level-Order for decisions reasonable.
But proof-theoretically, Any-Order is also sound.

Q-CDCL: Some surprises? distractions?

- Evaluating QBF as a 2-player game: inherently sequential. Hence Level-Order for decisions reasonable.
But proof-theoretically, Any-Order is also sound.
- Solvers don't know a priori whether input is true or false. Treat every assignment as a conflict - either for P_{\exists} or for P_{\forall}. Learn clauses or cubes. Use cubes too in trails. (Suggested Nomenclature: CDL - Conflict-Driven Learning. Conflict-Driven Clause Learning and Conflict-Driven Cube Learning.) For false(true) QBFs, learning clauses (cubes) suffices. But learning cubes (clauses) can shorten runs.

Q-CDCL: Some surprises? distractions?

- Evaluating QBF as a 2-player game: inherently sequential. Hence Level-Order for decisions reasonable.
But proof-theoretically, Any-Order is also sound.
- Solvers don't know a priori whether input is true or false. Treat every assignment as a conflict - either for P_{\exists} or for P_{\forall}. Learn clauses or cubes. Use cubes too in trails.
(Suggested Nomenclature: CDL - Conflict-Driven Learning.
Conflict-Driven Clause Learning and Conflict-Driven Cube Learning.)
For false(true) QBFs, learning clauses (cubes) suffices.
But learning cubes (clauses) can shorten runs.
- Dependency schemes never lengthen, and can shorten, proofs. But in the QCDCL proof system formalising runs of solvers (with level-ordered decisions) on false QBFs, not always so Using / avoiding dependency schemes gives incomparable systems.

Questions

- Can solvers based on general "QCDCL proof systems" actually be implemented?
- Can solvers based on other QBF proof systems actually be implemented?
- What proof systems characterise the heuristics in determinised QCDCL-style solvers?
- How can Dependency Learning be captured in a proof system?

Talk Plan

Quanified Boolean Formulas QBFs and Formal Proofs
\checkmark QBF basics
\checkmark A Proof Complexity perspective
\checkmark A QBF-Solving perspective

- A Computational Complexity perspective
- Some Questions / Directions / Speculations ...

Sliding the Cook-Reckhow framework

Sliding the Cook-Reckhow framework

Proof	Verification	Complexity	
Size	Complexity	Class	
poly	P	NP	known

Sliding the Cook-Reckhow framework

Proof Size	Verification Complexity	Complexity Class	
poly	P	NP	known
poly	P	coNP	\Longrightarrow coNP=NP
			complementing nondeterministic time

Sliding the Cook-Reckhow framework

Proof Size	Verification Complexity	Complexity Class	
poly	P	NP	known
poly	P	coNP	complementing nondeterministic time
poly	P	PSPACE (NPSPACE,coNPSPACE) collapsing nondeterministic space to time	\Longrightarrow (N)PSPACE=NP

Sliding the Cook-Reckhow framework

Proof Size	Verification Complexity	Complexity Class
poly	P	NP known
poly	P	coNP $\quad \Longrightarrow \quad$ coNP $=N P$
poly	P	PSPACE (NPSPACE,coNPSPACE) collapsing nondeterministic space to time \Longrightarrow (N)PSPACE=NP
poly	P	$\begin{array}{cc} \hline \text { NEXP } & \text { do not exist } \\ \text { time hierarchy } \end{array}$
exp	P	NEXP known

Sliding the Cook-Reckhow framework

Sliding the Cook-Reckhow framework

Proof	Verification	Complexity	
Size	Complexity	Class	
poly	P	NP	known
poly	P	coNP	$\Longrightarrow c o N P=N P$ complementing nondeterministic time
poly	P	PSPACE (NPSPACE, co	$\Longrightarrow(N) P S P A C E=N P$ NPSPACE) lapsing nondeterministic space to time
poly	P	NEXP	do not exist time hierarchy
\exp	P	NEXP	known
\exp	P	coNEXP	$\Longrightarrow c o N E X P=N E X P$ complementing nondeterministic time
?	?	EXP	$\Longrightarrow E X P=P S P A C E$ collapsing time to space; removing alternation in space

Multiparty games, DQBF, NEXP

- NP: one-player games; SAT
- PSPACE: (bounded) two-player games; QBF
- NEXP: multiplayer-games; DQBF (Dependency QBFs)

$$
\forall x_{1} \forall x_{2} \ldots \forall x_{n} \exists y_{1}\left(S_{1}\right) \exists y_{2}\left(S_{2}\right) \ldots y_{m}\left(S_{m}\right) \varphi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)
$$

- Proof systems for DQBF: Augment\&Lift QBF proof systems. How? Expansion-based systems work.
For many reduction-based systems, either soundness or completeness breaks down.
- Are DQBF solvers for real?!

Questions

- Succinct proofs?
- Proof systems/Solvers for fragments of NEXP?
- QBF proof systems by restricting DQBF/NEXP-style systems rather than augmenting PPS?
- Appropriate formulations of proof-search?

Talk Plan

Quanified Boolean Formulas QBFs and Formal Proofs
\checkmark QBF basics
\checkmark A Proof Complexity perspective
\checkmark A QBF-Solving perspective
\checkmark A Computational Complexity perspective

- Some Questions / Directions / Speculations ...

Some Directions

- (More) Lower bounds for (more) QBF proof systems
- Understanding QBF solvers better
- "Uniformly" generating partial strategies - can proof complexity help?
- QBFs for optimisation - underlying proof systems
- DQBF solvers and proof systems

