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Motivation and Question

People learn by interacting with others.
E.g., what is the most healthy diet?
You observe your friends’ past choices and pick your diet today.
This influences by your friends’ future choices.
Repeated interactions are hard to model tractably.
This paper:

constant stream of information
social network
repeated interactions
rational framework

Question: How efficient is the aggregation of information?
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Model
A fixed binary state of the world: Θ ∈ {g, b} with a uniform prior.
A finite set of agents: i ∈ N = {1, 2, . . . ,n}.
Discrete time: t ∈ {1, 2, . . . }.
Social network: i’s network neighbors are Ni ⊆ N .
Strongly connected network: observation path from each i to each j.
Private signal conditional distributions µg, µb ∈ ∆(Ω), finite Ω.
In every period t, agent i

observes the past actions of her neighbors H i
t = (aj

s)s<t,j∈Ni ;
receives a conditionally independent private signal;
chooses an action ai

t ∈ A = {g, b};
gets payoff function u(ai

t ,Θ) = 1(ai
t = Θ).

Agent i maximizes expected discounted utility:

(1 − δ)

∞∑
t=1

δt−1
E[1(ai

t = Θ)]

Solution concept: Nash equilibrium.
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Model

Info available to i at time t is (si
1, · · · , si

t ,H i
t ).

Agents do not observe payoffs, only signals and neighbors’ actions.
But can think of private signals as payoff + noise.
Each agent learns the state in the long run.
How fast do they learn?
Do they even learn at the same speed?
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Learning Speed
What is the probability of mistake P[ai

t ̸= Θ]?
Explicit calculation seems hopeless, even in special cases.
Classical result in statistics and probability:

Single agent:
P[at ̸= Θ] ≈ exp(−r1 · t),

where r1 can be explicitly calculated given µΘ.
n agents + public signals / optimal aggregation:

P[ai
t ̸= Θ] ≈ exp(−nr1 · t).

Define the speed of learning of agent i as the exponential rate at which
she converges to the correct action:

r = lim inf
t→∞

−1
t
logP[ai

t ̸= Θ].

If this limit exits and is equal to r , then P[ai
t ̸= Θ] ≈ exp(−r · t).

r1 ≤ r ≤ nr1.
Tractable. Asymptotic, no welfare implications.
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If this limit exits and is equal to r , then P[ai
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Main Result

For every pair of conditional signal distributions (µg, µb) define

M = 2 sup
ω∈Ω

∣∣∣∣log µg(ω)

µb(ω)

∣∣∣∣ (1)

This is twice the maximal log-likelihood ratio induced by any signal
realization.

Theorem 1
Fix (µg, µb). In any equilibrium, on any social network of any size, and for
any discount factor δ ∈ [0, 1), the speed of learning is at most M.

Adding more agents (thus more info) in the network cannot improve the
learning speed without bound.
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Example

Symmetric binary signals: µθ(θ) = 0.9 for θ ∈ {g, b}.
a single agent’s learning speed is r1 ≈ 0.5.
M = 2 log 0.9

0.1 ≈ 4.5
So 4.5 is an upper bound to the learning speed in networks of any size.
10 agents with public signals achieve a speed of learning > 4.5.
1,000,000 agents who observe their neighbors’ past actions never learns
faster than 10 agents who share their private signals.
More information loss in larger networks.
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Myopic and Strategic Behavior

The posterior log-likelihood ratio is Li
t := log

P[Θ=g|si
1,··· ,s

i
t ,H

i
t ]

P[Θ=b|si
1,··· ,si

t ,H i
t ]
.

Myopically optimal action is

mi
t := argmax

a∈A
P[Θ = a|si

1, · · · , si
t ,H i

t ] =

{
g if Li

t ≥ 0,
b if Li

t < 0.

If δ ∈ (0, 1), there may be strategic incentive to not choose mi
t .

Lemma 1 (Eventually Myopic)
(i) In equilibrium, if for some time t it holds that |Li

t | ≥ − log(1 − δ) then ai
t = mi

t .
(ii) There exists a random time T < ∞ such that in equilibrium, all agents behave

myopically after T, i.e. t ≥ T ⇒ ai
t = mi

t for all i almost surely.

Intuition: (i) as posterior belief becomes precise enough, not worthwhile
behaving strategically; (ii) a stream of private signals → precise beliefs.
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Common Learning Rate

Lemma 2 (All Agents Learn at the Same Rate)
(i) If agent i can observe agent j, i.e., i ∈ Ni, then in equilibrium i learns at

a (weakly) higher rate, i.e., ri ≥ rj.
(ii) All agents learn at the same rate, i.e., ri = rj for all i, j, in any strongly

connected network.

We call this common rate the equilibrium speed of learning.
Intuition: the imitation principle.

Wanying (Kate) Huang, Phillip Strack & Omer TamuzLearning in Repeated Interactions on Networks August 2022 10 / 13



Common Learning Rate

Lemma 2 (All Agents Learn at the Same Rate)
(i) If agent i can observe agent j, i.e., i ∈ Ni, then in equilibrium i learns at

a (weakly) higher rate, i.e., ri ≥ rj.
(ii) All agents learn at the same rate, i.e., ri = rj for all i, j, in any strongly

connected network.

We call this common rate the equilibrium speed of learning.
Intuition: the imitation principle.

Wanying (Kate) Huang, Phillip Strack & Omer TamuzLearning in Repeated Interactions on Networks August 2022 10 / 13



Common Learning Rate

Lemma 2 (All Agents Learn at the Same Rate)
(i) If agent i can observe agent j, i.e., i ∈ Ni, then in equilibrium i learns at

a (weakly) higher rate, i.e., ri ≥ rj.
(ii) All agents learn at the same rate, i.e., ri = rj for all i, j, in any strongly

connected network.

We call this common rate the equilibrium speed of learning.
Intuition: the imitation principle.

Wanying (Kate) Huang, Phillip Strack & Omer TamuzLearning in Repeated Interactions on Networks August 2022 10 / 13



Common Learning Rate

Lemma 2 (All Agents Learn at the Same Rate)
(i) If agent i can observe agent j, i.e., i ∈ Ni, then in equilibrium i learns at

a (weakly) higher rate, i.e., ri ≥ rj.
(ii) All agents learn at the same rate, i.e., ri = rj for all i, j, in any strongly

connected network.

We call this common rate the equilibrium speed of learning.
Intuition: the imitation principle.

Wanying (Kate) Huang, Phillip Strack & Omer TamuzLearning in Repeated Interactions on Networks August 2022 10 / 13



Common Learning Rate

Lemma 2 (All Agents Learn at the Same Rate)
(i) If agent i can observe agent j, i.e., i ∈ Ni, then in equilibrium i learns at

a (weakly) higher rate, i.e., ri ≥ rj.
(ii) All agents learn at the same rate, i.e., ri = rj for all i, j, in any strongly

connected network.

We call this common rate the equilibrium speed of learning.
Intuition: the imitation principle.

Wanying (Kate) Huang, Phillip Strack & Omer TamuzLearning in Repeated Interactions on Networks August 2022 10 / 13



The Imitation Principle

(i) Imitation Principle for Myopic Agents if i observes j, then i’s actions are
not worse than j’s:

P[ai
t ̸= Θ] ≤ P[aj

t−1 ̸= Θ],

since i can always imitate j.
(ii) Imitation Principle for Strategic Agents in equilibrium, i’s actions are

never much worse than j’s, even though i may choose myopically
sub-optimal actions:

P[ai
t ̸= Θ] ≤ 1

1 − δ
P[aj

t−1 ̸= Θ].

Intuition: i can imitates j’s action at t − 1 forever (from t onward), but
this cannot be a profitable deviation in eqm.
Similar ideas in Smith and Sorensen (1996), Sorensen (1996), Gale and
Kariv, (2003) Golub and Sadler (2017)
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Proof sketch
Theorem
Fix (µg, µb). In any equilibrium, on any social network of any size, and for
any discount factor δ ∈ [0, 1), the speed of learning is at most M.

Suppose speed of learning is r > M .
Condition on Θ = g.
aj

t = g eventually.
P[aj

t ̸= g] ≈ e−rt .
Observing j provides a log-likelihood ratio

log
P[Θ = g|aj

t = g]

P[Θ = b|aj
t = g]

≈ rt.

t private signals provide a log-likelihood ratio in [−Mt,Mt].
So eventually imitation dominates any possible signal.
Agents stop looking at their signals.
But if no-one is looking at signals then learning stops.
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Conclusion

Social learning in a
rational setting,
on general networks,
with forward-looking/strategic agents
who interact repeatedly.

speed of learning:
Measure of efficiency of information aggregation.
Asymptotic.
Tractable.

Main result: The speed of learning is bounded above by a constant,
which depends only on the private signal structure.
Aggregation is highly inefficient.

Thank You!
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