Learning in Repeated Interactions on Networks

Wanying (Kate) Huang¹ Philipp Strack² Omer Tamuz¹

 $^{1}{\rm Caltech}$

 2 Yale University

- People learn by interacting with others.
- E.g., what is the most healthy diet?
- You observe your friends' past choices and pick your diet today.
- This influences by your friends' future choices.
- Repeated interactions are hard to model tractably.
- This paper:
 - constant stream of information
 - social network
 - repeated interactions
 - rational framework
- Question: How efficient is the aggregation of information?

• People learn by interacting with others.

- E.g., what is the most healthy diet?
- You observe your friends' past choices and pick your diet today.
- This influences by your friends' future choices.
- Repeated interactions are hard to model tractably.
- This paper:
 - constant stream of information
 - social network
 - repeated interactions
 - rational framework
- Question: How efficient is the aggregation of information?

- People learn by interacting with others.
- E.g., what is the most healthy diet?
- You observe your friends' past choices and pick your diet today.
- This influences by your friends' future choices.
- Repeated interactions are hard to model tractably.
- This paper:
 - constant stream of information
 - social network
 - repeated interactions
 - rational framework
- Question: How efficient is the aggregation of information?

- People learn by interacting with others.
- E.g., what is the most healthy diet?
- You observe your friends' past choices and pick your diet today.
- This influences by your friends' future choices.
- Repeated interactions are hard to model tractably.
- This paper:
 - constant stream of information
 - social network
 - repeated interactions
 - rational framework
- Question: How efficient is the aggregation of information?

- People learn by interacting with others.
- E.g., what is the most healthy diet?
- You observe your friends' past choices and pick your diet today.
- This influences by your friends' future choices.
- Repeated interactions are hard to model tractably.
- This paper:
 - constant stream of information
 - social network
 - repeated interactions
 - rational framework
- Question: How efficient is the aggregation of information?

- People learn by interacting with others.
- E.g., what is the most healthy diet?
- You observe your friends' past choices and pick your diet today.
- This influences by your friends' future choices.
- Repeated interactions are hard to model tractably.
- This paper:
 - constant stream of information
 - social network
 - repeated interactions
 - rational framework
- Question: How efficient is the aggregation of information?

- People learn by interacting with others.
- E.g., what is the most healthy diet?
- You observe your friends' past choices and pick your diet today.
- This influences by your friends' future choices.
- Repeated interactions are hard to model tractably.
- This paper:
 - constant stream of information
 - social network
 - repeated interactions
 - rational framework
- Question: How efficient is the aggregation of information?

- People learn by interacting with others.
- E.g., what is the most healthy diet?
- You observe your friends' past choices and pick your diet today.
- This influences by your friends' future choices.
- Repeated interactions are hard to model tractably.
- This paper:
 - constant stream of information
 - social network
 - repeated interactions
 - rational framework
- Question: How efficient is the aggregation of information?

- People learn by interacting with others.
- E.g., what is the most healthy diet?
- You observe your friends' past choices and pick your diet today.
- This influences by your friends' future choices.
- Repeated interactions are hard to model tractably.
- This paper:
 - constant stream of information
 - social network
 - repeated interactions
 - rational framework
- Question: How efficient is the aggregation of information?

- People learn by interacting with others.
- E.g., what is the most healthy diet?
- You observe your friends' past choices and pick your diet today.
- This influences by your friends' future choices.
- Repeated interactions are hard to model tractably.
- This paper:
 - constant stream of information
 - social network
 - repeated interactions
 - rational framework
- Question: How efficient is the aggregation of information?

- People learn by interacting with others.
- E.g., what is the most healthy diet?
- You observe your friends' past choices and pick your diet today.
- This influences by your friends' future choices.
- Repeated interactions are hard to model tractably.
- This paper:
 - constant stream of information
 - social network
 - repeated interactions
 - rational framework

• Question: How efficient is the aggregation of information?

- People learn by interacting with others.
- E.g., what is the most healthy diet?
- You observe your friends' past choices and pick your diet today.
- This influences by your friends' future choices.
- Repeated interactions are hard to model tractably.
- This paper:
 - constant stream of information
 - social network
 - repeated interactions
 - rational framework
- Question: How efficient is the aggregation of information?

- A fixed binary state of the world: $\Theta \in \{\mathfrak{g}, \mathfrak{b}\}$ with a uniform prior.
- A finite set of agents: $i \in N = \{1, 2, \dots, n\}.$
- Discrete time: $t \in \{1, 2, \dots\}$.
- Social network: *i*'s network neighbors are $N_i \subseteq N$.
- Strongly connected network: observation path from each i to each j.
- Private signal conditional distributions $\mu_{\mathfrak{g}}, \mu_{\mathfrak{b}} \in \Delta(\Omega)$, finite Ω .
- In every period t, agent i
 - observes the past actions of her neighbors $H_t^i = (a_s^j)_{s < t, j \in N_i}$;
 - receives a conditionally independent private signal;
 - chooses an action $a_t^i \in \mathcal{A} = \{\mathfrak{g}, \mathfrak{b}\};$
 - gets payoff function $u(a_t^i, \Theta) = \mathbb{1}(a_t^i = \Theta)$.
- \bullet Agent i maximizes expected discounted utility:

$$(1-\delta)\sum_{t=1}^{\infty}\delta^{t-1}\mathbb{E}[\mathbb{1}(a_t^i=\Theta)]$$

- A fixed binary state of the world: $\Theta \in \{\mathfrak{g}, \mathfrak{b}\}$ with a uniform prior.
- A finite set of agents: $i \in N = \{1, 2, \dots, n\}$.
- Discrete time: $t \in \{1, 2, \dots\}$.
- Social network: *i*'s network neighbors are $N_i \subseteq N$.
- Strongly connected network: observation path from each i to each j.
- Private signal conditional distributions $\mu_{\mathfrak{g}}, \mu_{\mathfrak{b}} \in \Delta(\Omega)$, finite Ω .
- In every period t, agent i
 - observes the past actions of her neighbors $H_t^i = (a_s^j)_{s < t, j \in N_i}$;
 - receives a conditionally independent private signal;
 - chooses an action $a_t^i \in \mathcal{A} = \{\mathfrak{g}, \mathfrak{b}\};$
 - gets payoff function $u(a_t^i, \Theta) = \mathbb{1}(a_t^i = \Theta)$.
- \bullet Agent i maximizes expected discounted utility:

$$(1-\delta)\sum_{t=1}^{\infty}\delta^{t-1}\mathbb{E}[\mathbb{1}(a_t^i=\Theta)]$$

- A fixed binary state of the world: $\Theta \in \{\mathfrak{g}, \mathfrak{b}\}$ with a uniform prior.
- A finite set of agents: $i \in N = \{1, 2, \dots, n\}.$
- Discrete time: $t \in \{1, 2, \dots\}$.
- Social network: *i*'s network neighbors are $N_i \subseteq N$.
- Strongly connected network: observation path from each i to each j.
- Private signal conditional distributions $\mu_{\mathfrak{g}}, \mu_{\mathfrak{b}} \in \Delta(\Omega)$, finite Ω .
- In every period t, agent i
 - observes the past actions of her neighbors $H_t^i = (a_s^j)_{s < t, j \in N_i}$;
 - receives a conditionally independent private signal;
 - chooses an action $a_t^i \in \mathcal{A} = \{\mathfrak{g}, \mathfrak{b}\};$
 - gets payoff function $u(a_t^i, \Theta) = \mathbb{1}(a_t^i = \Theta)$.
- \bullet Agent i maximizes expected discounted utility:

$$(1-\delta)\sum_{t=1}^{\infty}\delta^{t-1}\mathbb{E}[\mathbb{1}(a_t^i=\Theta)]$$

- A fixed binary state of the world: $\Theta \in \{\mathfrak{g}, \mathfrak{b}\}$ with a uniform prior.
- A finite set of agents: $i \in N = \{1, 2, \dots, n\}.$
- Discrete time: $t \in \{1, 2, \dots\}$.
- Social network: *i*'s network neighbors are $N_i \subseteq N$.
- Strongly connected network: observation path from each i to each j.
- Private signal conditional distributions $\mu_{\mathfrak{g}}, \mu_{\mathfrak{b}} \in \Delta(\Omega)$, finite Ω .
- In every period t, agent i
 - observes the past actions of her neighbors $H_t^i = (a_s^j)_{s < t, j \in N_i}$;
 - receives a conditionally independent private signal;
 - chooses an action $a_t^i \in \mathcal{A} = \{\mathfrak{g}, \mathfrak{b}\};$
 - gets payoff function $u(a_t^i, \Theta) = \mathbb{1}(a_t^i = \Theta)$.
- \bullet Agent i maximizes expected discounted utility:

$$(1-\delta)\sum_{t=1}^{\infty}\delta^{t-1}\mathbb{E}[\mathbb{1}(a_t^i=\Theta)]$$

- A fixed binary state of the world: $\Theta \in \{\mathfrak{g}, \mathfrak{b}\}$ with a uniform prior.
- A finite set of agents: $i \in N = \{1, 2, \dots, n\}$.
- Discrete time: $t \in \{1, 2, \dots\}$.
- Social network: *i*'s network neighbors are $N_i \subseteq N$.
- Strongly connected network: observation path from each i to each j.
- Private signal conditional distributions $\mu_{\mathfrak{g}}, \mu_{\mathfrak{b}} \in \Delta(\Omega)$, finite Ω .
- In every period t, agent i
 - observes the past actions of her neighbors $H_t^i = (a_s^j)_{s < t, j \in N_i}$;
 - receives a conditionally independent private signal;
 - chooses an action $a_t^i \in \mathcal{A} = \{\mathfrak{g}, \mathfrak{b}\};$
 - gets payoff function $u(a_t^i, \Theta) = \mathbb{1}(a_t^i = \Theta)$.
- \bullet Agent i maximizes expected discounted utility:

$$(1-\delta)\sum_{t=1}^{\infty}\delta^{t-1}\mathbb{E}[\mathbb{1}(a_t^i=\Theta)]$$

- A fixed binary state of the world: $\Theta \in \{\mathfrak{g}, \mathfrak{b}\}$ with a uniform prior.
- A finite set of agents: $i \in N = \{1, 2, \dots, n\}.$
- Discrete time: $t \in \{1, 2, \dots\}$.
- Social network: *i*'s network neighbors are $N_i \subseteq N$.
- Strongly connected network: observation path from each *i* to each *j*.
- Private signal conditional distributions $\mu_{\mathfrak{g}}, \mu_{\mathfrak{b}} \in \Delta(\Omega)$, finite Ω .
- In every period t, agent i
 - observes the past actions of her neighbors $H_t^i = (a_s^j)_{s < t, j \in N_i}$;
 - receives a conditionally independent private signal;
 - chooses an action $a_t^i \in \mathcal{A} = \{\mathfrak{g}, \mathfrak{b}\};$
 - gets payoff function $u(a_t^i, \Theta) = \mathbb{1}(a_t^i = \Theta)$.
- \bullet Agent i maximizes expected discounted utility:

$$(1-\delta)\sum_{t=1}^{\infty}\delta^{t-1}\mathbb{E}[\mathbb{1}(a_t^i=\Theta)]$$

- A fixed binary state of the world: $\Theta \in \{\mathfrak{g}, \mathfrak{b}\}$ with a uniform prior.
- A finite set of agents: $i \in N = \{1, 2, \dots, n\}.$
- Discrete time: $t \in \{1, 2, \dots\}$.
- Social network: *i*'s network neighbors are $N_i \subseteq N$.
- Strongly connected network: observation path from each *i* to each *j*.
- Private signal conditional distributions $\mu_{\mathfrak{g}}, \mu_{\mathfrak{b}} \in \Delta(\Omega)$, finite Ω .
- In every period t, agent i
 - observes the past actions of her neighbors $H_t^i = (a_s^j)_{s < t, j \in N_i}$;
 - receives a conditionally independent private signal;
 - chooses an action $a_t^i \in \mathcal{A} = \{\mathfrak{g}, \mathfrak{b}\};$
 - gets payoff function $u(a_t^i, \Theta) = \mathbb{1}(a_t^i = \Theta)$.
- \bullet Agent i maximizes expected discounted utility:

$$(1-\delta)\sum_{t=1}^{\infty}\delta^{t-1}\mathbb{E}[\mathbb{1}(a_t^i=\Theta)]$$

- A fixed binary state of the world: $\Theta \in \{\mathfrak{g}, \mathfrak{b}\}$ with a uniform prior.
- A finite set of agents: $i \in N = \{1, 2, \dots, n\}.$
- Discrete time: $t \in \{1, 2, \dots\}$.
- Social network: *i*'s network neighbors are $N_i \subseteq N$.
- Strongly connected network: observation path from each *i* to each *j*.
- Private signal conditional distributions $\mu_{\mathfrak{g}}, \mu_{\mathfrak{b}} \in \Delta(\Omega)$, finite Ω .
- In every period t, agent i
 - observes the past actions of her neighbors $H_t^i = (a_s^j)_{s < t, j \in N_i}$;
 - receives a conditionally independent private signal;
 - chooses an action $a_t^i \in \mathcal{A} = \{\mathfrak{g}, \mathfrak{b}\};$
 - gets payoff function $u(a_t^i, \Theta) = \mathbb{1}(a_t^i = \Theta).$
- \bullet Agent i maximizes expected discounted utility:

$$(1-\delta)\sum_{t=1}^{\infty}\delta^{t-1}\mathbb{E}[\mathbb{1}(a_t^i=\Theta)]$$

- A fixed binary state of the world: $\Theta \in \{\mathfrak{g}, \mathfrak{b}\}$ with a uniform prior.
- A finite set of agents: $i \in N = \{1, 2, \dots, n\}.$
- Discrete time: $t \in \{1, 2, \dots\}$.
- Social network: *i*'s network neighbors are $N_i \subseteq N$.
- Strongly connected network: observation path from each *i* to each *j*.
- Private signal conditional distributions $\mu_{\mathfrak{g}}, \mu_{\mathfrak{b}} \in \Delta(\Omega)$, finite Ω .
- In every period t, agent i
 - observes the past actions of her neighbors $H_t^i = (a_s^j)_{s < t, j \in N_i}$;
 - receives a conditionally independent private signal;
 - chooses an action $a_t^i \in \mathcal{A} = \{\mathfrak{g}, \mathfrak{b}\};$
 - gets payoff function $u(a_t^i, \Theta) = \mathbb{1}(a_t^i = \Theta)$.
- \bullet Agent i maximizes expected discounted utility:

$$(1-\delta)\sum_{t=1}^{\infty}\delta^{t-1}\mathbb{E}[\mathbb{1}(a_t^i=\Theta)]$$

- A fixed binary state of the world: $\Theta \in \{\mathfrak{g}, \mathfrak{b}\}$ with a uniform prior.
- A finite set of agents: $i \in N = \{1, 2, \dots, n\}$.
- Discrete time: $t \in \{1, 2, \dots\}$.
- Social network: *i*'s network neighbors are $N_i \subseteq N$.
- Strongly connected network: observation path from each i to each j.
- Private signal conditional distributions $\mu_{\mathfrak{g}}, \mu_{\mathfrak{b}} \in \Delta(\Omega)$, finite Ω .
- In every period t, agent i
 - observes the past actions of her neighbors $H_t^i = (a_s^j)_{s < t, j \in N_i}$;
 - receives a conditionally independent private signal;
 - chooses an action $a_t^i \in \mathcal{A} = \{\mathfrak{g}, \mathfrak{b}\};$
 - gets payoff function $u(a_t^i, \Theta) = \mathbb{1}(a_t^i = \Theta)$.
- \bullet Agent i maximizes expected discounted utility:

$$(1-\delta)\sum_{t=1}^{\infty}\delta^{t-1}\mathbb{E}[\mathbb{1}(a_t^i=\Theta)]$$

- A fixed binary state of the world: $\Theta \in \{\mathfrak{g}, \mathfrak{b}\}$ with a uniform prior.
- A finite set of agents: $i \in N = \{1, 2, \dots, n\}.$
- Discrete time: $t \in \{1, 2, \dots\}$.
- Social network: *i*'s network neighbors are $N_i \subseteq N$.
- Strongly connected network: observation path from each *i* to each *j*.
- Private signal conditional distributions $\mu_{\mathfrak{g}}, \mu_{\mathfrak{b}} \in \Delta(\Omega)$, finite Ω .
- In every period t, agent i
 - observes the past actions of her neighbors $H_t^i = (a_s^j)_{s < t, j \in N_i}$;
 - receives a conditionally independent private signal;
 - chooses an action $a_t^i \in \mathcal{A} = \{\mathfrak{g}, \mathfrak{b}\};$
 - gets payoff function $u(a_t^i, \Theta) = \mathbb{1}(a_t^i = \Theta)$.
- \bullet Agent i maximizes expected discounted utility:

$$(1-\delta)\sum_{t=1}^{\infty}\delta^{t-1}\mathbb{E}[\mathbb{1}(a_t^i=\Theta)]$$

- A fixed binary state of the world: $\Theta \in \{\mathfrak{g}, \mathfrak{b}\}$ with a uniform prior.
- A finite set of agents: $i \in N = \{1, 2, \dots, n\}.$
- Discrete time: $t \in \{1, 2, \dots\}$.
- Social network: *i*'s network neighbors are $N_i \subseteq N$.
- Strongly connected network: observation path from each *i* to each *j*.
- Private signal conditional distributions $\mu_{\mathfrak{g}}, \mu_{\mathfrak{b}} \in \Delta(\Omega)$, finite Ω .
- In every period t, agent i
 - observes the past actions of her neighbors $H_t^i = (a_s^j)_{s < t, j \in N_i}$;
 - receives a conditionally independent private signal;
 - chooses an action $a_t^i \in \mathcal{A} = \{\mathfrak{g}, \mathfrak{b}\};$
 - gets payoff function $u(a_t^i, \Theta) = \mathbb{1}(a_t^i = \Theta)$.
- \bullet Agent i maximizes expected discounted utility:

$$(1-\delta)\sum_{t=1}^{\infty}\delta^{t-1}\mathbb{E}[\mathbb{1}(a_t^i=\Theta)]$$

- A fixed binary state of the world: $\Theta \in \{\mathfrak{g}, \mathfrak{b}\}$ with a uniform prior.
- A finite set of agents: $i \in N = \{1, 2, \dots, n\}.$
- Discrete time: $t \in \{1, 2, \dots\}$.
- Social network: *i*'s network neighbors are $N_i \subseteq N$.
- Strongly connected network: observation path from each *i* to each *j*.
- Private signal conditional distributions $\mu_{\mathfrak{g}}, \mu_{\mathfrak{b}} \in \Delta(\Omega)$, finite Ω .
- In every period t, agent i
 - observes the past actions of her neighbors $H_t^i = (a_s^j)_{s < t, j \in N_i}$;
 - receives a conditionally independent private signal;
 - chooses an action $a_t^i \in \mathcal{A} = \{\mathfrak{g}, \mathfrak{b}\};$
 - gets payoff function $u(a_t^i, \Theta) = \mathbb{1}(a_t^i = \Theta)$.
- \bullet Agent i maximizes expected discounted utility:

$$(1-\delta)\sum_{t=1}^{\infty}\delta^{t-1}\mathbb{E}[\mathbbm{1}(a_t^i=\Theta)]$$

- A fixed binary state of the world: $\Theta \in \{\mathfrak{g},\mathfrak{b}\}$ with a uniform prior.
- A finite set of agents: $i \in N = \{1, 2, \dots, n\}.$
- Discrete time: $t \in \{1, 2, \dots\}$.
- Social network: *i*'s network neighbors are $N_i \subseteq N$.
- Strongly connected network: observation path from each *i* to each *j*.
- Private signal conditional distributions $\mu_{\mathfrak{g}}, \mu_{\mathfrak{b}} \in \Delta(\Omega)$, finite Ω .
- In every period t, agent i
 - observes the past actions of her neighbors $H_t^i = (a_s^j)_{s < t, j \in N_i}$;
 - receives a conditionally independent private signal;
 - chooses an action $a_t^i \in \mathcal{A} = \{\mathfrak{g}, \mathfrak{b}\};$
 - gets payoff function $u(a_t^i, \Theta) = \mathbb{1}(a_t^i = \Theta)$.
- \bullet Agent i maximizes expected discounted utility:

$$(1-\delta)\sum_{t=1}^{\infty}\delta^{t-1}\mathbb{E}[\mathbbm{1}(a_t^i=\Theta)]$$

- Info available to *i* at time *t* is $(s_1^i, \dots, s_t^i, H_t^i)$.
- Agents do not observe payoffs, only signals and neighbors' actions.
- But can think of private signals as payoff + noise.
- Each agent learns the state in the long run.
- How fast do they learn?
- Do they even learn at the same speed?

- Info available to *i* at time *t* is $(s_1^i, \dots, s_t^i, H_t^i)$.
- Agents do not observe payoffs, only signals and neighbors' actions.
- But can think of private signals as payoff + noise.
- Each agent learns the state in the long run.
- How fast do they learn?
- Do they even learn at the same speed?

- Info available to *i* at time *t* is $(s_1^i, \dots, s_t^i, H_t^i)$.
- Agents do not observe payoffs, only signals and neighbors' actions.
- But can think of private signals as payoff + noise.
- Each agent learns the state in the long run.
- How fast do they learn?
- Do they even learn at the same speed?

- Info available to *i* at time *t* is $(s_1^i, \dots, s_t^i, H_t^i)$.
- Agents do not observe payoffs, only signals and neighbors' actions.
- But can think of private signals as payoff + noise.
- Each agent learns the state in the long run.
- How fast do they learn?
- Do they even learn at the same speed?

- Info available to *i* at time *t* is $(s_1^i, \dots, s_t^i, H_t^i)$.
- Agents do not observe payoffs, only signals and neighbors' actions.
- But can think of private signals as payoff + noise.
- Each agent learns the state in the long run.
- How fast do they learn?
- Do they even learn at the same speed?

- Info available to *i* at time *t* is $(s_1^i, \dots, s_t^i, H_t^i)$.
- Agents do not observe payoffs, only signals and neighbors' actions.
- But can think of private signals as payoff + noise.
- Each agent learns the state in the long run.
- How fast do they learn?

• Do they even learn at the same speed?

- Info available to *i* at time *t* is $(s_1^i, \dots, s_t^i, H_t^i)$.
- Agents do not observe payoffs, only signals and neighbors' actions.
- But can think of private signals as payoff + noise.
- Each agent learns the state in the long run.
- How fast do they learn?
- Do they even learn at the same speed?

Learning Speed

- What is the probability of mistake $\mathbb{P}[a_t^i \neq \Theta]$?
- Explicit calculation seems hopeless, even in special cases.
- Classical result in statistics and probability:
 - Single agent:

 $\mathbb{P}[a_t \neq \Theta] \approx \exp(-\mathbf{r}_1 \cdot t),$

where r_1 can be explicitly calculated given μ_{Θ} .

• *n* agents + **public signals** / **optimal aggregation**:

 $\mathbb{P}[a_t^i \neq \Theta] \approx \exp(-nr_1 \cdot t).$

• Define the **speed of learning** of agent *i* as the exponential rate at which she converges to the correct action:

$$r = \liminf_{t \to \infty} -\frac{1}{t} \log \mathbb{P}[a_t^i \neq \Theta].$$

- If this limit exits and is equal to r, then $\mathbb{P}[a_t^i \neq \Theta] \approx \exp(-r \cdot t)$.
- $r_1 \leq r \leq nr_1$.
- Tractable. Asymptotic, no welfare implications.

Learning Speed

- What is the probability of mistake $\mathbb{P}[a_t^i \neq \Theta]$?
- Explicit calculation seems hopeless, even in special cases.
- Classical result in statistics and probability:
 - Single agent:

 $\mathbb{P}[a_t \neq \Theta] \approx \exp(-\mathbf{r}_1 \cdot t),$

where r_1 can be explicitly calculated given μ_{Θ} .

• *n* agents + **public signals** / **optimal aggregation**:

 $\mathbb{P}[a_t^i \neq \Theta] \approx \exp(-nr_1 \cdot t).$

• Define the **speed of learning** of agent *i* as the exponential rate at which she converges to the correct action:

$$r = \liminf_{t \to \infty} -\frac{1}{t} \log \mathbb{P}[a_t^i \neq \Theta].$$

- If this limit exits and is equal to r, then $\mathbb{P}[a_t^i \neq \Theta] \approx \exp(-r \cdot t)$.
- $r_1 \leq r \leq nr_1$.
- Tractable. Asymptotic, no welfare implications.

- What is the probability of mistake $\mathbb{P}[a_t^i \neq \Theta]$?
- Explicit calculation seems hopeless, even in special cases.
- Classical result in statistics and probability:
 - Single agent:

 $\mathbb{P}[a_t \neq \Theta] \approx \exp(-\mathbf{r}_1 \cdot t),$

where r_1 can be explicitly calculated given μ_{Θ} .

• *n* agents + **public signals** / **optimal aggregation**:

 $\mathbb{P}[a_t^i \neq \Theta] \approx \exp(-nr_1 \cdot t).$

$$r = \liminf_{t \to \infty} -\frac{1}{t} \log \mathbb{P}[a_t^i \neq \Theta].$$

- If this limit exits and is equal to r, then $\mathbb{P}[a_t^i \neq \Theta] \approx \exp(-r \cdot t)$.
- $r_1 \leq r \leq nr_1$.
- Tractable. Asymptotic, no welfare implications.

- What is the probability of mistake $\mathbb{P}[a_t^i \neq \Theta]$?
- Explicit calculation seems hopeless, even in special cases.
- Classical result in statistics and probability:
 - Single agent:

 $\mathbb{P}[a_t \neq \Theta] \approx \exp(-\mathbf{r}_1 \cdot t),$

where r_1 can be explicitly calculated given μ_{Θ} .

• *n* agents + **public signals** / **optimal aggregation**:

 $\mathbb{P}[a_t^i \neq \Theta] \approx \exp(-nr_1 \cdot t).$

$$r = \liminf_{t \to \infty} -\frac{1}{t} \log \mathbb{P}[a_t^i \neq \Theta].$$

- If this limit exits and is equal to r, then $\mathbb{P}[a_t^i \neq \Theta] \approx \exp(-r \cdot t)$.
- $r_1 \leq r \leq nr_1$.
- Tractable. Asymptotic, no welfare implications.

- What is the probability of mistake $\mathbb{P}[a_t^i \neq \Theta]$?
- Explicit calculation seems hopeless, even in special cases.
- Classical result in statistics and probability:
 - Single agent:

 $\mathbb{P}[a_t \neq \Theta] \approx \exp(-\mathbf{r_1} \cdot t),$

where r_1 can be explicitly calculated given μ_{Θ} .

• *n* agents + **public signals** / **optimal aggregation**:

 $\mathbb{P}[a_t^i \neq \Theta] \approx \exp(-nr_1 \cdot t).$

$$r = \liminf_{t \to \infty} -\frac{1}{t} \log \mathbb{P}[a_t^i \neq \Theta].$$

- If this limit exits and is equal to r, then $\mathbb{P}[a_t^i \neq \Theta] \approx \exp(-r \cdot t)$.
- $r_1 \leq r \leq nr_1$.
- Tractable. Asymptotic, no welfare implications.

- What is the probability of mistake $\mathbb{P}[a_t^i \neq \Theta]$?
- Explicit calculation seems hopeless, even in special cases.
- Classical result in statistics and probability:
 - Single agent:

 $\mathbb{P}[a_t \neq \Theta] \approx \exp(-\mathbf{r_1} \cdot t),$

where r_1 can be explicitly calculated given μ_{Θ} .

• n agents + public signals / optimal aggregation:

$$\mathbb{P}[a_t^i \neq \Theta] \approx \exp(-nr_1 \cdot t).$$

$$r = \liminf_{t \to \infty} -\frac{1}{t} \log \mathbb{P}[a_t^i \neq \Theta].$$

- If this limit exits and is equal to r, then $\mathbb{P}[a_t^i \neq \Theta] \approx \exp(-r \cdot t)$.
- $r_1 \leq r \leq nr_1$.
- Tractable. Asymptotic, no welfare implications.

- What is the probability of mistake $\mathbb{P}[a_t^i \neq \Theta]$?
- Explicit calculation seems hopeless, even in special cases.
- Classical result in statistics and probability:
 - Single agent:

 $\mathbb{P}[a_t \neq \Theta] \approx \exp(-\mathbf{r_1} \cdot t),$

where r_1 can be explicitly calculated given μ_{Θ} .

• n agents + public signals / optimal aggregation:

$$\mathbb{P}[a_t^i \neq \Theta] \approx \exp(-nr_1 \cdot t).$$

$$r = \liminf_{t \to \infty} -\frac{1}{t} \log \mathbb{P}[a_t^i \neq \Theta].$$

- If this limit exits and is equal to r, then $\mathbb{P}[a_t^i \neq \Theta] \approx \exp(-r \cdot t)$.
- $r_1 \leq r \leq nr_1$.
- Tractable. Asymptotic, no welfare implications.

- What is the probability of mistake $\mathbb{P}[a_t^i \neq \Theta]$?
- Explicit calculation seems hopeless, even in special cases.
- Classical result in statistics and probability:
 - Single agent:

 $\mathbb{P}[a_t \neq \Theta] \approx \exp(-\mathbf{r_1} \cdot t),$

where r_1 can be explicitly calculated given μ_{Θ} .

• n agents + public signals / optimal aggregation:

$$\mathbb{P}[a_t^i \neq \Theta] \approx \exp(-nr_1 \cdot t).$$

$$r = \liminf_{t \to \infty} -\frac{1}{t} \log \mathbb{P}[a_t^i \neq \Theta].$$

- If this limit exits and is equal to r, then $\mathbb{P}[a_t^i \neq \Theta] \approx \exp(-r \cdot t)$.
- $r_1 \leq r \leq nr_1$.
- Tractable. Asymptotic, no welfare implications.

- What is the probability of mistake $\mathbb{P}[a_t^i \neq \Theta]$?
- Explicit calculation seems hopeless, even in special cases.
- Classical result in statistics and probability:
 - Single agent:

 $\mathbb{P}[a_t \neq \Theta] \approx \exp(-\mathbf{r_1} \cdot t),$

where r_1 can be explicitly calculated given μ_{Θ} .

• n agents + public signals / optimal aggregation:

$$\mathbb{P}[a_t^i \neq \Theta] \approx \exp(-nr_1 \cdot t).$$

$$r = \liminf_{t \to \infty} -\frac{1}{t} \log \mathbb{P}[a_t^i \neq \Theta].$$

- If this limit exits and is equal to r, then $\mathbb{P}[a_t^i \neq \Theta] \approx \exp(-r \cdot t)$.
- $r_1 \leq r \leq nr_1$.
- Tractable. Asymptotic, no welfare implications.

- What is the probability of mistake $\mathbb{P}[a_t^i \neq \Theta]$?
- Explicit calculation seems hopeless, even in special cases.
- Classical result in statistics and probability:
 - Single agent:

 $\mathbb{P}[a_t \neq \Theta] \approx \exp(-\mathbf{r_1} \cdot t),$

where r_1 can be explicitly calculated given μ_{Θ} .

• n agents + public signals / optimal aggregation:

$$\mathbb{P}[a_t^i \neq \Theta] \approx \exp(-nr_1 \cdot t).$$

$$r = \liminf_{t \to \infty} -\frac{1}{t} \log \mathbb{P}[a_t^i \neq \Theta].$$

- If this limit exits and is equal to r, then $\mathbb{P}[a_t^i \neq \Theta] \approx \exp(-r \cdot t)$.
- $r_1 \leq r \leq nr_1$.
- Tractable. Asymptotic, no welfare implications.

- Bikhchandani, Hirshleifer and Welch 1992, Banerjee 1992.
 - 10,000,000 citations.
- DeGroot (1974), Bala and Goyal (1998), Molavi et al., (2018), Golub and Jackson (2010)
 - Social network
 - Bounded rationality
- Mossel et al. 2014, 2015.
 - Social network
 - One signal
- Harel et al. 2021.
 - Repeated signals
 - Complete network
 - Myopic agents

• Bikhchandani, Hirshleifer and Welch 1992, Banerjee 1992.

- 10,000,000 citations.
- DeGroot (1974), Bala and Goyal (1998), Molavi et al., (2018), Golub and Jackson (2010)
 - Social network
 - Bounded rationality
- Mossel et al. 2014, 2015.
 - Social network
 - One signal
- Harel et al. 2021.
 - Repeated signals
 - Complete network
 - Myopic agents

• Bikhchandani, Hirshleifer and Welch 1992, Banerjee 1992.

• 10,000,000 citations.

- DeGroot (1974), Bala and Goyal (1998), Molavi et al., (2018), Golub and Jackson (2010)
 - Social network
 - Bounded rationality
- Mossel et al. 2014, 2015.
 - Social network
 - One signal
- Harel et al. 2021.
 - Repeated signals
 - Complete network
 - Myopic agents

- Bikhchandani, Hirshleifer and Welch 1992, Banerjee 1992.
 - 10,000,000 citations.
- DeGroot (1974), Bala and Goyal (1998), Molavi et al., (2018), Golub and Jackson (2010)
 - Social network
 - Bounded rationality
- Mossel et al. 2014, 2015.
 - Social network
 - One signal
- Harel et al. 2021.
 - Repeated signals
 - Complete network
 - Myopic agents

- Bikhchandani, Hirshleifer and Welch 1992, Banerjee 1992.
 - 10,000,000 citations.
- DeGroot (1974), Bala and Goyal (1998), Molavi et al., (2018), Golub and Jackson (2010)
 - Social network
 - Bounded rationality
- Mossel et al. 2014, 2015.
 - Social network
 - One signal
- Harel et al. 2021.
 - Repeated signals
 - Complete network
 - Myopic agents

- Bikhchandani, Hirshleifer and Welch 1992, Banerjee 1992.
 - 10,000,000 citations.
- DeGroot (1974), Bala and Goyal (1998), Molavi et al., (2018), Golub and Jackson (2010)
 - Social network
 - Bounded rationality
- Mossel et al. 2014, 2015.
 - Social network
 - One signal
- Harel et al. 2021.
 - Repeated signals
 - Complete network
 - Myopic agents

- Bikhchandani, Hirshleifer and Welch 1992, Banerjee 1992.
 - 10,000,000 citations.
- DeGroot (1974), Bala and Goyal (1998), Molavi et al., (2018), Golub and Jackson (2010)
 - Social network
 - Bounded rationality
- Mossel et al. 2014, 2015.
 - Social network
 - One signal
- Harel et al. 2021.
 - Repeated signals
 - Complete network
 - Myopic agents

- Bikhchandani, Hirshleifer and Welch 1992, Banerjee 1992.
 - 10,000,000 citations.
- DeGroot (1974), Bala and Goyal (1998), Molavi et al., (2018), Golub and Jackson (2010)
 - Social network
 - Bounded rationality
- Mossel et al. 2014, 2015.
 - Social network
 - One signal
- Harel et al. 2021.
 - Repeated signals
 - Complete network
 - Myopic agents

- Bikhchandani, Hirshleifer and Welch 1992, Banerjee 1992.
 - 10,000,000 citations.
- DeGroot (1974), Bala and Goyal (1998), Molavi et al., (2018), Golub and Jackson (2010)
 - Social network
 - Bounded rationality
- Mossel et al. 2014, 2015.
 - Social network
 - One signal
- Harel et al. 2021.
 - Repeated signals
 - Complete network
 - Myopic agents

- Bikhchandani, Hirshleifer and Welch 1992, Banerjee 1992.
 - 10,000,000 citations.
- DeGroot (1974), Bala and Goyal (1998), Molavi et al., (2018), Golub and Jackson (2010)
 - Social network
 - Bounded rationality
- Mossel et al. 2014, 2015.
 - Social network
 - One signal

• Harel et al. 2021.

- Repeated signals
- Complete network
- Myopic agents

- Bikhchandani, Hirshleifer and Welch 1992, Banerjee 1992.
 - 10,000,000 citations.
- DeGroot (1974), Bala and Goyal (1998), Molavi et al., (2018), Golub and Jackson (2010)
 - Social network
 - Bounded rationality
- Mossel et al. 2014, 2015.
 - Social network
 - One signal
- Harel et al. 2021.
 - Repeated signals
 - Complete network
 - Myopic agents

- Bikhchandani, Hirshleifer and Welch 1992, Banerjee 1992.
 - 10,000,000 citations.
- DeGroot (1974), Bala and Goyal (1998), Molavi et al., (2018), Golub and Jackson (2010)
 - Social network
 - Bounded rationality
- Mossel et al. 2014, 2015.
 - Social network
 - One signal
- Harel et al. 2021.
 - Repeated signals
 - Complete network
 - Myopic agents

- Bikhchandani, Hirshleifer and Welch 1992, Banerjee 1992.
 - 10,000,000 citations.
- DeGroot (1974), Bala and Goyal (1998), Molavi et al., (2018), Golub and Jackson (2010)
 - Social network
 - Bounded rationality
- Mossel et al. 2014, 2015.
 - Social network
 - One signal
- Harel et al. 2021.
 - Repeated signals
 - Complete network
 - Myopic agents

• For every pair of conditional signal distributions $(\mu_{\mathfrak{g}}, \mu_{\mathfrak{b}})$ define

$$M = 2 \sup_{\omega \in \Omega} \left| \log \frac{\mu_{\mathfrak{g}}(\omega)}{\mu_{\mathfrak{b}}(\omega)} \right| \tag{1}$$

This is twice the maximal log-likelihood ratio induced by any signal realization.

Theorem 1

Fix $(\mu_{\mathfrak{g}}, \mu_{\mathfrak{b}})$. In any equilibrium, on any social network of any size, and for any discount factor $\delta \in [0, 1)$, the speed of learning is at most M.

• For every pair of conditional signal distributions $(\mu_{\mathfrak{g}}, \mu_{\mathfrak{b}})$ define

$$M = 2 \sup_{\omega \in \Omega} \left| \log \frac{\mu_{\mathfrak{g}}(\omega)}{\mu_{\mathfrak{b}}(\omega)} \right| \tag{1}$$

This is twice the maximal log-likelihood ratio induced by any signal realization.

Theorem 1

Fix $(\mu_{\mathfrak{g}}, \mu_{\mathfrak{b}})$. In any equilibrium, on any social network of any size, and for any discount factor $\delta \in [0, 1)$, the speed of learning is at most M.

• For every pair of conditional signal distributions $(\mu_{\mathfrak{g}}, \mu_{\mathfrak{b}})$ define

$$M = 2 \sup_{\omega \in \Omega} \left| \log \frac{\mu_{\mathfrak{g}}(\omega)}{\mu_{\mathfrak{b}}(\omega)} \right| \tag{1}$$

This is twice the maximal log-likelihood ratio induced by any signal realization.

Theorem 1

Fix $(\mu_{\mathfrak{g}}, \mu_{\mathfrak{b}})$. In any equilibrium, on any social network of any size, and for any discount factor $\delta \in [0, 1)$, the speed of learning is at most M.

• For every pair of conditional signal distributions $(\mu_{\mathfrak{g}}, \mu_{\mathfrak{b}})$ define

$$M = 2 \sup_{\omega \in \Omega} \left| \log \frac{\mu_{\mathfrak{g}}(\omega)}{\mu_{\mathfrak{b}}(\omega)} \right| \tag{1}$$

This is twice the maximal log-likelihood ratio induced by any signal realization.

Theorem 1

Fix $(\mu_{\mathfrak{g}}, \mu_{\mathfrak{b}})$. In any equilibrium, on any social network of any size, and for any discount factor $\delta \in [0, 1)$, the speed of learning is at most M.

- Symmetric binary signals: $\mu_{\theta}(\theta) = 0.9$ for $\theta \in \{\mathfrak{g}, \mathfrak{b}\}$.
- a single agent's learning speed is $r_1 \approx 0.5$.
- $M = 2 \log \frac{0.9}{0.1} \approx 4.5$
- So 4.5 is an upper bound to the learning speed in networks of **any size**.
- 10 agents with public signals achieve a speed of learning > 4.5.
- 1,000,000 agents who observe their neighbors' past actions never learns faster than 10 agents who share their private signals.
- More information loss in larger networks.

• Symmetric binary signals: $\mu_{\theta}(\theta) = 0.9$ for $\theta \in \{\mathfrak{g}, \mathfrak{b}\}$.

- a single agent's learning speed is $r_1 \approx 0.5$.
- $M = 2 \log \frac{0.9}{0.1} \approx 4.5$
- So 4.5 is an upper bound to the learning speed in networks of **any size**.
- 10 agents with public signals achieve a speed of learning > 4.5.
- 1,000,000 agents who observe their neighbors' past actions never learns faster than 10 agents who share their private signals.
- More information loss in larger networks.

- Symmetric binary signals: $\mu_{\theta}(\theta) = 0.9$ for $\theta \in \{\mathfrak{g}, \mathfrak{b}\}$.
- a single agent's learning speed is $r_1 \approx 0.5$.
- $M = 2 \log \frac{0.9}{0.1} \approx 4.5$
- So 4.5 is an upper bound to the learning speed in networks of **any size**.
- 10 agents with public signals achieve a speed of learning > 4.5.
- 1,000,000 agents who observe their neighbors' past actions never learns faster than 10 agents who share their private signals.
- More information loss in larger networks.

- Symmetric binary signals: $\mu_{\theta}(\theta) = 0.9$ for $\theta \in \{\mathfrak{g}, \mathfrak{b}\}$.
- a single agent's learning speed is $r_1 \approx 0.5$.
- $M = 2 \log \frac{0.9}{0.1} \approx 4.5$
- So 4.5 is an upper bound to the learning speed in networks of **any size**.
- 10 agents with public signals achieve a speed of learning > 4.5.
- 1,000,000 agents who observe their neighbors' past actions never learns faster than 10 agents who share their private signals.
- More information loss in larger networks.

- Symmetric binary signals: $\mu_{\theta}(\theta) = 0.9$ for $\theta \in \{\mathfrak{g}, \mathfrak{b}\}$.
- a single agent's learning speed is $r_1 \approx 0.5$.
- $M = 2 \log \frac{0.9}{0.1} \approx 4.5$
- So 4.5 is an upper bound to the learning speed in networks of **any size**.
- 10 agents with public signals achieve a speed of learning > 4.5.
- 1,000,000 agents who observe their neighbors' past actions never learns faster than 10 agents who share their private signals.
- More information loss in larger networks.

- Symmetric binary signals: $\mu_{\theta}(\theta) = 0.9$ for $\theta \in \{\mathfrak{g}, \mathfrak{b}\}$.
- a single agent's learning speed is $r_1 \approx 0.5$.
- $M = 2 \log \frac{0.9}{0.1} \approx 4.5$
- So 4.5 is an upper bound to the learning speed in networks of **any size**.
- 10 agents with public signals achieve a speed of learning > 4.5.
- 1,000,000 agents who observe their neighbors' past actions never learns faster than 10 agents who share their private signals.
- More information loss in larger networks.

- Symmetric binary signals: $\mu_{\theta}(\theta) = 0.9$ for $\theta \in \{\mathfrak{g}, \mathfrak{b}\}$.
- a single agent's learning speed is $r_1 \approx 0.5$.
- $M = 2 \log \frac{0.9}{0.1} \approx 4.5$
- So 4.5 is an upper bound to the learning speed in networks of **any size**.
- 10 agents with public signals achieve a speed of learning > 4.5.
- 1,000,000 agents who observe their neighbors' past actions never learns faster than 10 agents who share their private signals.
- More information loss in larger networks.

- Symmetric binary signals: $\mu_{\theta}(\theta) = 0.9$ for $\theta \in \{\mathfrak{g}, \mathfrak{b}\}$.
- a single agent's learning speed is $r_1 \approx 0.5$.
- $M = 2 \log \frac{0.9}{0.1} \approx 4.5$
- So 4.5 is an upper bound to the learning speed in networks of **any size**.
- 10 agents with public signals achieve a speed of learning > 4.5.
- 1,000,000 agents who observe their neighbors' past actions never learns faster than 10 agents who share their private signals.
- More information loss in larger networks.

Myopic and Strategic Behavior

- The posterior log-likelihood ratio is $L_t^i := \log \frac{\mathbb{P}[\Theta = \mathfrak{g}|s_1^i, \cdots, s_t^i, H_t^i]}{\mathbb{P}[\Theta = \mathfrak{b}|s_1^i, \cdots, s_t^i, H_t^i]}$
- Myopically optimal action is

$$m_t^i := \operatorname*{arg\,max}_{a \in \mathcal{A}} \mathbb{P}[\Theta = a | s_1^i, \cdots, s_t^i, H_t^i] = \begin{cases} \mathfrak{g} & \text{if } L_t^i \ge 0, \\ \mathfrak{b} & \text{if } L_t^i < 0. \end{cases}$$

• If $\delta \in (0, 1)$, there may be **strategic** incentive to **not** choose m_t^i .

Lemma 1 (Eventually Myopic)

- (i) In equilibrium, if for some time t it holds that |Lⁱ_t| ≥ -log(1 δ) then aⁱ_t = mⁱ_t.
 (ii) There exists a random time T < ∞ such that in equilibrium, all agents behave myopically after T, i.e. t ≥ T ⇒ aⁱ_t = mⁱ_t for all i almost surely.
 - Intuition: (i) as posterior belief becomes precise enough, not worthwhile behaving strategically; (ii) a stream of private signals → precise beliefs.

Myopic and Strategic Behavior

• The posterior log-likelihood ratio is $L_t^i := \log \frac{\mathbb{P}[\Theta = \mathfrak{g}|s_1^i, \cdots, s_t^i, H_t^i]}{\mathbb{P}[\Theta = \mathfrak{b}|s_1^i, \cdots, s_t^i, H_t^i]}$.

• Myopically optimal action is

$$m_t^i := \operatorname*{arg\,max}_{a \in \mathcal{A}} \mathbb{P}[\Theta = a | s_1^i, \cdots, s_t^i, H_t^i] = \begin{cases} \mathfrak{g} & \text{if } L_t^i \ge 0, \\ \mathfrak{b} & \text{if } L_t^i < 0. \end{cases}$$

• If $\delta \in (0, 1)$, there may be **strategic** incentive to **not** choose m_t^i .

Lemma 1 (Eventually Myopic)

- (i) In equilibrium, if for some time t it holds that |Lⁱ_t| ≥ -log(1 δ) then aⁱ_t = mⁱ_t.
 (ii) There exists a random time T < ∞ such that in equilibrium, all agents behave myopically after T, i.e. t ≥ T ⇒ aⁱ_t = mⁱ_t for all i almost surely.
 - Intuition: (i) as posterior belief becomes precise enough, not worthwhile behaving strategically; (ii) a stream of private signals → precise beliefs.

Myopic and Strategic Behavior

- The posterior log-likelihood ratio is $L_t^i := \log \frac{\mathbb{P}[\Theta = \mathfrak{g}|s_1^i, \cdots, s_t^i, H_t^i]}{\mathbb{P}[\Theta = \mathfrak{b}|s_1^i, \cdots, s_t^i, H_t^i]}$.
- Myopically optimal action is

$$m_t^i := \operatorname*{arg\,max}_{a \in \mathcal{A}} \mathbb{P}[\Theta = a | s_1^i, \cdots, s_t^i, H_t^i] = \begin{cases} \mathfrak{g} & \text{if } L_t^i \geq 0, \\ \mathfrak{b} & \text{if } L_t^i < 0. \end{cases}$$

• If $\delta \in (0, 1)$, there may be **strategic** incentive to **not** choose m_t^i .

Lemma 1 (Eventually Myopic)

- (i) In equilibrium, if for some time t it holds that |Lⁱ_t| ≥ -log(1 − δ) then aⁱ_t = mⁱ_t.
 (ii) There exists a random time T < ∞ such that in equilibrium, all agents behave myopically after T, i.e. t ≥ T ⇒ aⁱ_t = mⁱ_t for all i almost surely.
 - Intuition: (i) as posterior belief becomes precise enough, not worthwhile behaving strategically; (ii) a stream of private signals → precise beliefs.

- The posterior log-likelihood ratio is $L_t^i := \log \frac{\mathbb{P}[\Theta = \mathfrak{g}|s_1^i, \cdots, s_t^i, H_t^i]}{\mathbb{P}[\Theta = \mathfrak{b}|s_1^i, \cdots, s_t^i, H_t^i]}$.
- Myopically optimal action is

$$m_t^i := \operatorname*{arg\,max}_{a \in \mathcal{A}} \mathbb{P}[\Theta = a | s_1^i, \cdots, s_t^i, H_t^i] = \begin{cases} \mathfrak{g} & \text{if } L_t^i \ge 0, \\ \mathfrak{b} & \text{if } L_t^i < 0. \end{cases}$$

• If $\delta \in (0, 1)$, there may be **strategic** incentive to **not** choose m_t^i .

Lemma 1 (Eventually Myopic)

- (i) In equilibrium, if for some time t it holds that |Lⁱ_t| ≥ -log(1 δ) then aⁱ_t = mⁱ_t.
 (ii) There exists a random time T < ∞ such that in equilibrium, all agents behave myopically after T, i.e. t ≥ T ⇒ aⁱ_t = mⁱ_t for all i almost surely.
 - Intuition: (i) as posterior belief becomes precise enough, not worthwhile behaving strategically; (ii) a stream of private signals → precise beliefs.

- The posterior log-likelihood ratio is $L_t^i := \log \frac{\mathbb{P}[\Theta = \mathfrak{g}|s_1^i, \cdots, s_t^i, H_t^i]}{\mathbb{P}[\Theta = \mathfrak{b}|s_1^i, \cdots, s_t^i, H_t^i]}$.
- Myopically optimal action is

$$m_t^i := \operatorname*{arg\,max}_{a \in \mathcal{A}} \mathbb{P}[\Theta = a | s_1^i, \cdots, s_t^i, H_t^i] = \begin{cases} \mathfrak{g} & \text{if } L_t^i \ge 0, \\ \mathfrak{b} & \text{if } L_t^i < 0. \end{cases}$$

• If $\delta \in (0, 1)$, there may be **strategic** incentive to **not** choose m_t^i .

Lemma 1 (Eventually Myopic)

- i) In equilibrium, if for some time t it holds that |Lⁱ_t| ≥ -log(1 δ) then aⁱ_t = mⁱ_t.
 ii) There exists a random time T < ∞ such that in equilibrium, all agents behave myopically after T, i.e. t ≥ T ⇒ aⁱ_t = mⁱ_t for all i almost surely.
 - Intuition: (i) as posterior belief becomes precise enough, not worthwhile behaving strategically; (ii) a stream of private signals → precise beliefs.

- The posterior log-likelihood ratio is $L_t^i := \log \frac{\mathbb{P}[\Theta = \mathfrak{g}|s_1^i, \cdots, s_t^i, H_t^i]}{\mathbb{P}[\Theta = \mathfrak{b}|s_1^i, \cdots, s_t^i, H_t^i]}$.
- Myopically optimal action is

$$m_t^i := \operatorname*{arg\,max}_{a \in \mathcal{A}} \mathbb{P}[\Theta = a | s_1^i, \cdots, s_t^i, H_t^i] = \begin{cases} \mathfrak{g} & \text{if } L_t^i \ge 0, \\ \mathfrak{b} & \text{if } L_t^i < 0. \end{cases}$$

• If $\delta \in (0, 1)$, there may be **strategic** incentive to **not** choose m_t^i .

Lemma 1 (Eventually Myopic)

(i) In equilibrium, if for some time t it holds that $|L_t^i| \ge -\log(1-\delta)$ then $a_t^i = m_t^i$.

(ii) There exists a random time $T < \infty$ such that in equilibrium, all agents behave myopically after T, i.e. $t \ge T \Rightarrow a_t^i = m_t^i$ for all i almost surely.

• Intuition: (i) as posterior belief becomes precise enough, not worthwhile behaving strategically; (ii) a stream of private signals → precise beliefs.

- The posterior log-likelihood ratio is $L_t^i := \log \frac{\mathbb{P}[\Theta = \mathfrak{g}|s_1^i, \cdots, s_t^i, H_t^i]}{\mathbb{P}[\Theta = \mathfrak{b}|s_1^i, \cdots, s_t^i, H_t^i]}$.
- Myopically optimal action is

$$m_t^i := \operatorname*{arg\,max}_{a \in \mathcal{A}} \mathbb{P}[\Theta = a | s_1^i, \cdots, s_t^i, H_t^i] = \begin{cases} \mathfrak{g} & \text{if } L_t^i \ge 0, \\ \mathfrak{b} & \text{if } L_t^i < 0. \end{cases}$$

• If $\delta \in (0, 1)$, there may be **strategic** incentive to **not** choose m_t^i .

Lemma 1 (Eventually Myopic)

(i) In equilibrium, if for some time t it holds that $|L_t^i| \ge -\log(1-\delta)$ then $a_t^i = m_t^i$.

(ii) There exists a random time $T < \infty$ such that in equilibrium, all agents behave myopically after T, i.e. $t \ge T \Rightarrow a_t^i = m_t^i$ for all i almost surely.

• Intuition: (i) as posterior belief becomes precise enough, not worthwhile behaving strategically; (ii) a stream of private signals → precise beliefs.

Lemma 2 (All Agents Learn at the Same Rate)

(i) If agent *i* can observe agent *j*, *i.e.*, $i \in N_i$, then in equilibrium *i* learns at a (weakly) higher rate, *i.e.*, $r_i \ge r_j$.

(ii) All agents learn at the same rate, i.e., $r_i = r_j$ for all i, j, in any strongly connected network.

- We call this common rate the equilibrium speed of learning.
- Intuition: the imitation principle.

Lemma 2 (All Agents Learn at the Same Rate)

 (i) If agent i can observe agent j, i.e., i ∈ N_i, then in equilibrium i learns at a (weakly) higher rate, i.e., r_i ≥ r_j.

(ii) All agents learn at the same rate, i.e., $r_i = r_j$ for all i, j, in any strongly connected network.

- We call this common rate the equilibrium speed of learning.
- Intuition: the imitation principle.

Lemma 2 (All Agents Learn at the Same Rate)

- (i) If agent i can observe agent j, i.e., i ∈ N_i, then in equilibrium i learns at a (weakly) higher rate, i.e., r_i ≥ r_j.
- (ii) All agents learn at the same rate, i.e., $r_i = r_j$ for all i, j, in any strongly connected network.
 - We call this common rate the equilibrium speed of learning.
 - Intuition: the imitation principle.

Lemma 2 (All Agents Learn at the Same Rate)

- (i) If agent i can observe agent j, i.e., i ∈ N_i, then in equilibrium i learns at a (weakly) higher rate, i.e., r_i ≥ r_j.
- (ii) All agents learn at the same rate, i.e., $r_i = r_j$ for all i, j, in any strongly connected network.
 - We call this common rate the equilibrium speed of learning.

• Intuition: the imitation principle.

Lemma 2 (All Agents Learn at the Same Rate)

- (i) If agent i can observe agent j, i.e., i ∈ N_i, then in equilibrium i learns at a (weakly) higher rate, i.e., r_i ≥ r_j.
- (ii) All agents learn at the same rate, i.e., $r_i = r_j$ for all i, j, in any strongly connected network.
 - We call this common rate the equilibrium speed of learning.
 - Intuition: the imitation principle.

(i) Imitation Principle for Myopic Agents if *i* observes *j*, then *i*'s actions are not worse than *j*'s:

$$\mathbb{P}[a_t^i \neq \Theta] \le \mathbb{P}[a_{t-1}^j \neq \Theta],$$

since i can always imitate j.

$$\mathbb{P}[a_t^i \neq \Theta] \le \frac{1}{1-\delta} \mathbb{P}[a_{t-1}^j \neq \Theta].$$

- Intuition: i can imitates j's action at t-1 forever (from t onward), but this cannot be a profitable deviation in eqm.
- Similar ideas in Smith and Sorensen (1996), Sorensen (1996), Gale and Kariv, (2003) Golub and Sadler (2017)

(i) Imitation Principle for Myopic Agents if *i* observes *j*, then *i*'s actions are not worse than *j*'s:

$$\mathbb{P}[a_t^i \neq \Theta] \le \mathbb{P}[a_{t-1}^j \neq \Theta],$$

since i can always imitate j.

$$\mathbb{P}[a_t^i \neq \Theta] \le \frac{1}{1-\delta} \mathbb{P}[a_{t-1}^j \neq \Theta].$$

- Intuition: i can imitates j's action at t-1 forever (from t onward), but this cannot be a profitable deviation in eqm.
- Similar ideas in Smith and Sorensen (1996), Sorensen (1996), Gale and Kariv, (2003) Golub and Sadler (2017)

(i) Imitation Principle for Myopic Agents if *i* observes *j*, then *i*'s actions are not worse than *j*'s:

$$\mathbb{P}[a_t^i \neq \Theta] \le \mathbb{P}[a_{t-1}^j \neq \Theta],$$

since i can always imitate j.

$$\mathbb{P}[a_t^i \neq \Theta] \le \frac{1}{1-\delta} \mathbb{P}[a_{t-1}^j \neq \Theta].$$

- Intuition: i can imitates j's action at t-1 forever (from t onward), but this cannot be a profitable deviation in eqm.
- Similar ideas in Smith and Sorensen (1996), Sorensen (1996), Gale and Kariv, (2003) Golub and Sadler (2017)

(i) Imitation Principle for Myopic Agents if *i* observes *j*, then *i*'s actions are not worse than *j*'s:

$$\mathbb{P}[a_t^i \neq \Theta] \le \mathbb{P}[a_{t-1}^j \neq \Theta],$$

since i can always imitate j.

$$\mathbb{P}[a_t^i \neq \Theta] \le \frac{1}{1-\delta} \mathbb{P}[a_{t-1}^j \neq \Theta].$$

- Intuition: *i* can imitates *j*'s action at t 1 forever (from *t* onward), but this cannot be a profitable deviation in eqm.
- Similar ideas in Smith and Sorensen (1996), Sorensen (1996), Gale and Kariv, (2003) Golub and Sadler (2017)

(i) Imitation Principle for Myopic Agents if *i* observes *j*, then *i*'s actions are not worse than *j*'s:

$$\mathbb{P}[a_t^i \neq \Theta] \le \mathbb{P}[a_{t-1}^j \neq \Theta],$$

since i can always imitate j.

$$\mathbb{P}[a_t^i \neq \Theta] \le \frac{1}{1-\delta} \mathbb{P}[a_{t-1}^j \neq \Theta].$$

- Intuition: *i* can imitates *j*'s action at t 1 forever (from *t* onward), but this cannot be a profitable deviation in eqm.
- Similar ideas in Smith and Sorensen (1996), Sorensen (1996), Gale and Kariv, (2003) Golub and Sadler (2017)

Theorem

- Suppose speed of learning is r > M.
- Condition on $\Theta = \mathfrak{g}$.
- $a_t^j = \mathfrak{g}$ eventually.
- $\mathbb{P}[a_t^j \neq \mathfrak{g}] \approx \mathrm{e}^{-rt}.$
- \bullet Observing j provides a log-likelihood ratio

$$\log \frac{\mathbb{P}[\Theta = \mathfrak{g} | a_t^j = \mathfrak{g}]}{\mathbb{P}[\Theta = \mathfrak{b} | a_t^j = \mathfrak{g}]} \approx rt.$$

- t private signals provide a log-likelihood ratio in [-Mt, Mt].
- So eventually imitation dominates any possible signal.
- Agents stop looking at their signals.
- But if no-one is looking at signals then learning stops.

Theorem

- Suppose speed of learning is r > M.
- Condition on $\Theta = \mathfrak{g}$.
- $a_t^j = \mathfrak{g}$ eventually.
- $\mathbb{P}[a_t^j \neq \mathfrak{g}] \approx \mathrm{e}^{-rt}.$
- \bullet Observing j provides a log-likelihood ratio

$$\log \frac{\mathbb{P}[\Theta = \mathfrak{g} | a_t^j = \mathfrak{g}]}{\mathbb{P}[\Theta = \mathfrak{b} | a_t^j = \mathfrak{g}]} \approx rt.$$

- t private signals provide a log-likelihood ratio in [-Mt, Mt].
- So eventually imitation dominates any possible signal.
- Agents stop looking at their signals.
- But if no-one is looking at signals then learning stops.

Theorem

- Suppose speed of learning is r > M.
- Condition on $\Theta = \mathfrak{g}$.
- $a_t^j = \mathfrak{g}$ eventually.
- $\mathbb{P}[a_t^j \neq \mathfrak{g}] \approx \mathrm{e}^{-rt}.$
- Observing j provides a log-likelihood ratio

$$\log \frac{\mathbb{P}[\Theta = \mathfrak{g} | a_t^j = \mathfrak{g}]}{\mathbb{P}[\Theta = \mathfrak{b} | a_t^j = \mathfrak{g}]} \approx rt.$$

- t private signals provide a log-likelihood ratio in [-Mt, Mt].
- So eventually imitation dominates any possible signal.
- Agents stop looking at their signals.
- But if no-one is looking at signals then learning stops.

Theorem

- Suppose speed of learning is r > M.
- Condition on $\Theta = \mathfrak{g}$.
- $a_t^j = \mathfrak{g}$ eventually.
- $\mathbb{P}[a_t^j \neq \mathfrak{g}] \approx \mathrm{e}^{-rt}.$
- \bullet Observing j provides a log-likelihood ratio

$$\log \frac{\mathbb{P}[\Theta = \mathfrak{g} | a_t^j = \mathfrak{g}]}{\mathbb{P}[\Theta = \mathfrak{b} | a_t^j = \mathfrak{g}]} \approx rt.$$

- t private signals provide a log-likelihood ratio in [-Mt, Mt].
- So eventually imitation dominates any possible signal.
- Agents stop looking at their signals.
- But if no-one is looking at signals then learning stops.

Theorem

- Suppose speed of learning is r > M.
- Condition on $\Theta = \mathfrak{g}$.
- $a_t^j = \mathfrak{g}$ eventually.
- $\mathbb{P}[a_t^j \neq \mathfrak{g}] \approx \mathrm{e}^{-rt}.$
- \bullet Observing j provides a log-likelihood ratio

$$\log \frac{\mathbb{P}[\Theta = \mathfrak{g} | a_t^j = \mathfrak{g}]}{\mathbb{P}[\Theta = \mathfrak{b} | a_t^j = \mathfrak{g}]} \approx rt.$$

- t private signals provide a log-likelihood ratio in [-Mt, Mt].
- So eventually imitation dominates any possible signal.
- Agents stop looking at their signals.
- But if no-one is looking at signals then learning stops.

Theorem

Fix $(\mu_{\mathfrak{g}}, \mu_{\mathfrak{b}})$. In any equilibrium, on any social network of any size, and for any discount factor $\delta \in [0, 1)$, the speed of learning is at most M.

- Suppose speed of learning is r > M.
- Condition on $\Theta = \mathfrak{g}$.
- $a_t^j = \mathfrak{g}$ eventually.
- $\mathbb{P}[a_t^j \neq \mathfrak{g}] \approx e^{-rt}.$

 \bullet Observing j provides a log-likelihood ratio

$$\log \frac{\mathbb{P}[\Theta = \mathfrak{g} | a_t^j = \mathfrak{g}]}{\mathbb{P}[\Theta = \mathfrak{b} | a_t^j = \mathfrak{g}]} \approx rt.$$

- t private signals provide a log-likelihood ratio in [-Mt, Mt].
- So eventually imitation dominates any possible signal.
- Agents stop looking at their signals.
- But if no-one is looking at signals then learning stops.

Theorem

- Suppose speed of learning is r > M.
- Condition on $\Theta = \mathfrak{g}$.
- $a_t^j = \mathfrak{g}$ eventually.
- $\mathbb{P}[a_t^j \neq \mathfrak{g}] \approx \mathrm{e}^{-rt}.$
- \bullet Observing j provides a log-likelihood ratio

$$\log \frac{\mathbb{P}[\Theta = \mathfrak{g} | a_t^j = \mathfrak{g}]}{\mathbb{P}[\Theta = \mathfrak{b} | a_t^j = \mathfrak{g}]} \approx rt.$$

- t private signals provide a log-likelihood ratio in [-Mt, Mt].
- So eventually imitation dominates any possible signal.
- Agents stop looking at their signals.
- But if no-one is looking at signals then learning stops.

Theorem

- Suppose speed of learning is r > M.
- Condition on $\Theta = \mathfrak{g}$.
- $a_t^j = \mathfrak{g}$ eventually.
- $\mathbb{P}[a_t^j \neq \mathfrak{g}] \approx \mathrm{e}^{-rt}.$
- \bullet Observing j provides a log-likelihood ratio

$$\log \frac{\mathbb{P}[\Theta = \mathfrak{g} | a_t^j = \mathfrak{g}]}{\mathbb{P}[\Theta = \mathfrak{b} | a_t^j = \mathfrak{g}]} \approx rt.$$

- t private signals provide a log-likelihood ratio in [-Mt, Mt].
- So eventually imitation dominates any possible signal.
- Agents stop looking at their signals.
- But if no-one is looking at signals then learning stops.

Theorem

- Suppose speed of learning is r > M.
- Condition on $\Theta = \mathfrak{g}$.
- $a_t^j = \mathfrak{g}$ eventually.
- $\mathbb{P}[a_t^j \neq \mathfrak{g}] \approx \mathrm{e}^{-rt}.$
- \bullet Observing j provides a log-likelihood ratio

$$\log \frac{\mathbb{P}[\Theta = \mathfrak{g} | a_t^j = \mathfrak{g}]}{\mathbb{P}[\Theta = \mathfrak{b} | a_t^j = \mathfrak{g}]} \approx rt.$$

- t private signals provide a log-likelihood ratio in [-Mt, Mt].
- So eventually imitation dominates any possible signal.
- Agents stop looking at their signals.
- But if no-one is looking at signals then learning stops.

Theorem

- Suppose speed of learning is r > M.
- Condition on $\Theta = \mathfrak{g}$.
- $a_t^j = \mathfrak{g}$ eventually.
- $\mathbb{P}[a_t^j \neq \mathfrak{g}] \approx \mathrm{e}^{-rt}.$
- \bullet Observing j provides a log-likelihood ratio

$$\log \frac{\mathbb{P}[\Theta = \mathfrak{g} | a_t^j = \mathfrak{g}]}{\mathbb{P}[\Theta = \mathfrak{b} | a_t^j = \mathfrak{g}]} \approx rt.$$

- t private signals provide a log-likelihood ratio in [-Mt, Mt].
- So eventually imitation dominates any possible signal.
- Agents stop looking at their signals.
- But if no-one is looking at signals then learning stops.

Theorem

- Suppose speed of learning is r > M.
- Condition on $\Theta = \mathfrak{g}$.
- $a_t^j = \mathfrak{g}$ eventually.
- $\mathbb{P}[a_t^j \neq \mathfrak{g}] \approx \mathrm{e}^{-rt}.$
- \bullet Observing j provides a log-likelihood ratio

$$\log \frac{\mathbb{P}[\Theta = \mathfrak{g} | a_t^j = \mathfrak{g}]}{\mathbb{P}[\Theta = \mathfrak{b} | a_t^j = \mathfrak{g}]} \approx rt.$$

- t private signals provide a log-likelihood ratio in [-Mt, Mt].
- So eventually imitation dominates any possible signal.
- Agents stop looking at their signals.
- But if no-one is looking at signals then learning stops.

- Social learning in a
 - rational setting,
 - on general networks,
 - with **forward-looking**/strategic agents
 - who interact **repeatedly**.
- speed of learning:
 - Measure of efficiency of information aggregation.
 - Asymptotic.
 - Tractable.
- Main result: The speed of learning is **bounded above** by a constant, which depends only on the private signal structure.
- Aggregation is highly **inefficient**.

• Social learning in a

- rational setting,
- on general networks,
- with forward-looking/strategic agents
- who interact **repeatedly**.
- speed of learning:
 - Measure of efficiency of information aggregation.
 - Asymptotic.
 - Tractable.
- Main result: The speed of learning is **bounded above** by a constant, which depends only on the private signal structure.
- Aggregation is highly **inefficient**.

• Social learning in a

• rational setting,

- on general networks,
- with **forward-looking**/strategic agents
- who interact **repeatedly**.

• speed of learning:

- Measure of efficiency of information aggregation.
- Asymptotic.
- Tractable.
- Main result: The speed of learning is **bounded above** by a constant, which depends only on the private signal structure.
- Aggregation is highly **inefficient**.

• Social learning in a

- rational setting,
- on general networks,
- with **forward-looking**/strategic agents
- who interact **repeatedly**.

• speed of learning:

- Measure of efficiency of information aggregation.
- Asymptotic.
- Tractable.
- Main result: The speed of learning is **bounded above** by a constant, which depends only on the private signal structure.
- Aggregation is highly **inefficient**.

- Social learning in a
 - rational setting,
 - on general networks,
 - $\bullet~{\rm with~forward-looking/strategic~agents}$
 - who interact **repeatedly**.
- speed of learning:
 - Measure of efficiency of information aggregation.
 - Asymptotic.
 - Tractable.
- Main result: The speed of learning is **bounded above** by a constant, which depends only on the private signal structure.
- Aggregation is highly **inefficient**.

- Social learning in a
 - rational setting,
 - on general networks,
 - with **forward-looking**/strategic agents
 - who interact **repeatedly**.
- speed of learning:
 - Measure of efficiency of information aggregation.
 - Asymptotic.
 - Tractable.
- Main result: The speed of learning is **bounded above** by a constant, which depends only on the private signal structure.
- Aggregation is highly **inefficient**.

- Social learning in a
 - rational setting,
 - on general networks,
 - $\bullet~{\rm with~forward-looking/strategic~agents}$
 - who interact **repeatedly**.

• speed of learning:

- Measure of efficiency of information aggregation.
- Asymptotic.
- Tractable.
- Main result: The speed of learning is **bounded above** by a constant, which depends only on the private signal structure.
- Aggregation is highly **inefficient**.

- Social learning in a
 - rational setting,
 - on general networks,
 - $\bullet~{\rm with~forward\text{-}looking/strategic~agents}$
 - who interact **repeatedly**.
- speed of learning:
 - Measure of efficiency of information aggregation.
 - Asymptotic.
 - Tractable.
- Main result: The speed of learning is **bounded above** by a constant, which depends only on the private signal structure.
- Aggregation is highly **inefficient**.

- Social learning in a
 - rational setting,
 - on general networks,
 - $\bullet~{\rm with~forward\text{-}looking/strategic~agents}$
 - who interact **repeatedly**.
- speed of learning:
 - Measure of efficiency of information aggregation.
 - Asymptotic.
 - Tractable.
- Main result: The speed of learning is **bounded above** by a constant, which depends only on the private signal structure.
- Aggregation is highly **inefficient**.

- Social learning in a
 - rational setting,
 - on general networks,
 - $\bullet~{\rm with~forward\text{-}looking/strategic~agents}$
 - who interact **repeatedly**.
- speed of learning:
 - Measure of efficiency of information aggregation.
 - Asymptotic.
 - Tractable.
- Main result: The speed of learning is **bounded above** by a constant, which depends only on the private signal structure.
- Aggregation is highly **inefficient**.

- Social learning in a
 - rational setting,
 - on general networks,
 - with **forward-looking**/strategic agents
 - who interact **repeatedly**.

• speed of learning:

- Measure of efficiency of information aggregation.
- Asymptotic.
- Tractable.
- Main result: The speed of learning is **bounded above** by a constant, which depends only on the private signal structure.
- Aggregation is highly **inefficient**.

- Social learning in a
 - rational setting,
 - on general networks,
 - with **forward-looking**/strategic agents
 - who interact **repeatedly**.

• speed of learning:

- Measure of efficiency of information aggregation.
- Asymptotic.
- Tractable.
- Main result: The speed of learning is **bounded above** by a constant, which depends only on the private signal structure.
- Aggregation is highly **inefficient**.