MCSAT BASED APPROACHES FOR NON-LINEAR MODULAR ARITHMETIC

Jakob Rath ${ }^{1}$ Clemens Eisenhofer ${ }^{1}$ Thomas Hader ${ }^{1}$ Daniela Kaufmann ${ }^{1}$ Laura Kovács ${ }^{1}$ Nikolaj Bjørner ${ }^{2}$ ${ }^{1}$ TU Wien ${ }^{2}$ Microsoft Research

Satisfiability: Theory, Practice, and Beyond
Extended Reunion: Satisfiability
Simons Institute, Berkeley, CA, US
April 20, 2023

Modulo 5

$$
\begin{array}{r}
x^{2}-1=0 \\
x y-y-1=0 \\
x y-2 \neq 0
\end{array}
$$

Modulo 5

$$
\begin{aligned}
x^{2}-1 & =0 \\
x y-y-1 & =0 \\
x y-2 & \neq 0
\end{aligned}
$$

\cdot	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Modulo 5

$$
\begin{aligned}
x^{2}-1 & =0 \\
x y-y-1 & =0 \\
x y-2 & \neq 0
\end{aligned}
$$

\cdot	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

$$
x \mapsto 4, y \mapsto 2
$$

Solving polynomial equations

Solving polynomial equations is one of the oldest and hardest problem in mathematics.
Algebraic closed fields: decidable (Gröbner bases)
Finite domains are not algebraically closed

Solving polynomial equations

Solving polynomial equations is one of the oldest and hardest problem in mathematics. Algebraic closed fields: decidable (Gröbner bases)
Finite domains are not algebraically closed

Non-linear polynomial reasoning over finite domains is currently of interest in automated reasoning over cryptosystems:

■ Finite field $\mathbb{F}_{q}[X]$: Zero-knowledge proofs, elliptic curve cryptography
$\square \mathbb{Z} / 2^{k} \mathbb{Z}[X]$: Bit-vector solving, e.g. in smart contracts

Solving polynomial equations

Computer Algebra

- Until recently solving polynomial constraints was the sole domain of computer algebra.
- Powerful in finding all solutions
- High computational overhead

Solving polynomial equations

Computer Algebra

- Until recently solving polynomial constraints was the sole domain of computer algebra.
- Powerful in finding all solutions
- High computational overhead

We are typically not interested in finding all solutions!

Solving polynomial equations

Computer Algebra

- Until recently solving polynomial constraints was the sole domain of computer algebra.
- Powerful in finding all solutions
- High computational overhead

Model Constructing Satisfiability (MCSat)

- Finding satisfiable instances of polynomial arithmetic.

Combines CDCL-style search with algebraic decompositions.

MCSAT based approaches for non-linear modular arithmetic

1. Constraints in $\mathbb{F}_{q}[X]$

- Finite field
- Not algebraically closed
- Constraints: $=, \neq$

Modulo 5

$$
\begin{aligned}
x^{2}-1 & =0 \\
x y-y-1 & =0 \\
x y-2 & \neq 0
\end{aligned}
$$

\Rightarrow FFSAT
Thomas Hader, Daniela Kaufmann, Laura Kovács

MCSAT based approaches for non-linear modular arithmetic

1. Constraints in $\mathbb{F}_{q}[X]$

- Finite field
- Not algebraically closed
- Constraints: $=, \neq$

Modulo 5

$$
\begin{array}{r}
x^{2}-1=0 \\
x y-y-1=0 \\
x y-2 \neq 0
\end{array}
$$

\Rightarrow FFSAT
Thomas Hader, Daniela Kaufmann, Laura Kovács
2. Constraints in $\mathbb{Z} / 2^{k} \mathbb{Z}[X]$

- Finite commutative ring
- Not algebraically closed
- Constraints: $=, \neq,<,>, \Omega^{*}(x, y)$

Modulo 2^{4}

$$
\begin{aligned}
x y+y & \leq y+3 \\
2 y+z & =10 \\
3 x+6 y z+3 z^{2} & =1
\end{aligned}
$$

\Rightarrow PolySat
Nikolaj Bjørner, Clemens Eisenhofer, Daniela Kaufmann, Laura Kovács, Jakob Rath

MCSat

MCSat

- abstract CDCL decision procedure
- integrates theory reasoning in the boolean search engine
- incrementally constructs model while searching

■ propagated literals are justified by model assignments

MCSat

MCSat

- abstract CDCL decision procedure
\square integrates theory reasoning in the boolean search engine
- incrementally constructs model while searching
\square propagated literals are justified by model assignments

Successfully applied in the theories of

- non-linear arithmetic constraints over reals
- linear integer constraints

■ bitvectors
[Jovanović et al., VMCAI'13]
[Jovanović et al., IJCAR'12]
[Jovanović et al., CADE'11]
[Zeljić et al., SAT'16]

MCSat - Idea

From a given set of clauses \mathcal{C}, generate a trail Γ with decided and propagated literals and theory variable assignments that leads to one of the two terminal states UNSAT or SAT.

Polynomial system is a set of unit clauses.

MCSat - Idea

From a given set of clauses \mathcal{C}, generate a trail Γ with decided and propagated literals and theory variable assignments that leads to one of the two terminal states UNSAT or SAT.

Main components:

- Trail Γ records assignments and reasons
- For each variable x, keep track of viable values V_{x}
- Conflict C : set of constraints that contradicts Γ

■ Conflict analysis learn a new constraint to avoid the conflict in the future

MCSat - Idea

From a given set of clauses \mathcal{C}, generate a trail Γ with decided and propagated literals and theory variable assignments that leads to one of the two terminal states UNSAT or SAT.

Variables $x_{1}<x_{2}<\ldots<x_{n}$

$$
\Gamma=\llbracket F_{1}, \ldots, F_{l}, x_{1} \mapsto \alpha_{1}, G_{1}, \ldots, G_{m}, x_{2} \mapsto \alpha_{2}, H_{1}, \ldots, H_{n}, \ldots \rrbracket
$$

literals F_{i} over $\left[x_{1}\right], G_{i}$ over $\left[x_{1}, x_{2}\right], H_{i}$ over $\left[x_{1}, x_{2}, x_{3}\right]$.

MCSat - Idea

From a given set of clauses \mathcal{C}, generate a trail Γ with decided and propagated literals and theory variable assignments that leads to one of the two terminal states UNSAT or SAT.

Variables $x_{1}<x_{2}<\ldots<x_{n}$

$$
\Gamma=\llbracket F_{1}, \ldots, F_{l}, x_{1} \mapsto \alpha_{1}, G_{1}, \ldots, G_{m}, x_{2} \mapsto \alpha_{2}, H_{1}, \ldots, H_{n}, \ldots \rrbracket
$$

literals F_{i} over $\left[x_{1}\right], G_{i}$ over $\left[x_{1}, x_{2}\right], H_{i}$ over $\left[x_{1}, x_{2}, x_{3}\right]$.

Regular boolean propagation:

Clause $\mathcal{C}_{1}=\left\{\neg F_{1}, \neg G_{2}, H\right\}$
Add literal H to the trail with justification \mathcal{C}_{1}.

MCSat - Idea

From a given set of clauses \mathcal{C}, generate a trail Γ with decided and propagated literals and theory variable assignments that leads to one of the two terminal states UNSAT or SAT.

Variables $x_{1}<x_{2}<\ldots<x_{n}$

$$
\Gamma=\llbracket F_{1}, \ldots, F_{l}, x_{1} \mapsto \alpha_{1}, G_{1}, \ldots, G_{m}, x_{2} \mapsto \alpha_{2}, H_{1}, \ldots, H_{n}, \ldots \rrbracket
$$

literals F_{i} over $\left[x_{1}\right], G_{i}$ over $\left[x_{1}, x_{2}\right], H_{i}$ over $\left[x_{1}, x_{2}, x_{3}\right]$.
In addition theory propagation:
Idea: From theory (i.e. variable assignments) we know that literal H can't hold, $\neg H$ can be propagated.
Generate explanation clause E that justifies $\neg H$.

Example: Polynomial Equations

$C_{1}:$
$C_{2}:$

$$
\begin{aligned}
x^{2}-1=0 & \bmod 5 \\
x y-y-1 & =0
\end{aligned} \quad \bmod 5
$$

1. $\Gamma=\llbracket\left(x^{2}-1=0\right) \rrbracket$
decide literal

Example: Polynomial Equations

$C_{1}:$
$C_{2}:$

$$
\begin{aligned}
x^{2}-1=0 & \bmod 5 \\
x y-y-1=0 & \bmod 5
\end{aligned}
$$

1. $\Gamma=\llbracket\left(x^{2}-1=0\right) \rrbracket$
decide literal
$\left.\rightsquigarrow C_{1}\right|_{\Gamma}: x^{2}-1=0 \quad \Rightarrow x=1 \vee x=4$

Example: Polynomial Equations

$C_{1}:$
$C_{2}:$

$$
x^{2}-1=0 \quad \bmod 5
$$

$$
x y-y-1=0 \quad \bmod 5
$$

1. $\Gamma=\llbracket\left(x^{2}-1=0\right) \rrbracket$
$\left.\rightsquigarrow C_{1}\right|_{\Gamma}: x^{2}-1=0 \quad \Rightarrow x=1 \vee x=4$
2. $\Gamma=\llbracket\left(x^{2}-1=0\right)^{\delta},(x \mapsto 1)^{C_{1}} \rrbracket$
decide literal
decision on x

Example: Polynomial Equations

$$
\begin{array}{lrr}
C_{1}: & x^{2}-1=0 & \bmod 5 \\
C_{2}: & x y-y-1=0 & \bmod 5
\end{array}
$$

1. $\Gamma=\llbracket\left(x^{2}-1=0\right) \rrbracket$
$\left.\rightsquigarrow C_{1}\right|_{\Gamma}: x^{2}-1=0 \quad \Rightarrow x=1 \vee x=4$
2. $\Gamma=\llbracket\left(x^{2}-1=0\right)^{\delta},(x \mapsto 1)^{C_{1}} \rrbracket$
3. $\Gamma=\llbracket\left(x^{2}-1=0\right)^{\delta},(x \mapsto 1)^{C_{1}, \delta},(x y-y-1=0) \rrbracket$
decide literal
decision on x add C_{2}

Example: Polynomial Equations

$$
\begin{array}{lrr}
C_{1}: & x^{2}-1=0 & \bmod 5 \\
C_{2}: & x y-y-1=0 & \bmod 5
\end{array}
$$

1. $\Gamma=\llbracket\left(x^{2}-1=0\right) \rrbracket$ decide literal
$\left.\rightsquigarrow C_{1}\right|_{\Gamma}: x^{2}-1=0 \quad \Rightarrow x=1 \vee x=4$
2. $\Gamma=\llbracket\left(x^{2}-1=0\right)^{\delta},(x \mapsto 1)^{C_{1}} \rrbracket$
decision on x
3. $\Gamma=\llbracket\left(x^{2}-1=0\right)^{\delta},(x \mapsto 1)^{C_{1}, \delta},(x y-y-1=0) \rrbracket$ add C_{2}
$\left.\rightsquigarrow C_{2}\right|_{\Gamma}:-1=0$
Conflict: $\mathcal{C}=\left\{C_{2}, x=1, C_{1}\right\}$
Generate explanation clause $E=\left\{x+1=0, \neg C_{2}\right\}$ using theory propagation.
To satisfy C_{2} we resolve using E and backtrack to assign a different value to x.

Explain Function

Informal: Bring theory knowledge into the search procedure on demand.

Key ingredient for every MCSat procedure is the explain function!

MCSAT based approaches for non-linear modular arithmetic

1. Constraints in $\mathbb{F}_{q}[X]$

- Finite field

■ Not algebraically closed

- Constraints: $=, \neq$

Modulo 5

$$
x^{2}-1=0
$$

$$
x y-y-1=0
$$

$$
x y-2 \neq 0
$$

\Rightarrow FFSAT
2. Constraints in $\mathbb{Z} / 2^{k} \mathbb{Z}[X]$

■ Finite commutative ring

- Not algebraically closed
- Constraints: $=, \neq,<,>, \Omega^{*}(x, y)$

Modulo 2^{4}

$$
\begin{aligned}
x y+y & \leq y+3 \\
2 y+z & =10 \\
3 x+6 y z+3 z^{2} & =1 \\
\Rightarrow \text { POLYSAT } &
\end{aligned}
$$

Finite Fields

$\mathbb{F}_{q}[X]$

A field is a set of elements closed under operations sum, difference, product and inverse finding.

Finite Fields

A field is a set of elements closed under operations sum, difference, product and inverse finding. A finite field is a field with a finite amount of elements.

Given a number $q=p^{n}$ with p prime and $n \geq 1$:

$$
\mathbb{F}_{q} \text { denotes a finite field of size } q \text {. }
$$

Finite Fields

$\mathbb{F}_{q}[X]$

A field is a set of elements closed under operations sum, difference, product and inverse finding.
A finite field is a field with a finite amount of elements.

Given a number $q=p^{n}$ with p prime and $n \geq 1$:

$$
\mathbb{F}_{q} \text { denotes a finite field of size } q \text {. }
$$

Example

For $q=5$ the field $\mathbb{F}_{5}=\{0,1,2,3,4\}$.
■ $(2 \cdot 3)+4=0$

- inverse of 2 is 3 , as $2 \cdot 3=1$

Explanation Generation

$$
\mathbb{F}_{q}[X]
$$

Generate an explanation function for constraints over $\mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$!

Explanation Generation

Generate an explanation function for constraints over $\mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$!

General Idea: Given a trail Γ

$$
\Gamma=\llbracket \ldots, x_{k-1} \mapsto \alpha_{k-1}, F_{1}, F_{2}, \ldots, F_{l} \rrbracket
$$

for $1 \leq i \leq l: x_{k} \in \operatorname{var}\left(F_{i}\right)$ and $\exists \alpha_{k} \in \mathbb{F}_{q}$ s.t. $\nu[\Gamma]\left[x_{k} \mapsto \alpha_{k}\right]\left(F_{i}\right)=$ true

Explanation Generation

Generate an explanation function for constraints over $\mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$!

General Idea: Given a trail Γ

$$
\Gamma=\llbracket \ldots, x_{k-1} \mapsto \alpha_{k-1}, F_{1}, F_{2}, \ldots, F_{l} \rrbracket
$$

for $1 \leq i \leq l: x_{k} \in \operatorname{var}\left(F_{i}\right)$ and $\exists \alpha_{k} \in \mathbb{F}_{q}$ s.t. $\nu[\Gamma]\left[x_{k} \mapsto \alpha_{k}\right]\left(F_{i}\right)=$ true

■ New constraint G on trail such that α_{k} does not exist any more.

Explanation Generation

Generate an explanation function for constraints over $\mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$!

General Idea: Given a trail Γ

$$
\Gamma=\llbracket \ldots, x_{k-1} \mapsto \alpha_{k-1}, F_{1}, F_{2}, \ldots, F_{l} \rrbracket
$$

for $1 \leq i \leq l: x_{k} \in \operatorname{var}\left(F_{i}\right)$ and $\exists \alpha_{k} \in \mathbb{F}_{q}$ s.t. $\nu[\Gamma]\left[x_{k} \mapsto \alpha_{k}\right]\left(F_{i}\right)=$ true

■ New constraint G on trail such that α_{k} does not exist any more.
\square Eliminate x_{k} in $\left\{F_{1}, \ldots, F_{l}, \neg G\right\}$ and generate polynomial set $\mathcal{C} \subset \mathbb{F}_{q}\left[x_{1}, \ldots, x_{k-1}\right]$

Explanation Generation

Generate an explanation function for constraints over $\mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$!

General Idea: Given a trail Γ

$$
\Gamma=\llbracket \ldots, x_{k-1} \mapsto \alpha_{k-1}, F_{1}, F_{2}, \ldots, F_{l} \rrbracket
$$

for $1 \leq i \leq l: x_{k} \in \operatorname{var}\left(F_{i}\right)$ and $\exists \alpha_{k} \in \mathbb{F}_{q}$ s.t. $\nu[\Gamma]\left[x_{k} \mapsto \alpha_{k}\right]\left(F_{i}\right)=$ true

■ New constraint G on trail such that α_{k} does not exist any more.
■ Eliminate x_{k} in $\left\{F_{1}, \ldots, F_{l}, \neg G\right\}$ and generate polynomial set $\mathcal{C} \subset \mathbb{F}_{q}\left[x_{1}, \ldots, x_{k-1}\right]$
■ $\nu[\Gamma](\mathcal{C})=$ false

Explanation Generation

Generate an explanation function for constraints over $\mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$!

General Idea: Given a trail Γ

$$
\Gamma=\llbracket \ldots, x_{k-1} \mapsto \alpha_{k-1}, F_{1}, F_{2}, \ldots, F_{l} \rrbracket
$$

for $1 \leq i \leq l: x_{k} \in \operatorname{var}\left(F_{i}\right)$ and $\exists \alpha_{k} \in \mathbb{F}_{q}$ s.t. $\nu[\Gamma]\left[x_{k} \mapsto \alpha_{k}\right]\left(F_{i}\right)=$ true

■ New constraint G on trail such that α_{k} does not exist any more.
\square Eliminate x_{k} in $\left\{F_{1}, \ldots, F_{l}, \neg G\right\}$ and generate polynomial set $\mathcal{C} \subset \mathbb{F}_{q}\left[x_{1}, \ldots, x_{k-1}\right]$
■ $\nu[\Gamma](\mathcal{C})=$ false
\square Set $\mathcal{E}=\left\{\neg F_{1}, \ldots, \neg F_{l},\right\} \cup\{G\} \cup \mathcal{C}$

Explanation Generation

Generate an explanation function for constraints over $\mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$!

General Idea: Given a trail Γ

$$
\Gamma=\llbracket \ldots, x_{k-1} \mapsto \alpha_{k-1}, F_{1}, F_{2}, \ldots, F_{l} \rrbracket
$$

for $1 \leq i \leq l: x_{k} \in \operatorname{var}\left(F_{i}\right)$ and $\exists \alpha_{k} \in \mathbb{F}_{q}$ s.t. $\nu[\Gamma]\left[x_{k} \mapsto \alpha_{k}\right]\left(F_{i}\right)=$ true

■ New constraint G on trail such that α_{k} does not exist any more.
\square Eliminate x_{k} in $\left\{F_{1}, \ldots, F_{l}, \neg G\right\}$ and generate polynomial set $\mathcal{C} \subset \mathbb{F}_{q}\left[x_{1}, \ldots, x_{k-1}\right]$
■ $\nu[\Gamma](\mathcal{C})=$ false
\square Set $\mathcal{E}=\left\{\neg F_{1}, \ldots, \neg F_{l},\right\} \cup\{G\} \cup \mathcal{C}$

Variable Elimination

Given a set of polynomials $\mathcal{P} \subset \mathbb{F}_{q}\left[x_{1}, \ldots, x_{k}\right]$.
We eliminate x_{k} by generating set $\mathcal{P}^{\prime} \subset \mathbb{F}_{q}\left[x_{1}, \ldots, x_{k-1}\right]$ s.t.

$$
\left(\alpha_{1}, \ldots, \alpha_{k-1}\right) \in \operatorname{zero}\left(\mathcal{P}^{\prime}\right) \quad \text { iff } \quad \exists \beta \in \mathbb{F}_{q} \cdot\left(\alpha_{1}, \ldots, \alpha_{k-1}, \beta\right) \in \operatorname{zero}(\mathcal{P})
$$

Variable Elimination

Given a set of polynomials $\mathcal{P} \subset \mathbb{F}_{q}\left[x_{1}, \ldots, x_{k}\right]$.
We eliminate x_{k} by generating set $\mathcal{P}^{\prime} \subset \mathbb{F}_{q}\left[x_{1}, \ldots, x_{k-1}\right]$ s.t.

$$
\left(\alpha_{1}, \ldots, \alpha_{k-1}\right) \in \operatorname{zero}\left(\mathcal{P}^{\prime}\right) \quad \text { iff } \quad \exists \beta \in \mathbb{F}_{q} \cdot\left(\alpha_{1}, \ldots, \alpha_{k-1}, \beta\right) \in \operatorname{zero}(\mathcal{P})
$$

Single incompatibility

Let $\Gamma=\llbracket\left(x^{2}-1=0\right), x \mapsto 1 \rrbracket$ and $G:=(x y-y-1=0)$ is incompatible

Single incompatibility

■ Let $\Gamma=\llbracket\left(x^{2}-1=0\right), x \mapsto 1 \rrbracket$ and $G:=(x y-y-1=0)$ is incompatible
■ Assignment $\nu[\Gamma]\left[y \mapsto \alpha_{y}\right]$ violates G for all $\alpha_{y} \in \mathbb{F}_{q}$

$$
(x-1) \cdot y-1 \quad(x-1) \in \mathbb{F}_{q}[x]
$$

Single incompatibility

\square Let $\Gamma=\llbracket\left(x^{2}-1=0\right), x \mapsto 1 \rrbracket$ and $G:=(x y-y-1=0)$ is incompatible
■ Assignment $\nu[\Gamma]\left[y \mapsto \alpha_{y}\right]$ violates G for all $\alpha_{y} \in \mathbb{F}_{q}$

$$
(x-1) \cdot y-1 \quad(x-1) \in \mathbb{F}_{q}[x]
$$

- Exclude all assignments with the same coefficient evaluationevaluate coefficients $\nu[\Gamma](x-1)=0$define clause $\{(x-1)-0 \neq 0\}$

Single incompatibility

■ Let $\Gamma=\llbracket\left(x^{2}-1=0\right), x \mapsto 1 \rrbracket$ and $G:=(x y-y-1=0)$ is incompatible
■ Assignment $\nu[\Gamma]\left[y \mapsto \alpha_{y}\right]$ violates G for all $\alpha_{y} \in \mathbb{F}_{q}$

$$
(x-1) \cdot y-1 \quad(x-1) \in \mathbb{F}_{q}[x]
$$

■ Exclude all assignments with the same coefficient evaluation
\square evaluate coefficients $\nu[\Gamma](x-1)=0$define clause $\{(x-1)-0 \neq 0\}$
■ Excludes (at least) the current assignment that violates a single constraint

Coefficient based explanation generation

\square Let $\Gamma=\llbracket \ldots, x_{k-1} \mapsto \alpha_{k-1} \rrbracket$ and $G:=(p=0)$ is incompatible

Coefficient based explanation generation

■ Let $\Gamma=\llbracket \ldots, x_{k-1} \mapsto \alpha_{k-1} \rrbracket$ and $G:=(p=0)$ is incompatible
■ Assignment $\nu[\Gamma]\left[x_{k} \mapsto \alpha_{k}\right]$ violates G for all $\alpha_{k} \in \mathbb{F}_{q}$

$$
p=c_{1} \cdot x_{k}^{d_{1}}+\cdots+c_{m} \cdot x_{k}^{d_{m}} \quad c_{i} \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{k-1}\right]
$$

Coefficient based explanation generation

\square Let $\Gamma=\llbracket \ldots, x_{k-1} \mapsto \alpha_{k-1} \rrbracket$ and $G:=(p=0)$ is incompatible
\square Assignment $\nu[\Gamma]\left[x_{k} \mapsto \alpha_{k}\right]$ violates G for all $\alpha_{k} \in \mathbb{F}_{q}$

$$
p=c_{1} \cdot x_{k}^{d_{1}}+\cdots+c_{m} \cdot x_{k}^{d_{m}} \quad c_{i} \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{k-1}\right]
$$

- Exclude all assignments with the same coefficient evaluationevaluate coefficients $\gamma_{i}=\nu[\Gamma]\left(c_{i}\right)$define clause $\left\{c_{i}-\gamma_{i} \neq 0 \mid 1 \leq i \leq m\right\}$

Coefficient based explanation generation

\square Let $\Gamma=\llbracket \ldots, x_{k-1} \mapsto \alpha_{k-1} \rrbracket$ and $G:=(p=0)$ is incompatible
\square Assignment $\nu[\Gamma]\left[x_{k} \mapsto \alpha_{k}\right]$ violates G for all $\alpha_{k} \in \mathbb{F}_{q}$

$$
p=c_{1} \cdot x_{k}^{d_{1}}+\cdots+c_{m} \cdot x_{k}^{d_{m}} \quad c_{i} \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{k-1}\right]
$$

- Exclude all assignments with the same coefficient evaluationevaluate coefficients $\gamma_{i}=\nu[\Gamma]\left(c_{i}\right)$define clause $\left\{c_{i}-\gamma_{i} \neq 0 \mid 1 \leq i \leq m\right\}$
- Similar for $G:=(p \neq 0)$
\square Excludes (at least) the current assignment that violates a single constraint

Multiple incompatibilities - Gröbner Basis

\square Let $\Gamma=\llbracket \ldots, x_{k-1} \mapsto \alpha_{k-1}, F_{1}, \ldots F_{m} \rrbracket$ and G_{1}, \ldots, G_{n} are incompatible
\square Gröbner basis with a lexicographical term ordering has the projection property.

Multiple incompatibilities - Gröbner Basis

\square Let $\Gamma=\llbracket \ldots, x_{k-1} \mapsto \alpha_{k-1}, F_{1}, \ldots F_{m} \rrbracket$ and G_{1}, \ldots, G_{n} are incompatible

- Gröbner basis with a lexicographical term ordering has the projection property.
- Introduce fresh variable z for negations

$$
f^{\prime}\left(x_{1}, \ldots, x_{k}, z\right)=z \cdot f\left(x_{1}, \ldots, x_{k}\right)-1
$$

\square Field polynomials $\mathcal{F P}=\left\{x_{i}^{q}-x_{i} \mid x_{i} \in X\right\}$ are required.

- Generate the $k-1$ elimination ideal of

$$
\left\langle F_{1}, \cdots, F_{m}, G_{1}, \ldots, G_{n}\right\rangle+\langle\mathcal{F} \mathcal{P}\rangle
$$

Multiple incompatibilities - Exclude factors

Let $f, g \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{k}\right]$ and α an assignment
■ Factor univariate polynomials $\nu[\Gamma](f) \in \mathbb{F}_{q}\left[x_{k}\right]$ and $\nu[\Gamma](g) \in \mathbb{F}_{q}\left[x_{k}\right]$

- Exclude common irreducible factors

Subresultant Regular Subchain

■ GCD w.r.t. assignment

- Let $f, g \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{k}\right]$
$\square \operatorname{srs}\left(f, g, x_{k}\right)=h_{2}, \ldots, h_{r}$
■ $i=\operatorname{lc}\left(g, x_{k}\right)$ and $i_{\ell}=\operatorname{lc}\left(h_{\ell}, x_{k}\right)$

$$
\operatorname{gcd}\left(f\left(\boldsymbol{\alpha}, x_{k}\right), g\left(\boldsymbol{\alpha}, x_{k}\right)\right)=h_{\ell}\left(\boldsymbol{\alpha}, x_{k}\right)
$$

if $\boldsymbol{\alpha} \in \operatorname{zero}\left(\left\{i_{\ell+1}, \ldots, i_{r}\right\} /\left\{i, i_{\ell}\right\}\right)$

Subresultant Regular Subchain

■ GCD w.r.t. assignment

- Let $f, g \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{k}\right]$
$\square \operatorname{srs}\left(f, g, x_{k}\right)=h_{2}, \ldots, h_{r}$
$\square i=\operatorname{lc}\left(g, x_{k}\right)$ and $i_{\ell}=\operatorname{lc}\left(h_{\ell}, x_{k}\right)$

$$
\operatorname{gcd}\left(f\left(\boldsymbol{\alpha}, x_{k}\right), g\left(\boldsymbol{\alpha}, x_{k}\right)\right)=h_{\ell}\left(\boldsymbol{\alpha}, x_{k}\right)
$$

if $\boldsymbol{\alpha} \in \operatorname{zero}\left(\left\{i_{\ell+1}, \ldots, i_{r}\right\} /\left\{i, i_{\ell}\right\}\right)$
Think of "Euclidean Division algorithm" w.r.t. current assignment

Example: SRS

$\mathbb{F}_{q}[X]$

$$
f=z^{2}+y z+4=0 \quad \text { and } \quad g=x+y z \neq 0 \in \mathbb{F}_{5}[x, y, z]
$$

Let $\alpha=\{x \mapsto 3, y \mapsto 1\}$ be the current assignment on Γ
■ f and g are incompatible with Γ

Example: SRS

$$
f=z^{2}+y z+4=0 \quad \text { and } \quad g=x+y z \neq 0 \in \mathbb{F}_{5}[x, y, z]
$$

Let $\alpha=\{x \mapsto 3, y \mapsto 1\}$ be the current assignment on Γ
■ f and g are incompatible with Γ
$\square \operatorname{srs}(f, g, z)=\left[x+y z, x^{2}-x y^{2}-y^{2}\right]$
■ Learn $x^{2}-x y^{2}-y^{2} \neq 0$
In addition to $\{x \mapsto 3, y \mapsto 1\}$ we also exclude $\{x \mapsto 0, y \mapsto 0\}$ and $\{x \mapsto 3, y \mapsto 4\}$

Results

Type	q	n	c	FFSAT	GB	GBLEX
Craft	3	32	32	$\mathbf{2 5}$	$\mathbf{2 5}$	0
Craft	3	64	64	$\mathbf{2 5}$	24	0
Craft	13	32	16	$\mathbf{1 9}$	18	1
Craft	211	16	8	24	$\mathbf{2 5}$	$\mathbf{2 5}$
Rand	3	8	8	$\mathbf{2 5}$	$\mathbf{2 5}$	$\mathbf{2 5}$
Rand	3	16	16	$\mathbf{1 2}$	11	0
Rand	13	8	4	$\mathbf{2 5}$	0	0
Rand	13	8	8	$\mathbf{1}$	0	0
Rand	211	8	4	$\mathbf{1 7}$	0	0
Rand	211	8	16	0	0	0

Instances solved by FFSAt, GB, and GBlex, out of 25 polynomial systems per test set within 300 seconds.

MCSAT based approaches for non-linear modular arithmetic

1. Constraints in $\mathbb{F}_{q}[X]$

- Finite field

■ Not algebraically closed

- Constraints: $=, \neq$

Modulo 5

$$
\begin{array}{r}
x^{2}-1=0 \\
x y-y-1=0 \\
x y-2 \neq 0
\end{array}
$$

\Rightarrow FFSAT
2. Constraints in $\mathbb{Z} / 2^{k} \mathbb{Z}[X]$

■ Finite commutative ring
■ Not algebraically closed
■ Constraints:

$$
=, \neq,<,>, \Omega^{*}(x, y)
$$

Modulo 2^{4}

$$
\begin{aligned}
& x y+y \leq y+3 \\
& 2 y+z=10 \\
& 3 x+6 y z+3 z^{2}=1 \\
& \Rightarrow \text { POLYSAT } \\
& \Rightarrow
\end{aligned}
$$

PolySAT: a Word-level Solver for Large Bitvectors

Bitvectors?

1. Sequence of bits, e.g., 01011
2. Fixed-width machine integers, e.g., uint32_t, int64_t
3. Modular arithmetic: $\mathbb{Z} / 2^{k} \mathbb{Z}$

PolySAT: a Word-level Solver for Large Bitvectors

Bitvectors?

1. Sequence of bits, e.g., 01011
2. Fixed-width machine integers, e.g., uint32_t, int64_t
3. Modular arithmetic: $\mathbb{Z} / 2^{k} \mathbb{Z}$

Examples:

- $2 x^{2} y+z=3$

■ $x+3 \leq x+y$
■ $\neg \Omega^{*}(x, y), \quad z=x \& y, \quad \ldots$

PolySAT: a Word-level Solver for Large Bitvectors

Bitvectors?

1. Sequence of bits, e.g., 01011
2. Fixed-width machine integers, e.g., uint32_t, int64_t
3. Modular arithmetic: $\mathbb{Z} / 2^{k} \mathbb{Z}$

Examples:

- $2 x^{2} y+z=3$

■ $x+3 \leq x+y$
■ $\neg \Omega^{*}(x, y), \quad z=x \& y, \quad \ldots$

Natural target for many program verification tasks!
Certora and smart contract verification: 256-bit unsigned integers

Bitvector Pitfalls

$\mathbb{Z} / 2^{k} \mathbb{Z}$ is a finite commutative ring, but not a field.

$$
\begin{aligned}
x, y \geq 0 & \nRightarrow x y \geq x \\
x, y \neq 0 & \nRightarrow x y \neq 0 \\
x \leq y & \nRightarrow x-y \leq 0
\end{aligned}
$$

Overflow/wraparound: $3 \cdot 6=2 \bmod 2^{4}$
Zero divisors: $6 \cdot 8=0 \bmod 2^{4}$
Usual inequality normalization fails

Bitvector Pitfalls

$\mathbb{Z} / 2^{k} \mathbb{Z}$ is a finite commutative ring, but not a field.

$$
\begin{aligned}
x, y \geq 0 & \nRightarrow x y \geq x \\
x, y \neq 0 & \nRightarrow x y \neq 0 \\
x \leq y & \nRightarrow x-y \leq 0
\end{aligned}
$$

Overflow/wraparound: $3 \cdot 6=2 \bmod 2^{4}$
Zero divisors: $6 \cdot 8=0 \quad \bmod 2^{4}$
Usual inequality normalization fails

Example

$x+3 \leq x+y \bmod 2^{3}$
\square For $x=0: \quad 3 \leq y \quad \Longleftrightarrow y \in\{3,4,5,6,7\}$
■ For $x=2: \quad 5 \leq 2+y \Longleftrightarrow y \in\{3,4,5\}$

Solving Approaches

- Bit-blasting

Translate into boolean formula and use SAT solver

Solving Approaches

- Bit-blasting

Translate into boolean formula and use SAT solver

- Int-blasting
[Zohar et al., VMCAl'22]
Translate into integer arithmetic with bound constraints and modulo operations

Solving Approaches

- Bit-blasting

Translate into boolean formula and use SAT solver

■ Int-blasting
[Zohar et al., VMCAI'22]
Translate into integer arithmetic with bound constraints and modulo operations

- MCSAT-based approaches
[Zeljić et al., SAT'16]
[Graham-Lengrand et al., IJCAR'20]
Search for assignment to bitvector variables \rightsquigarrow PolySAT

PolySAT Overview

- Theory solver for bitvector arithmetic
\square Input: conjunction of bitvector constraints
\square Output: SAT or UNSAT
- Based on modular integer arithmetic $\left(\mathbb{Z} / 2^{k} \mathbb{Z}\right)$

PolySAT Overview

- Theory solver for bitvector arithmetic
\square Input: conjunction of bitvector constraints
\square Output: SAT or UNSAT
■ Based on modular integer arithmetic $\left(\mathbb{Z} / 2^{k} \mathbb{Z}\right)$
- Search for a model of the input constraintsIncrementally assign bitvector variablesKeep track of viable values for variablesAdd lemmas on demand to generate explanation clauses

Bitvector Constraints in PolySAT

Inequalities	$p \leq q \quad$ (polynomials p, q)
Overflow	$\Omega^{*}(p, q)$
Bit-wise	$r=p \& q$
Structural	$r=p \ll q, r=p \gg q$
Clauses	Disjunction of constraint literals

Bitvector Constraints in PolySAT

Inequalities	$p \leq q \quad \quad$ (polynomials $p, q)$
Overflow	$\Omega^{*}(p, q)$
Bit-wise	$r=p \& q$
Structural	$r=p \ll q, r=p \gg q$
Clauses	Disjunction of constraint literals

By Reduction:
Equations

$$
p=q \Longleftrightarrow p-q \leq 0
$$

Bitvector Constraints in PolySAT

Inequalities	$p \leq q \quad \quad$ (polynomials $p, q)$
Overflow	$\Omega^{*}(p, q)$
Bit-wise	$r=p \& q$
Structural	$r=p \ll q, r=p \gg q$
Clauses	Disjunction of constraint literals

By Reduction:
Equations
$p=q \Longleftrightarrow p-q \leq 0$
Inequalities (signed) $\quad p \leq_{s} q \Longleftrightarrow p+2^{k-1} \leq q+2^{k-1}$

Bitvector Constraints in PolySAT

Inequalities	$p \leq q \quad \quad \Omega^{*}(p, q)$
Overflow	$r=p \& q$
Bit-wise	$r=p \ll q, r=p \gg q$
Structural	Disjunction of constraint literals
Clauses	
By Reduction:	$p=q \Longleftrightarrow p-q \leq 0$
Equations	$p \leq_{s} q \Longleftrightarrow p+2^{k-1} \leq q+2^{k-1}$
Inequalities (signed)	
Bit-wise negation	$\sim p=-p-1$

Bitvector Constraints in PolySAT

Inequalities	$p \leq q \quad$ (polynomials p, q)
Overflow	$\Omega^{*}(p, q)$
Bit-wise	$r=p \& q$
Structural	$r=p \ll q, r=p \gg q$
Clauses	Disjunction of constraint literals
By Reduction:	$p=q \Longleftrightarrow p-q \leq 0$
Equations	
Inequalities (signed)	$p \leq_{s} q \Longleftrightarrow p+2^{k-1} \leq q+2^{k-1}$
Bit-wise negation	$\sim p=-p-1$
Bit-wise or	$p \mid q=p+q-(p \& q)$

Bitvector Constraints in PolySAT

Inequalities	$p \leq q \quad$ (polynomials $p, q)$
Overflow	$\Omega^{*}(p, q)$
Bit-wise	$r=p \& q$
Structural	$r=p \ll q, r=p \gg q$
Clauses	Disjunction of constraint literals
By Reduction:	
Equations	$p=q \Longleftrightarrow p-q \leq 0$
Inequalities (signed)	$p \leq_{s} q \Longleftrightarrow p+2^{k-1} \leq q+2^{k-1}$
Bit-wise negation	$\sim p=-p-1$
Bit-wise or	$p \mid q=p+q-(p \& q)$
Quotient/remainder	$q:=\operatorname{bvudiv}(a, b), r:=\operatorname{bvurem}(a, b)$
	$>a=b q+r$
	$>\neg \Omega^{*}(b, q)$
	$>\neg \Omega^{+}(b q, r)$
	$>b \neq 0 \rightarrow r<b \quad \quad$ e.g., $b q \leq-r-1)$

PolySAT Solving Loop

Modified CDCL loop with theory assignments

- Assign boolean values to constraint literals ($p \leq q$ vs. $p>q$)

■ Assign integer values to bitvector variables $(x \mapsto 3)$

PolySAT Solving Loop

Modified CDCL loop with theory assignments

- Assign boolean values to constraint literals ($p \leq q$ vs. $p>q$)

■ Assign integer values to bitvector variables ($x \mapsto 3$)

Main components:

- Trail Γ records assignments and reasons
- For each variable x, keep track of viable values V_{x}
- Conflict \mathcal{C} : set of constraints that contradicts Γ
- Conflict analysis learn a new constraint to avoid the conflict in the future

Example: Polynomial Equations

$$
\begin{array}{lrl}
C_{1}: & x^{2} y+3 y+7=0 & \bmod 2^{4} \\
C_{2}: & 2 y+z+8=0 & \bmod 2^{4} \\
C_{3}: & 3 x+4 y z+2 z^{2}+1=0 & \bmod 2^{4}
\end{array}
$$

1. $\Gamma=\llbracket(x \mapsto 0)^{\delta} \rrbracket$
decide x

Example: Polynomial Equations

C_{1} :
C_{2} :
$x^{2} y+3 y+7=0 \quad \bmod 2^{4}$
$2 y+z+8=0 \quad \bmod 2^{4}$
C_{3} :
$3 x+4 y z+2 z^{2}+1=0 \bmod 2^{4}$

1. $\Gamma=\llbracket(x \mapsto 0)^{\delta} \rrbracket$
2. $\Gamma=\llbracket(x \mapsto 0)^{\delta}, C_{1} \rrbracket$
decide x
add C_{1}

Example: Polynomial Equations

C_{1} :
C_{2} :
$x^{2} y+3 y+7=0 \quad \bmod 2^{4}$
$2 y+z+8=0 \bmod 2^{4}$
C_{3} :
$3 x+4 y z+2 z^{2}+1=0 \quad \bmod 2^{4}$

1. $\Gamma=\llbracket(x \mapsto 0)^{\delta} \rrbracket$
2. $\Gamma=\llbracket(x \mapsto 0)^{\delta}, C_{1} \rrbracket$
$\left.\rightsquigarrow C_{1}\right|_{\Gamma}: 3 y+7=0 \quad \Rightarrow y=3$
decide x add C_{1}

Example: Polynomial Equations

$$
\begin{array}{lrl}
C_{1}: & x^{2} y+3 y+7=0 & \bmod 2^{4} \\
C_{2}: & 2 y+z+8=0 & \bmod 2^{4} \\
C_{3}: & 3 x+4 y z+2 z^{2}+1=0 & \bmod 2^{4}
\end{array}
$$

```
1. \(\Gamma=\llbracket(x \mapsto 0)^{\delta} \rrbracket\)
2. \(\Gamma=\llbracket(x \mapsto 0)^{\delta}, C_{1} \rrbracket\)
    \(\left.\rightsquigarrow C_{1}\right|_{\Gamma}: 3 y+7=0 \quad \Rightarrow y=3\)
3. \(\Gamma=\llbracket(x \mapsto 0)^{\delta}, C_{1},(y \mapsto 3)^{C_{1}, x}, C_{2} \rrbracket\)
```

decide x add C_{1} propagate y, add C_{2}

Example: Polynomial Equations

$$
\begin{array}{lrl}
C_{1}: & x^{2} y+3 y+7=0 & \bmod 2^{4} \\
C_{2}: & 2 y+z+8=0 & \bmod 2^{4} \\
C_{3}: & 3 x+4 y z+2 z^{2}+1=0 & \bmod 2^{4}
\end{array}
$$

$$
\begin{array}{ll}
\text { 1. } & \Gamma=\llbracket(x \mapsto 0)^{\delta} \rrbracket \\
\text { 2. } & \Gamma=\llbracket(x \mapsto 0)^{\delta}, C_{1} \rrbracket \\
& \left.\rightsquigarrow C_{1}\right|_{\Gamma}: 3 y+7=0 \quad \Rightarrow y=3 \\
\text { 3. } & \Gamma=\llbracket(x \mapsto 0)^{\delta}, C_{1},(y \mapsto 3)^{C_{1}, x}, C_{2} \rrbracket \\
& \left.\rightsquigarrow C_{2}\right|_{\Gamma}: z+14=0 \quad \Rightarrow z=2
\end{array}
$$

decide x add C_{1}
propagate y, add C_{2}

Example: Polynomial Equations

$$
\begin{array}{lrl}
C_{1}: & x^{2} y+3 y+7=0 & \bmod 2^{4} \\
C_{2}: & 2 y+z+8=0 & \bmod 2^{4} \\
C_{3}: & 3 x+4 y z+2 z^{2}+1=0 & \bmod 2^{4}
\end{array}
$$

$$
\begin{aligned}
& \text { 1. } \Gamma=\llbracket(x \mapsto 0)^{\delta} \rrbracket \\
& \text { 2. } \Gamma=\llbracket(x \mapsto 0)^{\delta}, C_{1} \rrbracket \\
& \\
& \left.\rightsquigarrow C_{1}\right|_{\Gamma}: 3 y+7=0 \quad \Rightarrow y=3 \\
& \text { 3. } \Gamma=\llbracket(x \mapsto 0)^{\delta}, C_{1},(y \mapsto 3)^{C_{1}, x}, C_{2} \rrbracket \\
& \\
& \left.\rightsquigarrow C_{2}\right|_{\Gamma}: z+14=0 \quad \Rightarrow z=2
\end{aligned}
$$

$$
\text { 4. } \Gamma=\llbracket(x \mapsto 0)^{\delta}, C_{1},(y \mapsto 3)^{C_{1}, x}, C_{2},(z \mapsto 2)^{C_{2}, y}, C_{3} \rrbracket
$$

decide x add C_{1} propagate y, add C_{2} propagate z, add C_{3}

Example: Polynomial Equations

$$
\begin{array}{lrl}
C_{1}: & x^{2} y+3 y+7=0 & \bmod 2^{4} \\
C_{2}: & 2 y+z+8=0 & \bmod 2^{4} \\
C_{3}: & 3 x+4 y z+2 z^{2}+1=0 & \bmod 2^{4}
\end{array}
$$

1. $\Gamma=\llbracket(x \mapsto 0)^{\delta} \rrbracket$
decide x
2. $\Gamma=\llbracket(x \mapsto 0)^{\delta}, C_{1} \rrbracket$
$\left.\rightsquigarrow C_{1}\right|_{\Gamma}: 3 y+7=0 \quad \Rightarrow y=3$
3. $\Gamma=\llbracket(x \mapsto 0)^{\delta}, C_{1},(y \mapsto 3)^{C_{1}, x}, C_{2} \rrbracket$
$\left.\rightsquigarrow C_{2}\right|_{\Gamma}: z+14=0 \quad \Rightarrow z=2$
4. $\Gamma=\llbracket(x \mapsto 0)^{\delta}, C_{1},(y \mapsto 3)^{C_{1}, x}, C_{2},(z \mapsto 2)^{C_{2}, y}, C_{3} \rrbracket$ add C_{1}
$\left.\rightsquigarrow C_{3}\right|_{\Gamma}: 1=0$
Conflict: $\mathcal{C}=\left\{C_{3}, x=0, y=3, z=2\right\}$

Example: Polynomial Equations (conflict)

$$
\begin{aligned}
& \Gamma=\llbracket(x \mapsto 0)^{\delta}, C_{1},(y \mapsto 3)^{C_{1}, x}, C_{2},(z \mapsto 2)^{C_{2}, y}, C_{3} \rrbracket \\
& \mathcal{C}=\left\{C_{3}, x=0, y=3, z=2\right\}
\end{aligned}
$$

Follow dependencies of \mathcal{C} according to Γ :

$$
\mathcal{C}^{\prime}=\left\{C_{3}, x=0, y=3, C_{2}\right\}
$$

Example: Polynomial Equations (conflict)

$$
\begin{aligned}
& \Gamma=\llbracket(x \mapsto 0)^{\delta}, C_{1},(y \mapsto 3)^{C_{1}, x}, C_{2},(z \mapsto 2)^{C_{2}, y}, C_{3} \rrbracket \\
& \mathcal{C}=\left\{C_{3}, x=0, y=3, z=2\right\}
\end{aligned}
$$

Follow dependencies of \mathcal{C} according to Γ :

$$
\mathcal{C}^{\prime}=\left\{C_{3}, x=0, y=3, C_{2}\right\}
$$

$$
\begin{array}{lr}
C_{3}: & 3 x+4 y z+2 z^{2}+1=0 \\
C_{2}: & 2 y+z+8=0 \\
C_{2}: & 3 x+1=0
\end{array}
$$

Example: Polynomial Equations (conflict)

$$
\begin{aligned}
& \Gamma=\llbracket(x \mapsto 0)^{\delta}, C_{1},(y \mapsto 3)^{C_{1}, x}, C_{2},(z \mapsto 2)^{C_{2}, y}, C_{3} \rrbracket \\
& \mathcal{C}=\left\{C_{3}, x=0, y=3, z=2\right\}
\end{aligned}
$$

Follow dependencies of \mathcal{C} according to Γ :

$$
\mathcal{C}^{\prime}=\left\{C_{3}, x=0, y=3, C_{2}\right\}
$$

$$
\begin{array}{rlrl}
C_{3}: & 3 x+4 y z+2 z^{2}+1 & =0 \\
C_{2}: & 2 y+z+8 & =0 & \mid \cdot 2 z \\
C_{3}-2 z \cdot C_{2}: & 3 x+1 & =0
\end{array}
$$

Lemma:

$$
C_{3} \wedge C_{2} \rightarrow 3 x+1=0
$$

Example: Polynomial Equations

Constraints:

$$
\begin{aligned}
& C_{1}: \\
& C_{2}: \\
& C_{3}: \\
& C_{4}:
\end{aligned}
$$

$$
\begin{aligned}
x^{2} y+3 y+7=0 & \bmod 2^{4} \\
2 y+z+8=0 & \bmod 2^{4} \\
3 x+4 y z+2 z^{2}+1=0 & \bmod 2^{4} \\
3 x+1=0 & \bmod 2^{4}
\end{aligned}
$$

Example: Polynomial Equations

Constraints:

$$
\begin{array}{lrl}
C_{1}: & x^{2} y+3 y+7=0 & \bmod 2^{4} \\
C_{2}: & 2 y+z+8=0 & \bmod 2^{4} \\
C_{3}: & 3 x+4 y z+2 z^{2}+1=0 & \bmod 2^{4} \\
C_{4}: & 3 x+1=0 & \bmod 2^{4}
\end{array}
$$

Continued:
5. $\Gamma=\llbracket C_{4}^{C_{2}, C_{3}} \rrbracket$
backjump, propagate lemma

Example: Polynomial Equations

Constraints:

$$
\begin{aligned}
& C_{1} \text { : } \\
& C_{2} \text { : } \\
& x^{2} y+3 y+7=0 \quad \bmod 2^{4} \\
& 2 y+z+8=0 \quad \bmod 2^{4} \\
& C_{3}: \quad 3 x+4 y z+2 z^{2}+1=0 \bmod 2^{4} \\
& C_{4} \text { : } \\
& 3 x+1=0 \quad \bmod 2^{4}
\end{aligned}
$$

Continued:
5. $\Gamma=\llbracket C_{4}^{C_{2}, C_{3}} \rrbracket$
6. $\Gamma=\llbracket C_{4}^{C_{2}, C_{3}},(x \mapsto 5)^{C_{4}}, C_{1} \rrbracket$
backjump, propagate lemma propagate x

Example: Polynomial Equations

Constraints:

$$
\begin{array}{lrl}
C_{1}: & x^{2} y+3 y+7=0 & \bmod 2^{4} \\
C_{2}: & 2 y+z+8=0 & \bmod 2^{4} \\
C_{3}: & 3 x+4 y z+2 z^{2}+1=0 & \bmod 2^{4} \\
C_{4}: & 3 x+1=0 & \bmod 2^{4}
\end{array}
$$

Continued:
5. $\Gamma=\llbracket C_{4}^{C_{2}, C_{3}} \rrbracket$
6. $\Gamma=\llbracket C_{4}^{C_{2}, C_{3}},(x \mapsto 5)^{C_{4}}, C_{1} \rrbracket$
$\left.\rightsquigarrow C_{1}\right|_{\Gamma}: 12 y+7=0$
Conflict due to parity!
backjump, propagate lemma propagate x

Example: Polynomial Equations

Constraints:

$$
\begin{array}{lrl}
C_{1}: & x^{2} y+3 y+7=0 & \bmod 2^{4} \\
C_{2}: & 2 y+z+8=0 & \bmod 2^{4} \\
C_{3}: & 3 x+4 y z+2 z^{2}+1=0 & \bmod 2^{4} \\
C_{4}: & 3 x+1=0 & \bmod 2^{4}
\end{array}
$$

Continued:
5. $\Gamma=\llbracket C_{4}^{C_{2}, C_{3}} \rrbracket$
6. $\Gamma=\llbracket C_{4}^{C_{2}, C_{3}},(x \mapsto 5)^{C_{4}}, C_{1} \rrbracket$
$\left.\rightsquigarrow C_{1}\right|_{\Gamma}: 12 y+7=0$
Conflict due to parity!
7. Unsatisfiable.
backjump, propagate lemma propagate x

How to choose values?

For each variable x, keep track of viable values V_{x} :

- choose a value from V_{x} for decisions
\square propagate $x \mapsto v$ when $V_{x}=\{v\}$ is a singleton set
\square conflict if $V_{x}=\emptyset$

How to choose values?

For each variable x, keep track of viable values V_{x} :
\square choose a value from V_{x} for decisions
■ propagate $x \mapsto v$ when $V_{x}=\{v\}$ is a singleton set

- conflict if $V_{x}=\emptyset$
- whenever a constraint becomes "simple enough", use it to restrict V_{x}

How to choose values?

For each variable x, keep track of viable values V_{x} :

- choose a value from V_{x} for decisions

■ propagate $x \mapsto v$ when $V_{x}=\{v\}$ is a singleton set

- conflict if $V_{x}=\emptyset$
- whenever a constraint becomes "simple enough", use it to restrict V_{x}

Currently:

- V_{x} represented as set of intervals
- when x appears only linearly, extract a forbidden interval [Graham-Lengrand et al., IJCAR'20]

■ additionally, keep track of fixed bits of x
[Zeljić et al., SAT'16]
■ bit-blasting as fallback (only a single bitvector variable)

Intervals

We use half-open intervals:
■ Usual notation $[\ell ; u$ [

- but wrap around if $\ell>u$

Intervals

We use half-open intervals:
■ Usual notation $[\ell ; u$ [
■ but wrap around if $\ell>u$

Examples mod 2^{4} :

$$
\begin{aligned}
{[2 ; 5[} & =\{2,3,4\} \\
{[13 ; 2[} & =\{13,14,15,0,1\} \\
{[0 ; 0[} & =\emptyset
\end{aligned}
$$

Note:

$$
p \in[\ell ; u[\quad \Longleftrightarrow \quad p-\ell<u-\ell
$$

Forbidden Intervals

Forbidden interval of a constraint (example in $\mathbb{Z} / 2^{4} \mathbb{Z}$):
\square Current trail Γ contains $x_{1} \mapsto 11, x_{2} \mapsto 13$, and $x_{3} \mapsto 9$.

Forbidden Intervals

Forbidden interval of a constraint (example in $\mathbb{Z} / 2^{4} \mathbb{Z}$):
\square Current trail Γ contains $x_{1} \mapsto 11, x_{2} \mapsto 13$, and $x_{3} \mapsto 9$.

- Constraint $C: x_{1} \leq x_{1}^{2} x_{3}+y$ Note: only y is unassigned

Forbidden Intervals

Forbidden interval of a constraint (example in $\mathbb{Z} / 2^{4} \mathbb{Z}$):
\square Current trail Γ contains $x_{1} \mapsto 11, x_{2} \mapsto 13$, and $x_{3} \mapsto 9$.

- Constraint $C: x_{1} \leq x_{1}^{2} x_{3}+y$

Note: only y is unassigned
■ Substituting the assignment: $\left.C\right|_{\Gamma}: 11 \leq 1+y$

Forbidden Intervals

Forbidden interval of a constraint (example in $\mathbb{Z} / 2^{4} \mathbb{Z}$):
\square Current trail Γ contains $x_{1} \mapsto 11, x_{2} \mapsto 13$, and $x_{3} \mapsto 9$.

- Constraint $C: x_{1} \leq x_{1}^{2} x_{3}+y$ Note: only y is unassigned
■ Substituting the assignment: $\left.C\right|_{\Gamma}: 11 \leq 1+y$
- Thus $y \notin[15 ; 10[$
\rightsquigarrow use to restrict V_{y}

Forbidden Intervals

Forbidden interval of a constraint (example in $\mathbb{Z} / 2^{4} \mathbb{Z}$):
Current trail Γ contains $x_{1} \mapsto 11, x_{2} \mapsto 13$, and $x_{3} \mapsto 9$.

- Constraint $C: x_{1} \leq x_{1}^{2} x_{3}+y$ Note: only y is unassigned
\square Substituting the assignment: $\left.C\right|_{\Gamma}: 11 \leq 1+y$
■ Thus $y \notin[15 ; 10[$
\rightsquigarrow use to restrict V_{y}
- Symbolic interval: $y \notin\left[-x_{1}^{2} x_{3} ; x_{1}-x_{1}^{2} x_{3}\right.$ [

Forbidden Interval Lemma

- Forbidden intervals:
$C_{i} \Longrightarrow x \notin\left[\ell_{i} ; u_{i}[\right.$

Forbidden Interval Lemma

- Forbidden intervals:
$C_{i} \Longrightarrow x \notin\left[\ell_{i} ; u_{i}[\right.$
■ Concrete intervals cover the domain: $\bigcup_{i}\left[\ell_{i} ; u_{i}\left[=\left[0 ; 2^{k}[\right.\right.\right.$

Forbidden Interval Lemma

- Forbidden intervals:
$C_{i} \Longrightarrow x \notin\left[\ell_{i} ; u_{i}[\right.$
■ Concrete intervals cover the domain: $\bigcup_{i}\left[\ell_{i} ; u_{i}\left[=\left[0 ; 2^{k}[\right.\right.\right.$

Forbidden Interval Lemma

- Forbidden intervals:
$C_{i} \Longrightarrow x \notin\left[\ell_{i} ; u_{i}[\right.$
\square Concrete intervals cover the domain: $\bigcup_{i}\left[\ell_{i} ; u_{i}\left[=\left[0 ; 2^{k}[\right.\right.\right.$

Forbidden Interval Lemma

- Forbidden intervals:
$C_{i} \Longrightarrow x \notin\left[\ell_{i} ; u_{i}[\right.$
\square Concrete intervals cover the domain: $\bigcup_{i}\left[\ell_{i} ; u_{i}\left[=\left[0 ; 2^{k}[\right.\right.\right.$

Forbidden Interval Lemma

- Forbidden intervals:
$C_{i} \Longrightarrow x \notin\left[\ell_{i} ; u_{i}[\right.$
\square Concrete intervals cover the domain: $\bigcup_{i}\left[\ell_{i} ; u_{i}\left[=\left[0 ; 2^{k}[\right.\right.\right.$

- Use symbolic intervals to express the overlap condition:

$$
u_{1} \in\left[\ell_{2} ; u_{2}\left[\wedge u _ { 2 } \in \left[\ell_{3} ; u_{3}\left[\wedge u _ { 3 } \in \left[\ell_{1} ; u_{1}[\right.\right.\right.\right.\right.
$$

Forbidden Intervals

p, q, r, s : polynomials, evaluable in current trail Γ
x : variable, unassigned in Γ

$$
p x+r \leq q x+s
$$

Forbidden Intervals

p, q, r, s : polynomials, evaluable in current trail Γ
x : variable, unassigned in Γ

$$
p x+r \leq q x+s
$$

[Graham-Lengrand et al., IJCAR'20]

p	q	Interval	
0	1	$x \notin[-s ; r-s[$	if $r \neq 0$
1	0	$x \notin[s-r+1 ;-r[$	if $s \neq-1$
1	1	$x \notin[-s ;-r[$	if $r \neq s$

Forbidden Intervals

p, q, r, s : polynomials, evaluable in current trail Γ
x : variable, unassigned in Γ

$$
p x+r \leq q x+s
$$

p	q	Lemmas from intervals
$\{0, n\}$	$\{0, n\}$	Set of intervals ("equal coeff.")
n	m	Set of intervals ("disequal coeff.")
		Intervals from fixed bits
		Fallback to bit-blasting

Forbidden Intervals (disequal coefficients)

$$
p x+r \leq q x+s \quad \text { with } p \neq q
$$

Forbidden Intervals (disequal coefficients)

$$
p x+r \leq q x+s \quad \text { with } p \neq q
$$

Forbidden Intervals (disequal coefficients)

$$
p x+r \leq q x+s \quad \text { with } p \neq q
$$

Forbidden Intervals (disequal coefficients)

$$
p x+r \leq q x+s \quad \text { with } p \neq q
$$

Forbidden Intervals (disequal coefficients)

$$
p x+r \leq q x+s \quad \text { with } p \neq q
$$

Conflict Resolution Strategy

1. Track the conflict's cone of influence while backtracking over the trail Γ
2. Conflict resolution plugins derive lemmas from constraints in the conflict
3. Accumulate lemmas from conflict plugins
\square New (often simpler) constraints improve propagationEasy to experiment with new types of lemmas
4. When reaching the first relevant decision, learn lemmas and resume search

Conflict Resolution Plugins

Forbidden Intervals Lemma

Conflict Resolution Plugins

Forbidden Intervals Lemma
Superposition $\quad p(x)=0 \wedge q(x)=0 \quad \Longrightarrow r p(x)+s q(x)=0$ choose r, s to eliminate highest power of x

Conflict Resolution Plugins

Forbidden Intervals Lemma
Superposition $\quad p(x)=0 \wedge q(x)=0 \quad \Longrightarrow r p(x)+s q(x)=0$ choose r, s to eliminate highest power of x
Var. Elim. $\quad p x=q \wedge C[r x+s] \wedge \ldots \quad \Longrightarrow C\left[p^{-1} q \cdot(r \gg n)+s\right]$ pseudo-inverse: $p^{-1} p=2^{n}$ for minimal n

Conflict Resolution Plugins

Forbidden Intervals Lemma
Superposition $\quad p(x)=0 \wedge q(x)=0 \quad \Longrightarrow r p(x)+s q(x)=0$ choose r, s to eliminate highest power of x

Var. Elim.	$p x=q \wedge C[r x+s] \wedge \ldots \quad \Longrightarrow C\left[p^{-1} q \cdot(r \gg n)+s\right]$ pseudo-inverse: $p^{-1} p=2^{n}$ for minimal n
Bounds	$\begin{array}{ll} C(x, y) \wedge x \in\left[x_{l} ; x_{h}\right] & \Longrightarrow y \in\left[y_{l} ; y_{h}\right] \\ \Omega^{*}(p, q) \wedge p \leq b_{1} & \Longrightarrow q \geq b_{2} \\ a x y+b x+c y+d \leq \ldots & \Longrightarrow \ldots \end{array}$

Conflict Resolution Plugins

Forbidden Intervals Lemma

Superposition	$p(x)=0 \wedge q(x)=0$	$\Longrightarrow r p(x)+s q(x)=0$
	choose r, s to eliminate highest power of x	

Conflict Resolution Plugins

Forbidden Intervals Lemma
Superposition $\quad p(x)=0 \wedge q(x)=0 \quad \Longrightarrow r p(x)+s q(x)=0$

$$
\text { choose } r, s \text { to eliminate highest power of } x
$$

Var. Elim.	$p x=q \wedge C[r x+s] \wedge \ldots$	$\Longrightarrow C\left[p^{-1} q \cdot(r \gg n)+s\right]$
	pseudo-inverse: $p^{-1} p=2^{n}$	for minimal n

MCSAT based approaches for non-linear modular arithmetic

1. Constraints in $\mathbb{F}_{q}[X]$

- Finite field
- Not algebraically closed
- Constraints: $=, \neq$

Modulo 5

$$
\begin{aligned}
x^{2}-1 & =0 \\
x y-y-1 & =0 \\
x y-2 & \neq 0
\end{aligned}
$$

\Rightarrow FFSAT
2. Constraints in $\mathbb{Z} / 2^{k} \mathbb{Z}[X]$

■ Finite commutative ring

- Not algebraically closed
- Constraints: $=, \neq,<,>, \Omega^{*}(x, y)$

Modulo 2^{4}

$$
\begin{aligned}
& x y+y \leq y+3 \\
& 2 y+z=10 \\
& 3 x+6 y z+3 z^{2}=1 \\
& \Rightarrow \text { POLYSAT }
\end{aligned}
$$

