MCSAT BASED APPROACHES FOR NON-LINEAR MODULAR ARITHMETIC

lakob Rath¹ Clemens Eisenhofer¹ Thomas Hader ¹ Daniela Kaufmann¹ Laura Kovács¹ ¹ TU Wien ² Microsoft Research

Nikolaj Bjørner²

Satisfiability: Theory, Practice, and Beyond Extended Reunion: Satisfiability Simons Institute, Berkeley, CA, US

April 20, 2023

$\mathsf{Modulo}\ 5$

$$x^{2} - 1 = 0$$
$$xy - y - 1 = 0$$
$$xy - 2 \neq 0$$

$\mathsf{Modulo}\ 5$

$$x^{2} - 1 = 0$$
$$xy - y - 1 = 0$$
$$xy - 2 \neq 0$$

	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

•	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

$\mathsf{Modulo}\ 5$

$$x^{2} - 1 = 0$$
$$xy - y - 1 = 0$$
$$xy - 2 \neq 0$$

$$x \mapsto 4, y \mapsto 2$$

Solving polynomial equations is one of the oldest and hardest problem in mathematics.

Algebraic closed fields: decidable (Gröbner bases) Finite domains are not algebraically closed

Solving polynomial equations is one of the oldest and hardest problem in mathematics.

Algebraic closed fields: decidable (Gröbner bases) Finite domains are not algebraically closed

Non-linear polynomial reasoning over finite domains is currently of interest in automated reasoning over cryptosystems:

Finite field $\mathbb{F}_q[X]$: Zero-knowledge proofs, elliptic curve cryptography

 $\blacksquare \mathbb{Z}/2^k\mathbb{Z}[X]$: Bit-vector solving, e.g. in smart contracts

Computer Algebra

- Until recently solving polynomial constraints was the sole domain of computer algebra.
- Powerful in finding <u>all</u> solutions
- High computational overhead

Computer Algebra

- Until recently solving polynomial constraints was the sole domain of computer algebra.
- Powerful in finding <u>all</u> solutions
- High computational overhead

We are typically not interested in finding all solutions!

Computer Algebra

- Until recently solving polynomial constraints was the sole domain of computer algebra.
- Powerful in finding <u>all</u> solutions
- High computational overhead

Model Constructing Satisfiability (MCSat)

[Jovanović et al., VMCAI'13]

- Finding satisfiable instances of polynomial arithmetic.
- Combines CDCL-style search with algebraic decompositions.

MCSAT based approaches for non-linear modular arithmetic

- **1.** Constraints in $\mathbb{F}_q[X]$
 - Finite field
 - Not algebraically closed
 - Constraints: $=, \neq$

$\mathsf{Modulo}\ 5$

 $x^{2} - 1 = 0$ xy - y - 1 = 0 $xy - 2 \neq 0$

 $\Rightarrow {\rm FFSAT}$ Thomas Hader, Daniela Kaufmann, Laura Kovács

MCSAT based approaches for non-linear modular arithmetic

- **1.** Constraints in $\mathbb{F}_q[X]$
 - Finite field
 - Not algebraically closed
 - Constraints: $=, \neq$

$\mathsf{Modulo}\ 5$

$$x^{2} - 1 = 0$$
$$xy - y - 1 = 0$$
$$xy - 2 \neq 0$$

⇒ FFSAT Thomas Hader, Daniela Kaufmann, Laura Kovács

- 2. Constraints in $\mathbb{Z}/2^k\mathbb{Z}[X]$
 - Finite commutative ring
 - Not algebraically closed
 - Constraints: $=, \neq, <, >, \Omega^*(x, y)$

Modulo 2^4

$$xy + y \le y + 3$$
$$2y + z = 10$$
$$3x + 6yz + 3z^{2} = 1$$

⇒ POLYSAT Nikolaj Bjørner, Clemens Eisenhofer, Daniela Kaufmann, Laura Kovács, Jakob Rath

MCSat

MCSat

[Jovanović et al., VMCAI'13]

- abstract CDCL decision procedure
- integrates theory reasoning in the boolean search engine
- incrementally constructs model while searching
- propagated literals are justified by model assignments

MCSat

MCSat

[Jovanović et al., VMCAI'13]

- abstract CDCL decision procedure
- integrates theory reasoning in the boolean search engine
- incrementally constructs model while searching
- propagated literals are justified by model assignments

Successfully applied in the theories of

- non-linear arithmetic constraints over reals
- linear integer constraints
- bitvectors

[Jovanović et al., IJCAR'12] [Jovanović et al., CADE'11] [Zeljić et al., SAT'16]

From a given set of clauses C, generate a trail Γ with decided and propagated literals and theory variable assignments that leads to one of the two terminal states UNSAT or SAT.

Polynomial system is a set of unit clauses.

From a given set of clauses C, generate a trail Γ with decided and propagated literals and theory variable assignments that leads to one of the two terminal states UNSAT or SAT.

Main components:

- **Trail** Γ records assignments and reasons
- For each variable x, keep track of viable values V_x
- **Conflict** C: set of constraints that contradicts Γ
- Conflict analysis learn a new constraint to avoid the conflict in the future

From a given set of clauses C, generate a trail Γ with decided and propagated literals and theory variable assignments that leads to one of the two terminal states UNSAT or SAT.

Variables $x_1 < x_2 < \ldots < x_n$

 $\Gamma = \llbracket F_1, \dots, F_l, x_1 \mapsto \alpha_1, G_1, \dots, G_m, x_2 \mapsto \alpha_2, H_1, \dots, H_n, \dots \rrbracket$

literals F_i over $[x_1]$, G_i over $[x_1, x_2]$, H_i over $[x_1, x_2, x_3]$.

From a given set of clauses C, generate a trail Γ with decided and propagated literals and theory variable assignments that leads to one of the two terminal states UNSAT or SAT.

Variables $x_1 < x_2 < \ldots < x_n$

$$\Gamma = \llbracket F_1, \ldots, F_l, x_1 \mapsto \alpha_1, G_1, \ldots, G_m, x_2 \mapsto \alpha_2, H_1, \ldots, H_n, \ldots \rrbracket$$

literals F_i over $[x_1]$, G_i over $[x_1, x_2]$, H_i over $[x_1, x_2, x_3]$.

Regular boolean propagation:

Clause $C_1 = \{\neg F_1, \neg G_2, H\}$ Add literal H to the trail with justification C_1 .

From a given set of clauses C, generate a trail Γ with decided and propagated literals and theory variable assignments that leads to one of the two terminal states UNSAT or SAT.

Variables $x_1 < x_2 < \ldots < x_n$

 $\Gamma = \llbracket F_1, \dots, F_l, x_1 \mapsto \alpha_1, G_1, \dots, G_m, x_2 \mapsto \alpha_2, H_1, \dots, H_n, \dots \rrbracket$

literals F_i over $[x_1]$, G_i over $[x_1, x_2]$, H_i over $[x_1, x_2, x_3]$.

In addition theory propagation:

Idea: From theory (i.e. variable assignments) we know that literal H can't hold, $\neg H$ can be propagated.

Generate explanation clause E that justifies $\neg H$.

C₁:
$$x^2 - 1 = 0 \mod 5$$

C₂: $xy - y - 1 = 0 \mod 5$

1. $\Gamma = [(x^2 - 1 = 0)]$

decide literal

C₁:
$$x^2 - 1 = 0 \mod 5$$

C₂: $xy - y - 1 = 0 \mod 5$

1.
$$\Gamma = [(x^2 - 1 = 0)]]$$

 $\rightsquigarrow C_1|_{\Gamma} : x^2 - 1 = 0 \implies x = 1 \lor x = 4$

C₁:
$$x^2 - 1 = 0 \mod 5$$

C₂: $xy - y - 1 = 0 \mod 5$

1.
$$\Gamma = \llbracket (x^2 - 1 = 0) \rrbracket$$
 decide literal

$$\sim C_1|_{\Gamma} : x^2 - 1 = 0 \quad \Rightarrow x = 1 \lor x = 4$$
2.
$$\Gamma = \llbracket (x^2 - 1 = 0)^{\delta}, (x \mapsto 1)^{C_1} \rrbracket$$
 decision on x

C₁:
$$x^2 - 1 = 0 \mod 5$$

C₂: $xy - y - 1 = 0 \mod 5$

$$\begin{array}{ll} \Gamma = \llbracket (x^2 - 1 = 0) \rrbracket & \text{decide literal} \\ & \sim C_1 |_{\Gamma} \colon x^2 - 1 = 0 & \Rightarrow x = 1 \lor x = 4 \\ \\ 2. \ \Gamma = \llbracket (x^2 - 1 = 0)^{\delta}, (x \mapsto 1)^{C_1} \rrbracket & \text{decision on } x \\ \\ 3. \ \Gamma = \llbracket (x^2 - 1 = 0)^{\delta}, (x \mapsto 1)^{C_1, \delta}, (xy - y - 1 = 0) \rrbracket & \text{add } C_2 \end{array}$$

C₁:
$$x^2 - 1 = 0 \mod 5$$

C₂: $xy - y - 1 = 0 \mod 5$

1.
$$\Gamma = \llbracket (x^2 - 1 = 0) \rrbracket$$
 decide literal
 $\Rightarrow C_1|_{\Gamma} : x^2 - 1 = 0 \Rightarrow x = 1 \lor x = 4$
2. $\Gamma = \llbracket (x^2 - 1 = 0)^{\delta}, (x \mapsto 1)^{C_1} \rrbracket$ decision on x
3. $\Gamma = \llbracket (x^2 - 1 = 0)^{\delta}, (x \mapsto 1)^{C_1, \delta}, (xy - y - 1 = 0) \rrbracket$ add C_2
 $\Rightarrow C_2|_{\Gamma} : -1 = 0$
Conflict: $C = \{C_2, x = 1, C_1\}$
Generate explanation clause $E = \{x + 1 = 0, \neg C_2\}$ using theory propagation.
To satisfy C_2 we resolve using E and backtrack to assign a different value to x .

Explain Function

Informal: Bring theory knowledge into the search procedure on demand.

Key ingredient for every MCSat procedure is the explain function!

MCSAT based approaches for non-linear modular arithmetic

- **1.** Constraints in $\mathbb{F}_q[X]$
 - Finite field
 - Not algebraically closed
 - Constraints: $=, \neq$

$\mathsf{Modulo}\ 5$

 $x^{2} - 1 = 0$ xy - y - 1 = 0 $xy - 2 \neq 0$

 \Rightarrow FFSAT

- **2.** Constraints in $\mathbb{Z}/2^k\mathbb{Z}[X]$
 - Finite commutative ring
 - Not algebraically closed
 - Constraints: $=, \neq, <, >, \Omega^*(x, y)$

Modulo 2^4

$$xy + y \le y + 3$$
$$2y + z = 10$$
$$3x + 6yz + 3z^{2} = 1$$

$\Rightarrow \mathrm{PolySat}$

Finite Fields

A field is a set of elements closed under operations sum, difference, product and inverse finding.

Finite Fields

A field is a set of elements closed under operations sum, difference, product and inverse finding.

A finite field is a field with a finite amount of elements.

Given a number $q = p^n$ with p prime and $n \ge 1$:

 \mathbb{F}_q denotes a finite field of size q.

Finite Fields

A field is a set of elements closed under operations sum, difference, product and inverse finding.

A finite field is a field with a finite amount of elements.

Given a number $q = p^n$ with p prime and $n \ge 1$:

 \mathbb{F}_q denotes a finite field of size q.

Example

```
For q = 5 the field \mathbb{F}_5 = \{0, 1, 2, 3, 4\}.

(2 · 3) + 4 = 0
```

```
inverse of 2 is 3, as 2 \cdot 3 = 1
```

Explanation Generation

Generate an explanation function for constraints over $\mathbb{F}_q[x_1, \ldots, x_n]!$

Explanation Generation

Generate an explanation function for constraints over $\mathbb{F}_q[x_1, \ldots, x_n]!$

General Idea: Given a trail Γ

$$\Gamma = \llbracket \dots, x_{k-1} \mapsto \alpha_{k-1}, F_1, F_2, \dots, F_l \rrbracket$$

for $1 \leq i \leq l$: $x_k \in var(F_i)$ and $\exists \alpha_k \in \mathbb{F}_q$ s.t. $\nu[\Gamma][x_k \mapsto \alpha_k](F_i) = true$

General Idea: Given a trail Γ

$$\Gamma = \llbracket \dots, x_{k-1} \mapsto \alpha_{k-1}, F_1, F_2, \dots, F_l \rrbracket$$

for $1 \leq i \leq l$: $x_k \in var(F_i)$ and $\exists \alpha_k \in \mathbb{F}_q$ s.t. $\nu[\Gamma][x_k \mapsto \alpha_k](F_i) = true$

New constraint G on trail such that α_k does not exist any more.

General Idea: Given a trail Γ

$$\Gamma = \llbracket \dots, x_{k-1} \mapsto \alpha_{k-1}, F_1, F_2, \dots, F_l \rrbracket$$

for $1 \leq i \leq l$: $x_k \in var(F_i)$ and $\exists \alpha_k \in \mathbb{F}_q$ s.t. $\nu[\Gamma][x_k \mapsto \alpha_k](F_i) = true$

New constraint G on trail such that α_k does not exist any more.

Eliminate x_k in $\{F_1, \ldots, F_l, \neg G\}$ and generate polynomial set $\mathcal{C} \subset \mathbb{F}_q[x_1, \ldots, x_{k-1}]$

General Idea: Given a trail Γ

$$\Gamma = \llbracket \dots, x_{k-1} \mapsto \alpha_{k-1}, F_1, F_2, \dots, F_l \rrbracket$$

for $1 \leq i \leq l$: $x_k \in var(F_i)$ and $\exists \alpha_k \in \mathbb{F}_q$ s.t. $\nu[\Gamma][x_k \mapsto \alpha_k](F_i) = true$

New constraint G on trail such that α_k does not exist any more.
 Eliminate x_k in {F₁,..., F_l, ¬G} and generate polynomial set C ⊂ F_q[x₁,..., x_{k-1}]
 ν[Γ](C) = false

General Idea: Given a trail Γ

$$\Gamma = \llbracket \dots, x_{k-1} \mapsto \alpha_{k-1}, F_1, F_2, \dots, F_l \rrbracket$$

for $1 \leq i \leq l$: $x_k \in var(F_i)$ and $\exists \alpha_k \in \mathbb{F}_q$ s.t. $\nu[\Gamma][x_k \mapsto \alpha_k](F_i) = true$

New constraint G on trail such that α_k does not exist any more.

Eliminate x_k in $\{F_1, \ldots, F_l, \neg G\}$ and generate polynomial set $C \subset \mathbb{F}_q[x_1, \ldots, x_{k-1}]$ $\nu[\Gamma](C) = false$

Set
$$\mathcal{E} = \{\neg F_1, \dots, \neg F_l, \} \cup \{G\} \cup \mathcal{C}$$

 $\mathbb{F}_{a}[2]$

General Idea: Given a trail Γ

$$\Gamma = \llbracket \dots, x_{k-1} \mapsto \alpha_{k-1}, F_1, F_2, \dots, F_l \rrbracket$$

for $1 \leq i \leq l$: $x_k \in var(F_i)$ and $\exists \alpha_k \in \mathbb{F}_q$ s.t. $\nu[\Gamma][x_k \mapsto \alpha_k](F_i) = true$

New constraint G on trail such that α_k does not exist any more.

Eliminate x_k in $\{F_1, \ldots, F_l, \neg G\}$ and generate polynomial set $C \subset \mathbb{F}_q[x_1, \ldots, x_{k-1}]$ $\nu[\Gamma](C) = false$

Set
$$\mathcal{E} = \{\neg F_1, \dots, \neg F_l, \} \cup \{G\} \cup \mathcal{C}$$

 $\mathbb{F}_{a}[2]$

Variable Elimination

Given a set of polynomials $\mathcal{P} \subset \mathbb{F}_q[x_1, \ldots, x_k]$.

We eliminate x_k by generating set $\mathcal{P}' \subset \mathbb{F}_q[x_1, \ldots, x_{k-1}]$ s.t.

 $(\alpha_1, \ldots, \alpha_{k-1}) \in \operatorname{zero}(\mathcal{P}') \quad \text{iff} \quad \exists \beta \in \mathbb{F}_q. (\alpha_1, \ldots, \alpha_{k-1}, \beta) \in \operatorname{zero}(\mathcal{P})$
Variable Elimination

Given a set of polynomials $\mathcal{P} \subset \mathbb{F}_q[x_1, \ldots, x_k]$.

We eliminate x_k by generating set $\mathcal{P}' \subset \mathbb{F}_q[x_1, \ldots, x_{k-1}]$ s.t.

 $(\alpha_1,\ldots,\alpha_{k-1})\in \mathsf{zero}(\mathcal{P}') \quad \text{iff} \quad \exists \beta \in \mathbb{F}_q.\, (\alpha_1,\ldots,\alpha_{k-1},\beta) \in \mathsf{zero}(\mathcal{P})$

\blacksquare Let $\Gamma = [\![(x^2-1=0),x\mapsto 1]\!]$ and G:=(xy-y-1=0) is incompatible

• Let $\Gamma = \llbracket (x^2 - 1 = 0), x \mapsto 1 \rrbracket$ and G := (xy - y - 1 = 0) is incompatible • Assignment $\nu[\Gamma][y \mapsto \alpha_y]$ violates G for all $\alpha_y \in \mathbb{F}_q$

$$(x-1) \cdot y - 1 \qquad (x-1) \in \mathbb{F}_q[x]$$

• Let $\Gamma = \llbracket (x^2 - 1 = 0), x \mapsto 1 \rrbracket$ and G := (xy - y - 1 = 0) is incompatible • Assignment $\nu[\Gamma][y \mapsto \alpha_y]$ violates G for all $\alpha_y \in \mathbb{F}_q$

$$(x-1) \cdot y - 1 \qquad (x-1) \in \mathbb{F}_q[x]$$

Exclude all assignments with the same coefficient evaluation

- \Box evaluate coefficients $\nu[\Gamma](x-1) = 0$
- \Box define clause $\{(x-1) 0 \neq 0\}$

• Let $\Gamma = \llbracket (x^2 - 1 = 0), x \mapsto 1 \rrbracket$ and G := (xy - y - 1 = 0) is incompatible • Assignment $\nu[\Gamma][y \mapsto \alpha_y]$ violates G for all $\alpha_y \in \mathbb{F}_q$

$$(x-1) \cdot y - 1 \qquad (x-1) \in \mathbb{F}_q[x]$$

Exclude all assignments with the same coefficient evaluation

- \Box evaluate coefficients $\nu[\Gamma](x-1) = 0$
- $\Box \text{ define clause } \{(x-1) 0 \neq 0\}$

Excludes (at least) the current assignment that violates a single constraint

• Let $\Gamma = \llbracket \dots, x_{k-1} \mapsto \alpha_{k-1} \rrbracket$ and G := (p = 0) is incompatible

Let
$$\Gamma = \llbracket \dots, x_{k-1} \mapsto \alpha_{k-1} \rrbracket$$
 and $G := (p = 0)$ is incompatible
Assignment $\nu[\Gamma][x_k \mapsto \alpha_k]$ violates G for all $\alpha_k \in \mathbb{F}_q$

$$p = c_1 \cdot x_k^{d_1} + \dots + c_m \cdot x_k^{d_m} \qquad c_i \in \mathbb{F}_q[x_1, \dots, x_{k-1}]$$

Let
$$\Gamma = \llbracket \dots, x_{k-1} \mapsto \alpha_{k-1} \rrbracket$$
 and $G := (p = 0)$ is incompatible
Assignment $\nu[\Gamma][x_k \mapsto \alpha_k]$ violates G for all $\alpha_k \in \mathbb{F}_q$

$$p = c_1 \cdot x_k^{d_1} + \dots + c_m \cdot x_k^{d_m} \qquad c_i \in \mathbb{F}_q[x_1, \dots, x_{k-1}]$$

Exclude all assignments with the same coefficient evaluation

- \Box evaluate coefficients $\gamma_i = \nu[\Gamma](c_i)$
- \Box define clause $\{c_i \gamma_i \neq 0 \mid 1 \leq i \leq m\}$

 $\mathbb{F}_q[\mathcal{X}$

Let
$$\Gamma = \llbracket \dots, x_{k-1} \mapsto \alpha_{k-1} \rrbracket$$
 and $G := (p = 0)$ is incompatible
Assignment $\nu[\Gamma][x_k \mapsto \alpha_k]$ violates G for all $\alpha_k \in \mathbb{F}_q$

$$p = c_1 \cdot x_k^{d_1} + \dots + c_m \cdot x_k^{d_m} \qquad c_i \in \mathbb{F}_q[x_1, \dots, x_{k-1}]$$

Exclude all assignments with the same coefficient evaluation

- \square evaluate coefficients $\gamma_i = \nu[\Gamma](c_i)$
- \Box define clause $\{c_i \gamma_i \neq 0 \mid 1 \leq i \leq m\}$
- Similar for $G := (p \neq 0)$

Excludes (at least) the current assignment that violates a single constraint

 $\mathbb{F}_{a}[X]$

Multiple incompatibilities - Gröbner Basis

Let $\Gamma = \llbracket \dots, x_{k-1} \mapsto \alpha_{k-1}, F_1, \dots, F_m \rrbracket$ and G_1, \dots, G_n are incompatible

Gröbner basis with a lexicographical term ordering has the projection property.

Multiple incompatibilities - Gröbner Basis

 $\mathbb{F}_q[X]$

Let $\Gamma = \llbracket \dots, x_{k-1} \mapsto \alpha_{k-1}, F_1, \dots F_m \rrbracket$ and G_1, \dots, G_n are incompatible

Gröbner basis with a lexicographical term ordering has the projection property.
 Introduce fresh variable z for negations

$$f'(x_1,\ldots,x_k,z) = z \cdot f(x_1,\ldots,x_k) - 1$$

Field polynomials $\mathcal{FP} = \{x_i^q - x_i | x_i \in X\}$ are required.

Generate the k-1 elimination ideal of

$$\langle F_1, \cdots, F_m, G_1, \dots, G_n \rangle + \langle \mathcal{FP} \rangle$$

Multiple incompatibilities - Exclude factors

 $\mathbb{F}_q[X]$

- \blacksquare Let $f,g\in \mathbb{F}_q[x_1,\ldots,x_k]$ and α an assignment
- Factor univariate polynomials $\nu[\Gamma](f) \in \mathbb{F}_q[x_k]$ and $\nu[\Gamma](g) \in \mathbb{F}_q[x_k]$
 - Exclude common irreducible factors

Subresultant Regular Subchain

GCD w.r.t. assignment

Let $f, g \in \mathbb{F}_q[x_1, \dots, x_k]$ srs $(f, g, x_k) = h_2, \dots, h_r$ $i = lc(g, x_k)$ and $i_\ell = lc(h_\ell, x_k)$

 $gcd(f(\boldsymbol{\alpha}, x_k), g(\boldsymbol{\alpha}, x_k)) = h_{\ell}(\boldsymbol{\alpha}, x_k)$

 $\mathsf{if}\; \boldsymbol{\alpha} \in \mathsf{zero}(\{i_{\ell+1},\ldots,i_r\}/\{i,i_\ell\})$

Subresultant Regular Subchain

GCD w.r.t. assignment

Let $f, g \in \mathbb{F}_q[x_1, \dots, x_k]$ srs $(f, g, x_k) = h_2, \dots, h_r$ $i = lc(g, x_k)$ and $i_\ell = lc(h_\ell, x_k)$

 $\gcd(f(\pmb\alpha,x_k),g(\pmb\alpha,x_k))=h_\ell(\pmb\alpha,x_k)$ if $\pmb\alpha\in\mathsf{zero}(\{i_{\ell+1},\ldots,i_r\}/\{i,i_\ell\})$

Think of "Euclidean Division algorithm" w.r.t. current assignment

Example: SRS

 $f=z^2+yz+4=0 \quad \text{ and } \quad g=x+yz\neq 0 \in \mathbb{F}_5[x,y,z]$

Let $\alpha = \{x \mapsto 3, y \mapsto 1\}$ be the current assignment on Γ

f and g are incompatible with Γ

Example: SRS

$$f=z^2+yz+4=0 \quad \text{ and } \quad g=x+yz\neq 0 \in \mathbb{F}_5[x,y,z]$$

Let $\alpha = \{x \mapsto 3, y \mapsto 1\}$ be the current assignment on Γ

f and g are incompatible with Γ srs $(f, g, z) = [x + yz, x^2 - xy^2 - y^2]$ Learn $x^2 - xy^2 - y^2 \neq 0$

In addition to $\{x \mapsto 3, y \mapsto 1\}$ we also exclude $\{x \mapsto 0, y \mapsto 0\}$ and $\{x \mapsto 3, y \mapsto 4\}$

Results

Туре	q	n	c	FFSAT	GB	GBLEX
Craft	3	32	32	25	25	0
Craft	3	64	64	25	24	0
Craft	13	32	16	19	18	1
Craft	211	16	8	24	25	25
Rand	3	8	8	25	25	25
Rand	3	16	16	12	11	0
Rand	13	8	4	25	0	0
Rand	13	8	8	1	0	0
Rand	211	8	4	17	0	0
Rand	211	8	16	0	0	0

Instances solved by $\rm FFSAT,~GB,$ and $\rm GBLEX,$ out of 25 polynomial systems per test set within 300 seconds.

MCSAT based approaches for non-linear modular arithmetic

- **1.** Constraints in $\mathbb{F}_q[X]$
 - Finite field
 - Not algebraically closed
 - Constraints: $=, \neq$

$\mathsf{Modulo}\ 5$

$$x^{2} - 1 = 0$$
$$xy - y - 1 = 0$$
$$xy - 2 \neq 0$$

 \Rightarrow FFSAT

- 2. Constraints in $\mathbb{Z}/2^k\mathbb{Z}[X]$
 - Finite commutative ring
 - Not algebraically closed
 - Constraints: =, \neq , <, >, $\Omega^*(x, y)$

Modulo 2^4

$$xy + y \le y + 3$$
$$2y + z = 10$$
$$3x + 6yz + 3z^{2} = 1$$
$$\Rightarrow \text{PolySAT}$$

PolySAT: a Word-level Solver for Large Bitvectors

 $\mathbb{Z}/2^k\mathbb{Z}[X]$

Bitvectors?

- 1. Sequence of bits, e.g., 01011
- 2. Fixed-width machine integers, e.g., uint32_t, int64_t
- 3. Modular arithmetic: $\mathbb{Z}/2^k\mathbb{Z}$

PolySAT: a Word-level Solver for Large Bitvectors

Bitvectors?

- 1. Sequence of bits, e.g., 01011
- 2. Fixed-width machine integers, e.g., uint32_t, int64_t
- 3. Modular arithmetic: $\mathbb{Z}/2^k\mathbb{Z}$

Examples:

$$2x^{2}y + z = 3$$

$$x + 3 \le x + y$$

$$\neg \Omega^{*}(x, y), \quad z = x \& y, \quad \dots$$

PolySAT: a Word-level Solver for Large Bitvectors

 $\mathbb{Z}/2^k\mathbb{Z}[X]$

Bitvectors?

- 1. Sequence of bits, e.g., 01011
- 2. Fixed-width machine integers, e.g., uint32_t, int64_t
- 3. Modular arithmetic: $\mathbb{Z}/2^k\mathbb{Z}$

Examples:

$$2x^{2}y + z = 3$$

$$x + 3 \le x + y$$

$$\neg \Omega^{*}(x, y), \quad z = x \& y, \quad \dots$$

Natural target for many program verification tasks!

Certora and smart contract verification: 256-bit unsigned integers

Bitvector Pitfalls

 $\mathbb{Z}/2^k\mathbb{Z}$ is a finite commutative ring, but not a field.

$$\begin{array}{l} x,y \geq 0 \implies xy \geq x \\ x,y \neq 0 \implies xy \neq 0 \\ x \leq y \implies x-y \leq 0 \end{array}$$

Overflow/wraparound: $3 \cdot 6 = 2 \mod 2^4$ Zero divisors: $6 \cdot 8 = 0 \mod 2^4$ Usual inequality normalization fails

Bitvector Pitfalls

$$\boxed{\mathbb{Z}/2^k\mathbb{Z}[X]}$$

 $\mathbb{Z}/2^k\mathbb{Z}$ is a finite commutative ring, but not a field.

$$\begin{array}{l} x, y \geq 0 \implies xy \geq x \\ x, y \neq 0 \implies xy \neq 0 \\ x \leq y \implies x - y \leq 0 \end{array}$$

Overflow/wraparound: $3 \cdot 6 = 2 \mod 2^4$ Zero divisors: $6 \cdot 8 = 0 \mod 2^4$ Usual inequality normalization fails

Example

 $\begin{array}{ll} x+3 \leq x+y \mod 2^3 \\ \hline & \mbox{For } x=0; & 3 \leq y & \Longleftrightarrow \ y \in \{3,4,5,6,7\} \\ \hline & \mbox{For } x=2; & 5 \leq 2+y \ \Longleftrightarrow \ y \in \{3,4,5\} \end{array}$

Solving Approaches

Bit-blasting

Translate into boolean formula and use SAT solver

Solving Approaches

Bit-blasting

Translate into boolean formula and use SAT solver

Int-blasting

[Zohar et al., VMCAI'22]

Translate into integer arithmetic with bound constraints and modulo operations

Solving Approaches

Bit-blasting

Translate into boolean formula and use SAT solver

Int-blasting

[Zohar et al., VMCAI'22]

Translate into integer arithmetic with bound constraints and modulo operations

MCSAT-based approaches

[Zeljić et al., SAT'16]

[Graham-Lengrand et al., IJCAR'20]

Search for assignment to bitvector variables \rightsquigarrow PolySAT

PolySAT Overview

Theory solver for bitvector arithmetic

□ Input: conjunction of bitvector constraints

 \Box Output: SAT or UNSAT

Based on modular integer arithmetic $(\mathbb{Z}/2^k\mathbb{Z})$

$\mathbb{Z}/2^k\mathbb{Z}[X]$

PolySAT Overview

- Theory solver for bitvector arithmetic
 - □ Input: conjunction of bitvector constraints
 - Output: SAT or UNSAT
 - Based on modular integer arithmetic $(\mathbb{Z}/2^k\mathbb{Z})$
- Search for a model of the input constraints
 - □ Incrementally assign bitvector variables
 - □ Keep track of viable values for variables
 - $\hfill\square$ Add lemmas on demand to generate explanation clauses

Inequalities	$p \leq q$	(polynomials p,q)
Overflow	$\Omega^*(p,q)$	
Bit-wise	$r = p \And q$	
Structural	$r=p\ll q$, $r=p$	$p \gg q$
Clauses	Disjunction of co	nstraint literals

Inequalities	$p \leq q$ (poly	nomials p,q)
Overflow	$\Omega^*(p,q)$	
Bit-wise	$r = p \And q$	
Structural	$r=p\ll q$, $r=p\gg q$	
Clauses	Disjunction of constraint lite	rals
By Reduction:		
Equations	$p=q\iff p-q\leq 0$	

$p \leq q$ (polynomials p, q)		
$\Omega^*(p,q)$		
$r = p \And q$		
$r=p\ll q$, $r=p\gg q$		
Disjunction of constraint literals		
$p = q \iff p - q \le 0$		
$p \leq_s q \iff p + 2^{k-1} \leq q + 2^{k-1}$		

Inequalities	$p \leq q$ (polyr	nomials p,q)
Overflow	$\Omega^*(p,q)$	
Bit-wise	$r = p \And q$	
Structural	$r=p\ll q$, $r=p\gg q$	
Clauses	Disjunction of constraint liter	rals
By Reduction:		
Equations	$p=q\iff p-q\leq 0$	
Inequalities (signed)	$p \leq_s q \iff p + 2^{k-1} \leq q + q$	-2^{k-1}
Bit-wise negation	$\sim p = -p - 1$	

Inequalities	$p \le q$ (p-	olynomials p,q)
Overflow	$\Omega^*(p,q)$	
Bit-wise	$r = p \And q$	
Structural	$r=p\ll q$, $r=p\gg q$	
Clauses	Disjunction of constraint	literals
By Reduction:		
Equations	$p=q\iff p-q\leq 0$	
Inequalities (signed)	$p \leq_s q \iff p + 2^{k-1} \leq$	$q + 2^{k-1}$
Bit-wise negation	$\sim p = -p - 1$	
Bit-wise or	$p \mid q = p + q - (p \And q)$	

Inequalities	$p \leq q$	(polynomials p,q)	
Overflow	$\Omega^*(p,q)$		
Bit-wise	$r = p \And q$		
Structural	$r = p \ll q$, $r = p \gg q$		
Clauses	Disjunction of constraint literals		
By Reduction:			
Equations	$p=q\iff p-q\leq 0$		
Inequalities (signed)	$p \leq_s q \iff p + 2^{k-1}$	$\leq q + 2^{k-1}$	
Bit-wise negation	$\sim p = -p - 1$		
Bit-wise or	$p \mid q = p + q - (p \& q)$		
Quotient/remainder	$q\coloneqq \texttt{bvudiv}(a,b)$, $r\coloneqq$	bvurem(a,b)	
	$\blacktriangleright a = bq + r$		
	$\blacktriangleright \neg \Omega^*(b,q)$		
	$\blacktriangleright \neg \Omega^+(bq,r)$	(e.g., $bq \leq -r-1$)	
	$\blacktriangleright b \neq 0 \rightarrow r < b$		

PolySAT Solving Loop

Modified CDCL loop with theory assignments

Assign boolean values to constraint literals $(p \le q \text{ vs. } p > q)$

Assign integer values to bitvector variables $(x \mapsto 3)$

PolySAT Solving Loop

Modified CDCL loop with theory assignments

- Assign boolean values to constraint literals $(p \le q \text{ vs. } p > q)$
 - Assign integer values to bitvector variables $(x \mapsto 3)$

Main components:

- **Trail** Γ records assignments and reasons
- For each variable x, keep track of viable values V_x
- **Conflict** C: set of constraints that contradicts Γ
- Conflict analysis learn a new constraint to avoid the conflict in the future

1. $\Gamma = \llbracket (x \mapsto 0)^{\delta} \rrbracket$

decide x

$$C_1:$$
 $x^2y + 3y + 7 = 0 \mod 2^4$ $C_2:$ $2y + z + 8 = 0 \mod 2^4$ $C_3:$ $3x + 4yz + 2z^2 + 1 = 0 \mod 2^4$

1.
$$\Gamma = \llbracket (x \mapsto 0)^{\delta} \rrbracket$$

2. $\Gamma = \llbracket (x \mapsto 0)^{\delta}, C_1 \rrbracket$

decide xadd C_1

$$C_1:$$
 $x^2y + 3y + 7 = 0 \mod 2^4$ $C_2:$ $2y + z + 8 = 0 \mod 2^4$ $C_3:$ $3x + 4yz + 2z^2 + 1 = 0 \mod 2^4$

1.
$$\Gamma = \llbracket (x \mapsto 0)^{\delta} \rrbracket$$

2. $\Gamma = \llbracket (x \mapsto 0)^{\delta}, C_1 \rrbracket$
 $\rightarrow C_1|_{\Gamma} : 3y + 7 = 0 \implies y = 3$

decide xadd C_1

$\mathbb{Z}/2^k\mathbb{Z}[X]$

$$C_1$$
: $x^2y + 3y + 7 = 0 \mod 2^4$ C_2 : $2y + z + 8 = 0 \mod 2^4$ C_3 : $3x + 4yz + 2z^2 + 1 = 0 \mod 2^4$

$$\begin{array}{ll} 1. \ \Gamma = \llbracket (x \mapsto 0)^{\delta} \rrbracket & \mbox{decide } x \\ 2. \ \Gamma = \llbracket (x \mapsto 0)^{\delta}, C_1 \rrbracket & \mbox{add } C_1 \\ & \sim C_1 |_{\Gamma} \colon 3y + 7 = 0 \quad \Rightarrow y = 3 \\ 3. \ \Gamma = \llbracket (x \mapsto 0)^{\delta}, C_1, (y \mapsto 3)^{C_1, x}, C_2 \rrbracket & \mbox{propagate } y, \mbox{add } C_2 \end{array}$$

$\mathbb{Z}/2^k\mathbb{Z}[X]$

 C_1

 C_2

$$C_1:$$
 $x^2y + 3y + 7 = 0 \mod 2^4$ $C_2:$ $2y + z + 8 = 0 \mod 2^4$ $C_3:$ $3x + 4yz + 2z^2 + 1 = 0 \mod 2^4$

1.
$$\Gamma = \llbracket (x \mapsto 0)^{\delta} \rrbracket$$
 decide x
2. $\Gamma = \llbracket (x \mapsto 0)^{\delta}, C_1 \rrbracket$ add C_1
 $\rightsquigarrow C_1|_{\Gamma} : 3y + 7 = 0 \Rightarrow y = 3$
3. $\Gamma = \llbracket (x \mapsto 0)^{\delta}, C_1, (y \mapsto 3)^{C_1, x}, C_2 \rrbracket$ propagate y , add C_2
 $\rightsquigarrow C_2|_{\Gamma} : z + 14 = 0 \Rightarrow z = 2$

C_1 :	$x^2y + 3y + 7 = 0$	$\mod 2^4$
C_2 :	2y + z + 8 = 0	$\mod 2^4$
C_3 :	$3x + 4yz + 2z^2 + 1 = 0$	$\mod 2^4$
1. $\Gamma = \llbracket (x \mapsto 0)^{\delta} \rrbracket$ 2. $\Gamma = \llbracket (x \mapsto 0)^{\delta}, C_1 \rrbracket$		decide x add C_1
$ C_1 _{\Gamma} : 3y + 7 = 0 \Rightarrow y = 3 $		
3. $\Gamma = [(x \mapsto 0)^{\delta}, C_1, (y \mapsto 3)^{C_1, x}, C_2]$]	propagate y , add C_2
$\rightsquigarrow C_2 _{\Gamma} \colon z + 14 = 0 \Rightarrow z = 2$		
4. $\Gamma = [(x \mapsto 0)^{\delta}, C_1, (y \mapsto 3)^{C_1, x}, C_2,$	$(z\mapsto 2)^{C_2,y}, C_3]\!]$	propagate z , add C_3

Example: Polynomial Equations (conflict)

$$\Gamma = [(x \mapsto 0)^{\delta}, C_1, (y \mapsto 3)^{C_1, x}, C_2, (z \mapsto 2)^{C_2, y}, C_3]]$$

$$\mathcal{C} = \{ C_3, x = 0, y = 3, z = 2 \}$$

Follow dependencies of C according to Γ :

$$\mathcal{C}' = \{C_3, x = 0, y = 3, C_2\}$$

Example: Polynomial Equations (conflict)

$$\Gamma = \llbracket (x \mapsto 0)^{\delta}, C_1, (y \mapsto 3)^{C_1, x}, C_2, (z \mapsto 2)^{C_2, y}, C_3 \rrbracket$$
$$\mathcal{C} = \{C_3, x = 0, y = 3, z = 2\}$$

Follow dependencies of C according to Γ :

$$C' = \{C_3, x = 0, y = 3, C_2\}$$

$$C_3: \qquad 3x + 4yz + 2z^2 + 1 = 0$$

$$C_2: \qquad 2y + z + 8 = 0 \qquad |\cdot 2z$$

$$C_3 - 2z \cdot C_2: \qquad 3x + 1 = 0$$

Example: Polynomial Equations (conflict)

$$\Gamma = \llbracket (x \mapsto 0)^{\delta}, C_1, (y \mapsto 3)^{C_1, x}, C_2, (z \mapsto 2)^{C_2, y}, C_3 \rrbracket$$
$$\mathcal{C} = \{C_3, x = 0, y = 3, z = 2\}$$

Follow dependencies of C according to Γ :

$$C' = \{C_3, x = 0, y = 3, C_2\}$$

$$C_3: \qquad 3x + 4yz + 2z^2 + 1 = 0$$

$$C_2: \qquad 2y + z + 8 = 0 \qquad |\cdot 2z$$

$$C_3 - 2z \cdot C_2: \qquad 3x + 1 = 0$$

Lemma:

$$C_3 \wedge C_2 \to 3x + 1 = 0$$

 $\mathbb{Z}/2^k\mathbb{Z}$

Constraints:

 $C_1:$ $x^2y + 3y + 7 = 0 \mod 2^4$ $C_2:$ $2y + z + 8 = 0 \mod 2^4$ $C_3:$ $3x + 4yz + 2z^2 + 1 = 0 \mod 2^4$ $C_4:$ $3x + 1 = 0 \mod 2^4$

Constraints:

Continued:

5. $\Gamma = [\![C_4^{C_2, C_3}]\!]$

backjump, propagate lemma

Constraints:

Continued:

5. $\Gamma = \llbracket C_4^{C_2, C_3} \rrbracket$ 6. $\Gamma = \llbracket C_4^{C_2, C_3}, (x \mapsto 5)^{C_4}, C_1 \rrbracket$

backjump, propagate lemma propagate x

Constraints:

Continued:

5. $\Gamma = \llbracket C_4^{C_2, C_3} \rrbracket$ 6. $\Gamma = \llbracket C_4^{C_2, C_3}, (x \mapsto 5)^{C_4}, C_1 \rrbracket$ $\rightsquigarrow C_1|_{\Gamma} \colon 12y + 7 = 0$ Conflict due to parity!

backjump, propagate lemma propagate x

Constraints:

Continued:

- 5. $\Gamma = \llbracket C_4^{C_2,C_3} \rrbracket$ 6. $\Gamma = \llbracket C_4^{C_2,C_3}, (x \mapsto 5)^{C_4}, C_1 \rrbracket$ $\sim C_1|_{\Gamma} \colon 12y + 7 = 0$ Conflict due to parity!
- 7. Unsatisfiable.

backjump, propagate lemma propagate \boldsymbol{x}

How to choose values?

For each variable x, keep track of viable values V_x :

- **c**hoose a value from V_x for decisions
- **propagate** $x \mapsto v$ when $V_x = \{v\}$ is a singleton set

```
\blacksquare \text{ conflict if } V_x = \emptyset
```

$\mathbb{Z}/2^k\mathbb{Z}[X]$

How to choose values?

For each variable x, keep track of viable values V_x :

```
• choose a value from V_x for decisions
```

D propagate $x \mapsto v$ when $V_x = \{v\}$ is a singleton set

```
• conflict if V_x = \emptyset
```

• whenever a constraint becomes "simple enough", use it to restrict V_x

How to choose values?

 $\boxed{\mathbb{Z}/2^k\mathbb{Z}[X]}$

For each variable x, keep track of viable values V_x :

```
choose a value from V_x for decisions
```

```
I propagate x \mapsto v when V_x = \{v\} is a singleton set
```

```
• conflict if V_x = \emptyset
```

whenever a constraint becomes "simple enough", use it to restrict V_x

Currently:

- \blacksquare V_x represented as set of intervals
- \blacksquare when x appears only linearly, extract a forbidden interval [Graham-Lengrand et al., IJCAR'20]
- **a** additionally, keep track of fixed bits of x
- bit-blasting as fallback (only a single bitvector variable)

[Zeljić et al., SAT'16]

Intervals

We use half-open intervals:

- \blacksquare Usual notation $[\ell; u[$
- $\blacksquare \text{ but wrap around if } \ell > u$

Intervals

We use half-open intervals:

■ Usual notation [ℓ; u[
 ■ but wrap around if ℓ > u

Examples mod 2^4 :

$$[2; 5[= \{2, 3, 4\} \\ [13; 2[= \{13, 14, 15, 0, 1\} \\ [0; 0[= \emptyset]$$

Note:

$$p \in [\ell; u[\quad \Longleftrightarrow \quad p - \ell < u - \ell]$$

Forbidden interval of a constraint (example in $\mathbb{Z}/2^4\mathbb{Z}$):

Current trail Γ contains $x_1 \mapsto 11$, $x_2 \mapsto 13$, and $x_3 \mapsto 9$.

Forbidden interval of a constraint (example in $\mathbb{Z}/2^4\mathbb{Z}$):

Current trail Γ contains $x_1 \mapsto 11$, $x_2 \mapsto 13$, and $x_3 \mapsto 9$.

Constraint $C: x_1 \le x_1^2 x_3 + y$ Note: only y is unassigned

Forbidden interval of a constraint (example in $\mathbb{Z}/2^4\mathbb{Z}$):

- **Current trail** Γ contains $x_1 \mapsto 11$, $x_2 \mapsto 13$, and $x_3 \mapsto 9$.
- Constraint $C: x_1 \le x_1^2 x_3 + y$ Note: only y is unassigned
- Substituting the assignment: $C|_{\Gamma} : 11 \leq 1 + y$

Forbidden interval of a constraint (example in $\mathbb{Z}/2^4\mathbb{Z}$):

Current trail Γ contains $x_1 \mapsto 11$, $x_2 \mapsto 13$, and $x_3 \mapsto 9$.

```
Constraint C: x_1 \le x_1^2 x_3 + y
Note: only y is unassigned
```

Substituting the assignment: $C|_{\Gamma} : 11 \le 1 + y$

```
Thus y \notin [15; 10[

\rightsquigarrow use to restrict V_y
```


Forbidden interval of a constraint (example in $\mathbb{Z}/2^4\mathbb{Z}$):

Current trail Γ contains $x_1 \mapsto 11$, $x_2 \mapsto 13$, and $x_3 \mapsto 9$.

```
Constraint C: x_1 \le x_1^2 x_3 + y
Note: only y is unassigned
```

Substituting the assignment: $C|_{\Gamma} : 11 \leq 1 + y$

```
Thus y \notin [15; 10[

\rightarrow use to restrict V_y
```

```
Symbolic interval: y \notin [-x_1^2x_3; x_1 - x_1^2x_3]
```


Forbidden intervals:

 $C_i \implies x \not\in [\ell_i; u_i[$

Forbidden intervals:

 $C_i \implies x \not\in [\ell_i; u_i[$

Forbidden intervals:

 $C_i \implies x \not\in [\ell_i; u_i[$

Forbidden intervals:

 $C_i \implies x \not\in [\ell_i; u_i[$

Forbidden intervals:

 $C_i \implies x \not\in [\ell_i; u_i[$

Forbidden intervals:

 $C_i \implies x \not\in [\ell_i; u_i[$

Concrete intervals cover the domain: $\bigcup_i [\ell_i; u_i] = [0; 2^k]$

Use symbolic intervals to express the overlap condition:

$$u_1 \in [\ell_2; u_2[\land u_2 \in [\ell_3; u_3[\land u_3 \in [\ell_1; u_1[$$

p,q,r,s: polynomials, evaluable in current trail Γ x: variable, unassigned in Γ

 $px + r \le qx + s$

p,q,r,s: polynomials, evaluable in current trail Γ x: variable, unassigned in Γ

$$px + r \le qx + s$$

[Graham-Lengrand et al., IJCAR'20]

p	q	Interval	
0	1	$x\not\in [-s;r-s[$	if $r \neq 0$
1	0	$x \not \in [s-r+1;-r[$	if $s \neq -1$
1	1	$x \not\in [-s; -r[$	$ \text{ if } r \neq s \\$

$\mathbb{Z}/2^k\mathbb{Z}[X]$

Forbidden Intervals

p,q,r,s: polynomials, evaluable in current trail Γ x: variable, unassigned in Γ

 $px+r \leq qx+s$

p	q	Lemmas from intervals
$\{0,n\}$	$\{0,n\}$	Set of intervals ("equal coeff.")
n	m	Set of intervals ("disequal coeff.")
		Intervals from fixed bits
		Fallback to bit-blasting

Forbidden Intervals (disequal coefficients)

Forbidden Intervals (disequal coefficients)

Forbidden Intervals (disequal coefficients)

Forbidden Intervals (disequal coefficients)

Forbidden Intervals (disequal coefficients)

Conflict Resolution Strategy

 $\mathbb{Z}/2^k\mathbb{Z}[X]$

- 1. Track the conflict's cone of influence while backtracking over the trail Γ
- 2. Conflict resolution plugins derive lemmas from constraints in the conflict
- 3. Accumulate lemmas from conflict plugins
 - $\hfill\square$ New (often simpler) constraints improve propagation
 - Easy to experiment with new types of lemmas
- 4. When reaching the first relevant decision, learn lemmas and resume search

Superposition	$p(x) = 0 \land q(x) = 0$	$\implies rp(x) + sq(x) = 0$
	choose r, s to eliminate	highest power of x

Superposition	$p(x) = 0 \land q(x) = 0 \qquad \implies rp(x) + sq(x) = 0$	
	choose $\boldsymbol{r},\boldsymbol{s}$ to eliminate highest power of \boldsymbol{x}	
Var. Elim.	$px = q \wedge C[rx + s] \wedge \ldots \implies C[p^{-1}q \cdot (r \gg n) + s]$	
	pseudo-inverse: $p^{-1}p = 2^n$ for minimal n	

Superposition	$p(x) = 0 \land q(x) = 0$	$\implies rp(x) + sq(x) = 0$
	choose r, s to eliminate highest power of x	
Var. Elim.	$px = q \wedge C[rx + s] \wedge \ldots$	$\implies C[p^{-1}q \cdot (r \gg n) + s]$
	pseudo-inverse: $p^{-1}p = 2^n$	for minimal n
Bounds	$C(x,y) \land x \in [x_l;x_h]$	$\implies y \in [y_l; y_h]$
	$\Omega^*(p,q) \wedge p \le b_1$	$\implies q \ge b_2$
	$axy + bx + cy + d \le \dots$	$\implies \dots$

Superposition	$p(x) = 0 \land q(x) = 0$	$\implies rp(x) + sq(x) = 0$	
	choose r, s to eliminate highest power of x		
Var. Elim.	$px = q \wedge C[rx + s] \wedge \ldots$	$\implies C[p^{-1}q \cdot (r \gg n) + s]$	
	pseudo-inverse: $p^{-1}p = 2^n$	for minimal n	
Bounds	$C(x,y) \land x \in [x_l;x_h]$	$\implies y \in [y_l; y_h]$	
	$\Omega^*(p,q) \wedge p \le b_1$	$\implies q \ge b_2$	
	$axy + bx + cy + d \le \dots$	$\implies \dots$	
Overflow	$\Omega^*(p,q) \wedge \neg \Omega^*(p,r)$	$\implies q > r$	

Superposition	$p(x) = 0 \land q(x) = 0$	$\implies rp(x) + sq(x) = 0$
	choose r, s to eliminate high	hest power of x
Var. Elim.	$px = q \wedge C[rx + s] \wedge \ldots$	$\implies C[p^{-1}q \cdot (r \gg n) + s]$
	pseudo-inverse: $p^{-1}p = 2^n$	for minimal n
Bounds	$C(x,y) \land x \in [x_l;x_h]$	$\implies y \in [y_l; y_h]$
	$\Omega^*(p,q) \wedge p \le b_1$	$\implies q \ge b_2$
	$axy + bx + cy + d \le \dots$	$\implies \dots$
Overflow	$\Omega^*(p,q)\wedge\neg\Omega^*(p,r)$	$\implies q > r$
Bit-wise and	x = p & q	$\implies x \le p$
	$x = p \& q \wedge p = q$	$\implies x = p$
	$x=p\&q\wedge p=2^n-1$	$\implies 2^{n-k}x = 2^{n-k}q$

MCSAT based approaches for non-linear modular arithmetic

- **1.** Constraints in $\mathbb{F}_q[X]$
 - Finite field
 - Not algebraically closed
 - Constraints: $=, \neq$

$\mathsf{Modulo}\ 5$

$$x^{2} - 1 = 0$$
$$xy - y - 1 = 0$$
$$xy - 2 \neq 0$$

 \Rightarrow FFSAT

- 2. Constraints in $\mathbb{Z}/2^k\mathbb{Z}[X]$
 - Finite commutative ring
 - Not algebraically closed
 - $\begin{tabular}{ll} \hline {} \mbox{Constraints: } =, \neq, <, >, \Omega^*(x,y) \\ \hline \end{array}$

Modulo 2^4

$$xy + y \le y + 3$$
$$2y + z = 10$$
$$3x + 6yz + 3z^{2} = 1$$

 \Rightarrow PolySat