On the Complexity of

Two-Party Differential Privacy

Noam Mazor

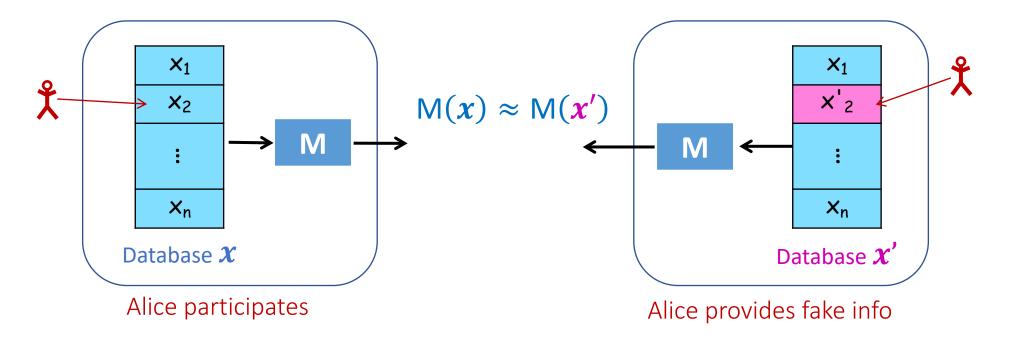
Joint work with

Iftach Haitner, Jad Silbak, Eliad Tsfadia

Differential Privacy (DP)

Dwork, McSherry, Nissim, Smith 2006

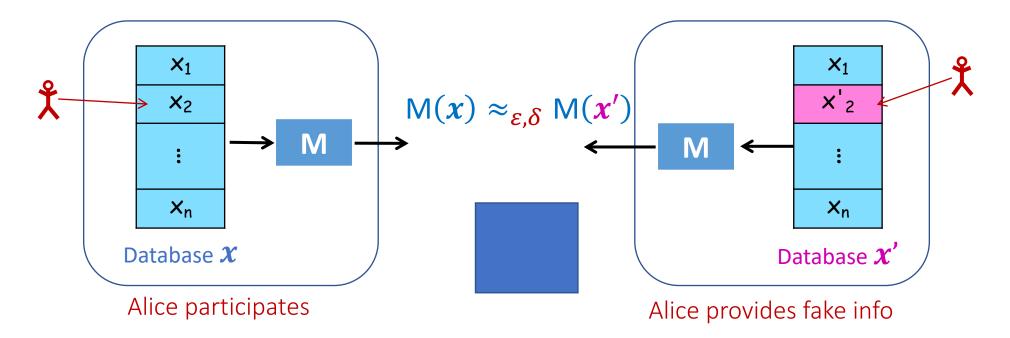
One record does not change the output distribution "too much"



Differential Privacy (DP)

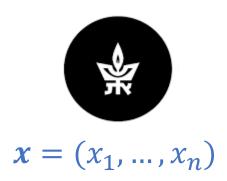
Dwork, McSherry, Nissim, Smith 2006

One record does not change the output distribution "too much"



 $\begin{array}{l} \mathsf{M} \text{ is } (\varepsilon, \delta) \text{-differentially private if} \\ \forall \text{ neighboring databases } x, x' \text{ and } \forall (\text{unbounded}) \text{ distinguisher } D \text{:} \\ \Pr[\mathsf{D}(\mathsf{M}(x)) = 1] \leq e^{\varepsilon} \cdot \Pr[\mathsf{D}(\mathsf{M}(x')) = 1] + \delta \end{array}$

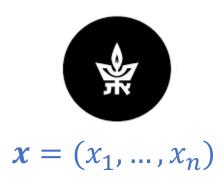
Centralized DP



 $\mathsf{M}_1(x) = \sum_i x_i$

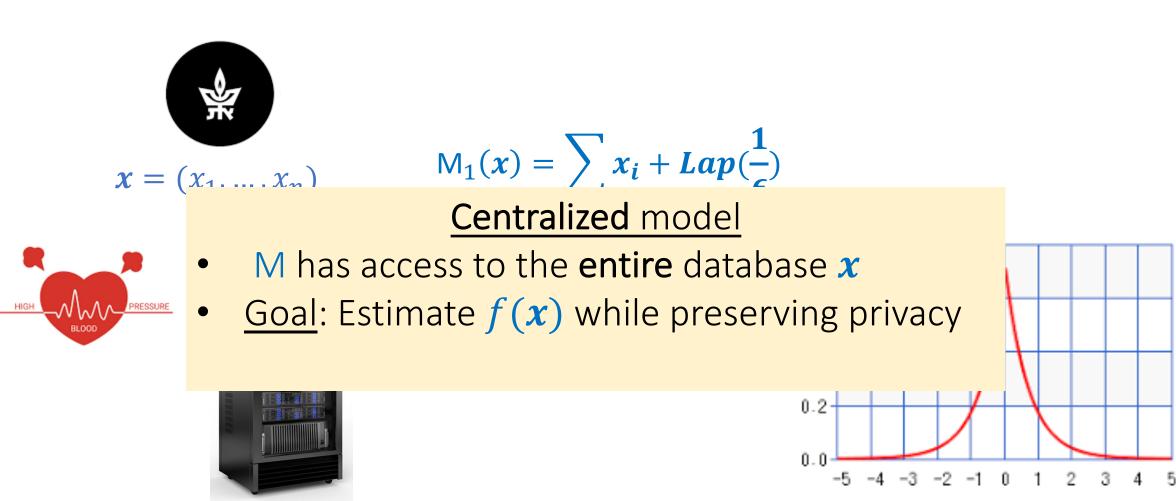


Centralized DP

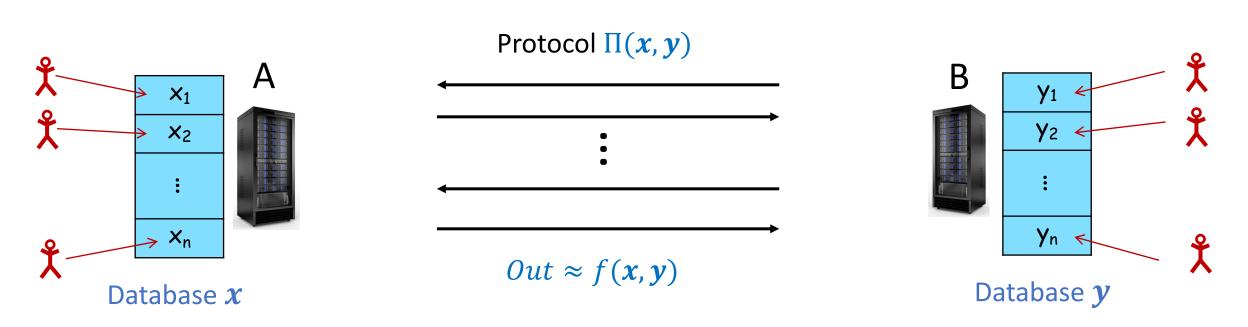


 $\mathsf{M}_1(x) = \sum_i x_i + Noise$

Centralized DP



Two-Party DP

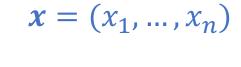


<u>Goal</u>: Estimate f(x, y) while preserving (ε, δ) -DP: $\forall x, \forall$ neigh. y, y': $view_A^{\Pi}(x, y) \approx_{\varepsilon, \delta} view_A^{\Pi}(x, y')$ $view_A^{\Pi}(x, y) - A's$ view in $\Pi(x, y)$ (input, coins and transcript).

(and same for B)

Two-Party DP

Faculty of Exact Sciences



$$out_{1} = \sum_{i} x_{i} + Noise$$

$$out_{2} = \sum_{i} y_{i} + Noise$$

 $out = out_1 + out_2$

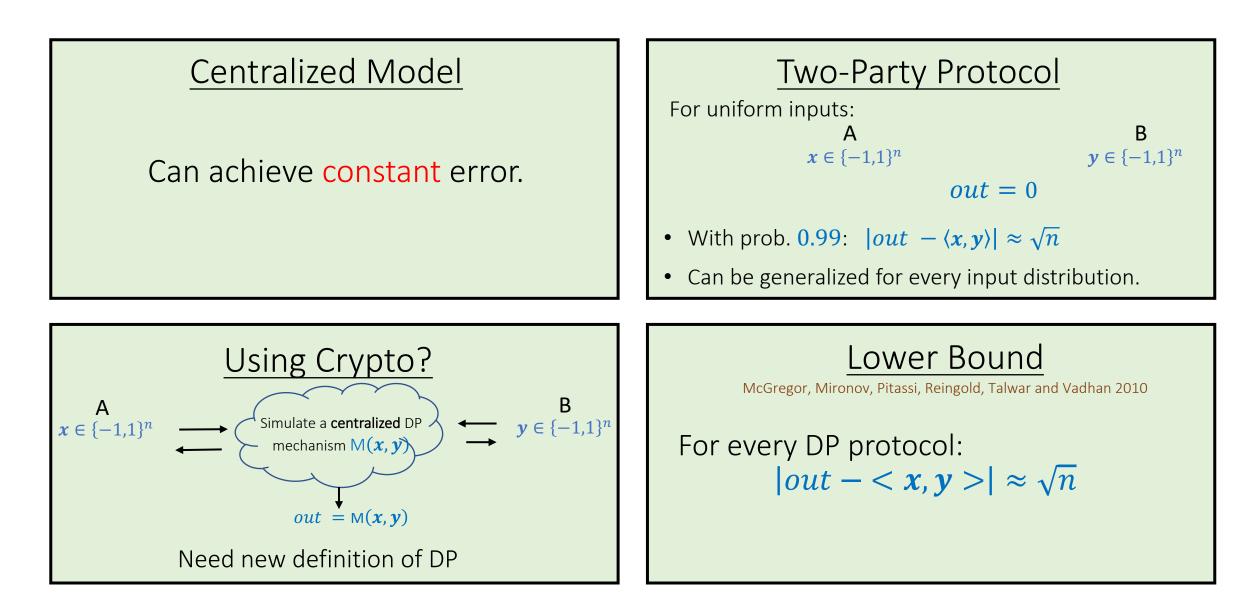
Faculty of Social Sciences

 $\mathbf{y} = (y_1, \dots, y_n)$

Measure Correlation

 $\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$ - measures correlation between databases

DP Inner Product



Computational DP

Beimel, Nissim, Omri 2008 Mironov, Pandey, Reingold, Vadhan 2009

• M is (ε, δ) -DP if:

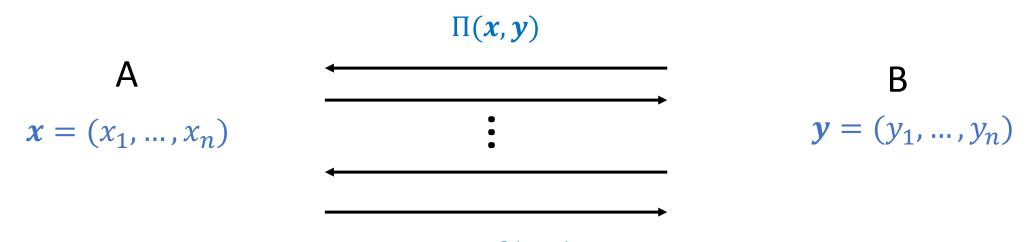
∀ neighboring databases x, x' and ∀ distinguisher D: $\Pr[D(M(x)) = 1] \le e^{\varepsilon} \cdot \Pr[D(M(x')) = 1] + \delta$

• M is (ε, δ) -CDP if:

the above only holds for any PPT D.

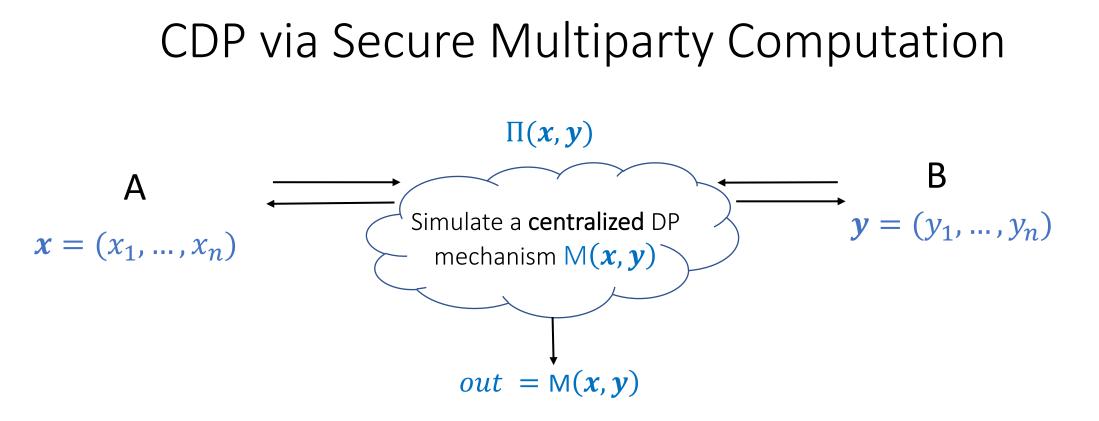
Two-Party CDP

Beimel, Nissim, Omri 2008 Mironov, Pandey, Reingold, Vadhan 2009



 $Out \approx f(\mathbf{x}, \mathbf{y})$

<u>Relaxed Goal</u>: Estimate f(x, y) while preserving (ε, δ) -CDP: $\forall x \forall$ neigh. y, y': $view_A^{\Pi}(x, y) \approx_{\varepsilon, \delta}^c view_A^{\Pi}(x, y')$ (and same for B)



- M is (centralized) (ε, δ) -DP $\implies \Pi$ is (ε, δ) -CDP.
- Secure MPC via Oblivious Transfer (OT).
- For computing IP, take $M(x, y) = \langle x, y \rangle + Lap(2/\varepsilon)$.

The Complexity of Two-Party CDP

Using OT, we can construct very accurate CDP protocols!

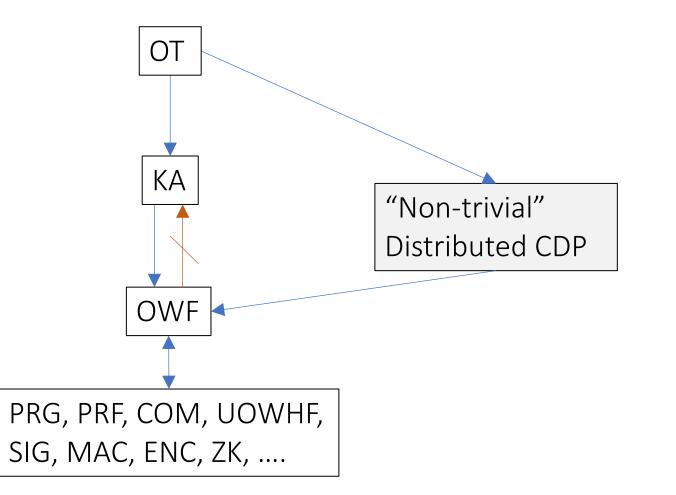
Main Questions:

- Are one-way functions sufficient?
- Is public-key cryptography necessary?
- Do we have to use (heavy) Secure MPC?

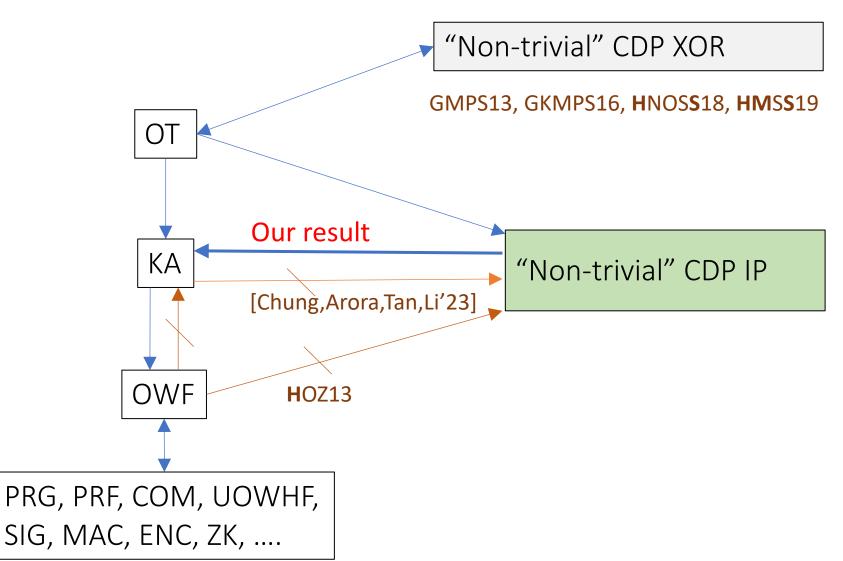
Complexity Hierarchy

"Non-trivial":

Possible in two-party CDP Impossible in two-party DP



Complexity Hierarchy



Our Main Result

<u>Thm 1 (informal)</u>: $(\varepsilon, \delta = 1/n^2)$ -CDP two-party Π that, for some ℓ satisfies $\Pr_{\substack{x,y \leftarrow \{-1,1\}^n \\ out \leftarrow \Pi(x,y)}} [|out - \langle x, y \rangle| < \ell] > e^{\varepsilon} \cdot \ell / \sqrt{n}, \text{ can be used to construct Key Agreement.}$

• For $\varepsilon = O(1)$ and $\ell = \sqrt{n}/c$ (for large enough constant c):

$$\Pr_{\substack{x,y \leftarrow \{-1,1\}^n \\ out \leftarrow \Pi(x,y)}} [|out - \langle x, y \rangle| \le \sqrt{n}/c] \ge 0.01 \implies \text{Key Agreement}$$

≻ Reproves the impossibility result of McGregor et al.

• Tight (up to a constant).

> Protocol that outputs zero is w.p. $\Theta(\ell/\sqrt{n})$ at distance at most ℓ (for every ℓ).

The Information-Theoretic Lower Bound

McGregor, Mironov, Pitassi, Reingold, Talwar, and Vadhan 2010

Let Π be ε -DP, $X, Y \leftarrow \{-1,1\}^n$ and $T \leftarrow \Pi(X, Y)$ (transcript). Then:

1. $X \mid_T$ and $Y \mid_T$ are **independent**.

2. X_i is unpredictable given T, X_{-i} (strong Santha Vazirani Source)

IP is a good extractor for such sources.

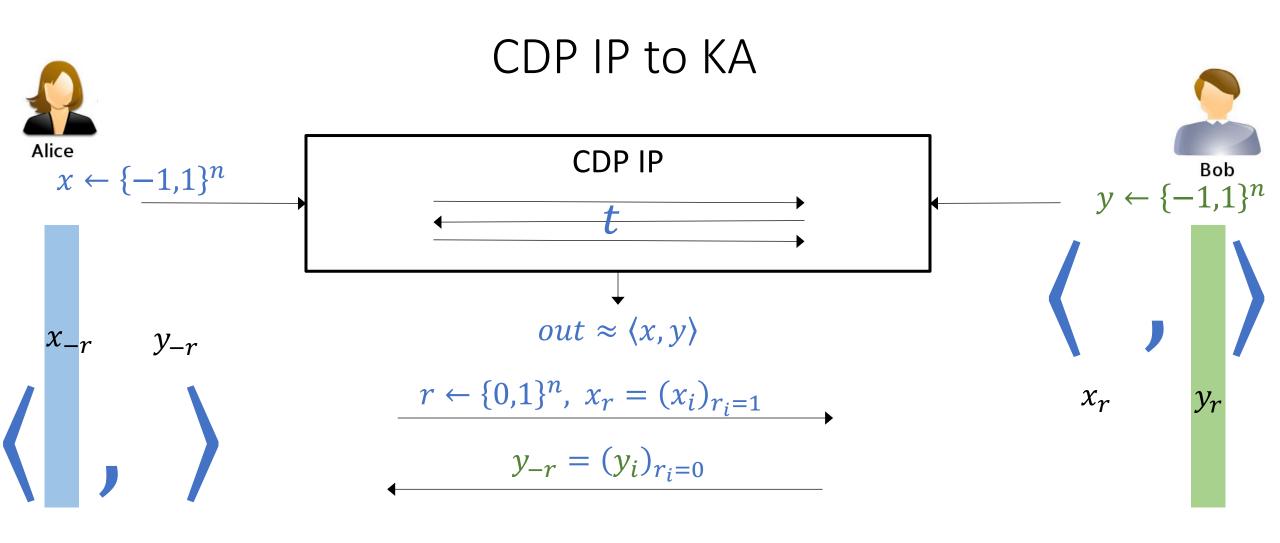
 $\Rightarrow \langle X, Y \rangle |_T$ is almost unifrom modulo \sqrt{n}

Computational Setting

Let Π be ε -CDP, $X, Y \leftarrow \{-1,1\}^n$ and $T \leftarrow \Pi(X, Y)$ (transcript). Then:

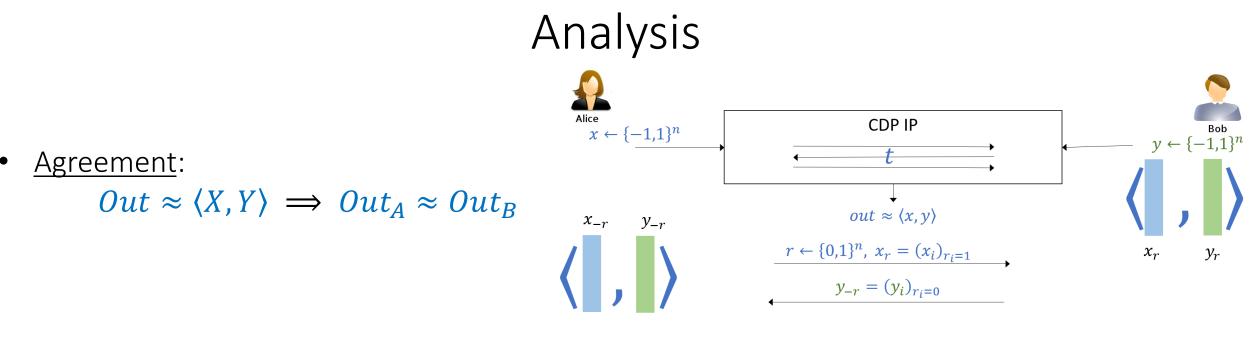
- $X|_T$ and $Y|_T$ are independent, computationally strong SV Sources.
- IP is **not** a good extractor for such sources.
- Indeed, assuming OT, exists ε -CDP Π s.t. $\langle X, Y \rangle |_T$ is predictable (up to $\approx 1/\varepsilon$).
- $X|_T$ and $Y|_T$ are computationally correlated.
- <u>Goal</u>: Exploit the computational correlation into Key Agreement.

Proof Overview



 $out_A = (out - \langle x_{-r}, y_{-r} \rangle)$

 $out_B = \langle x_r, y_r \rangle$



 $out_A = (out - \langle x_{-r}, y_{-r} \rangle)$

 $out_B = \langle x_r, y_r \rangle$

Goal: showing that \forall PPT Eve, Eve (T, R, X_R, Y_{-R}) is far from Out_B .

- Should hold since $(X, Y)|_T$ is highly unpredictable by privacy (computationally strong SV).
 - \succ The proof is not trivial.

Secrecy:

- > Done via a new theorem about *strong SV sources*.
- Simple proof for the case $E[|out \langle x, y \rangle|] \le \frac{\sqrt{n}}{\log^{c}(n)}$.

Seed-dependent condenser for strong SV

<u>Thm 2 (informal)</u>: Let (X, Y) be $e^{-\varepsilon}$ -strong SV. Then whp over $R \leftarrow \{0,1\}^n$: $H_{\infty}(\langle X_R, Y_R \rangle \mid R, X_R, Y_{-R}) \ge \log\left(\frac{\sqrt{n}}{e^{\varepsilon} \cdot \log n}\right)$ Constructive proof.

- High min-entropy conditioned on the seed-dependent leakage (X_R, Y_{-R}) .
- Constructive proof: ∃ PPT Rec and i ∈ [n] such that:
 ∀ PPT E(R, X_R, Y_{-R}) that predicts ⟨X_R, Y_R⟩ ``too well'',
 Rec^E(X_{-i}, Y) reconstructs X_i ``too well''.
 ➢ Applicable for *computational* SV sources.

Conclusions & Open Problems

Non-trivial CDP-IP \Rightarrow Key Agreement

Open Questions:

- Finding a more general characterization that capture more functionalities.
- Determine whether OT is the minimal required assumption for CDP IP.
 - Our result is tight for *DP against external observer*.

Thanks!