
Read-once branching programs as proof lines

Dmitry Itsykson

Ben Gurion University of the Negev

Workshop on Proof Complexity and Meta-Mathematics
March 23, 2023

1 / 14

Semantic proof systems

▶ Let φ =
∧

i∈I Ci be an unsatisfiable CNF formula.
▶ Proof lines: Boolean predicates represented somehow:

▶ Resolution: clauses (x ∨ y ∨ ¬z)
▶ Cutting planes: linear inequalities with integer coefficients x − 2y + z ≥ 2
▶ Th(k): degree k inequalities with integer coefficients 2xy − yzt + x ≥ 3
▶ Res(⊕): disjunctions of linear equalities over F2

(x + y = 1) ∨ (x + z + t = 0) ∨ (z = 1)

▶ Semantic rule: D1,D2
D3

if D1,D2 |= D3.

▶ Semantic refutation of φ: D1,D2, . . . ,Ds such that
▶ Ds ≡ 0
▶ Di either represents a clause of φ or

Dj ,Dk

Di
, where j , k ≤ i .

▶ Length: s. Size:
∑s

i=1 |Di |.

2 / 14

Semantic proof systems

▶ Let φ =
∧

i∈I Ci be an unsatisfiable CNF formula.
▶ Proof lines: Boolean predicates represented somehow:

▶ Resolution: clauses (x ∨ y ∨ ¬z)
▶ Cutting planes: linear inequalities with integer coefficients x − 2y + z ≥ 2
▶ Th(k): degree k inequalities with integer coefficients 2xy − yzt + x ≥ 3
▶ Res(⊕): disjunctions of linear equalities over F2

(x + y = 1) ∨ (x + z + t = 0) ∨ (z = 1)

▶ Semantic rule: D1,D2
D3

if D1,D2 |= D3.

▶ Semantic refutation of φ: D1,D2, . . . ,Ds such that
▶ Ds ≡ 0
▶ Di either represents a clause of φ or

Dj ,Dk

Di
, where j , k ≤ i .

▶ Length: s. Size:
∑s

i=1 |Di |.

2 / 14

Semantic proof systems

▶ Let φ =
∧

i∈I Ci be an unsatisfiable CNF formula.
▶ Proof lines: Boolean predicates represented somehow:

▶ Resolution: clauses (x ∨ y ∨ ¬z)
▶ Cutting planes: linear inequalities with integer coefficients x − 2y + z ≥ 2
▶ Th(k): degree k inequalities with integer coefficients 2xy − yzt + x ≥ 3
▶ Res(⊕): disjunctions of linear equalities over F2

(x + y = 1) ∨ (x + z + t = 0) ∨ (z = 1)

▶ Semantic rule: D1,D2
D3

if D1,D2 |= D3.

▶ Semantic refutation of φ: D1,D2, . . . ,Ds such that
▶ Ds ≡ 0
▶ Di either represents a clause of φ or

Dj ,Dk

Di
, where j , k ≤ i .

▶ Length: s. Size:
∑s

i=1 |Di |.

2 / 14

On lower bounds for semantic proof systems

▶ If proof lines are too strong, there are upper bounds for all formulas:
▶ CNF formulas: every UNSAT CNF has a short refutation.
▶ Semantic PC over reals: every UNSAT 3CNF has a short refutation.

▶ (x ∨ y ∨ z̄) ∧ (x ∨ ȳ ∨ t) ∧ . . .
▶ xy(1− z) + x(1− y)t + · · · = 0, (x2 − x)2 + (y 2 − y)2 + · · · = 0

▶ [Kraj́ıcek, 1995] If proof lines have small deterministic communication complexity,
then CliqueColoring is hard.
▶ Resolution, CP∗

▶ [Beame, Pitassi, Segerlind, 2007] If proof lines have small randomized
communication complexity, then lifted Tseitin formulas are hard for tree-like
refutations.
▶ Tree-like Th(k), tree-like Res(⊕).

3 / 14

On lower bounds for semantic proof systems

▶ If proof lines are too strong, there are upper bounds for all formulas:
▶ CNF formulas: every UNSAT CNF has a short refutation.
▶ Semantic PC over reals: every UNSAT 3CNF has a short refutation.

▶ (x ∨ y ∨ z̄) ∧ (x ∨ ȳ ∨ t) ∧ . . .
▶ xy(1− z) + x(1− y)t + · · · = 0, (x2 − x)2 + (y 2 − y)2 + · · · = 0

▶ [Kraj́ıcek, 1995] If proof lines have small deterministic communication complexity,
then CliqueColoring is hard.
▶ Resolution, CP∗

▶ [Beame, Pitassi, Segerlind, 2007] If proof lines have small randomized
communication complexity, then lifted Tseitin formulas are hard for tree-like
refutations.
▶ Tree-like Th(k), tree-like Res(⊕).

3 / 14

On lower bounds for semantic proof systems

▶ If proof lines are too strong, there are upper bounds for all formulas:
▶ CNF formulas: every UNSAT CNF has a short refutation.
▶ Semantic PC over reals: every UNSAT 3CNF has a short refutation.

▶ (x ∨ y ∨ z̄) ∧ (x ∨ ȳ ∨ t) ∧ . . .
▶ xy(1− z) + x(1− y)t + · · · = 0, (x2 − x)2 + (y 2 − y)2 + · · · = 0

▶ [Kraj́ıcek, 1995] If proof lines have small deterministic communication complexity,
then CliqueColoring is hard.
▶ Resolution, CP∗

▶ [Beame, Pitassi, Segerlind, 2007] If proof lines have small randomized
communication complexity, then lifted Tseitin formulas are hard for tree-like
refutations.
▶ Tree-like Th(k), tree-like Res(⊕).

3 / 14

On lower bounds for semantic proof systems

▶ If proof lines are too strong, there are upper bounds for all formulas:
▶ CNF formulas: every UNSAT CNF has a short refutation.
▶ Semantic PC over reals: every UNSAT 3CNF has a short refutation.

▶ (x ∨ y ∨ z̄) ∧ (x ∨ ȳ ∨ t) ∧ . . .
▶ xy(1− z) + x(1− y)t + · · · = 0, (x2 − x)2 + (y 2 − y)2 + · · · = 0

▶ [Kraj́ıcek, 1995] If proof lines have small deterministic communication complexity,
then CliqueColoring is hard.
▶ Resolution, CP∗

▶ [Beame, Pitassi, Segerlind, 2007] If proof lines have small randomized
communication complexity, then lifted Tseitin formulas are hard for tree-like
refutations.
▶ Tree-like Th(k), tree-like Res(⊕).

3 / 14

Reasoning by decision trees
Prop. Semantic calculus of decision trees is polynomially equivalent to Resolution.

4 / 14

Reasoning by decision trees
Prop. Semantic calculus of decision trees is polynomially equivalent to Resolution.

4 / 14

Reasoning by decision trees
Prop. Semantic calculus of decision trees is polynomially equivalent to Resolution.

4 / 14

Reasoning by decision trees
Prop. Semantic calculus of decision trees is polynomially equivalent to Resolution.

4 / 14

Reasoning by decision trees
Prop. Semantic calculus of decision trees is polynomially equivalent to Resolution.

4 / 14

Reasoning by decision trees
Prop. Semantic calculus of decision trees is polynomially equivalent to Resolution.

4 / 14

Branching programs

x1

x2x2

x3x3

10

1

1

1

0

0

0

1

1

0

0

▶ 1-BP: every path contains different variables.

▶ OBDD: in all paths variables appear in the same
order

▶ There are small OBDD-representations of clauses,
parities and linear inequalities with small
coefficients.

▶ Binary operations for OBDDs in the same order can
be computed in polynomial time.

▶ If partition agrees with the order, then
communication complexity of an OBDD of size S
is at most ⌈log S⌉+ 1.

5 / 14

Branching programs

x1

x2x2

x3x3

10

1

1

1

0

0

0

1

1

0

0

▶ 1-BP: every path contains different variables.

▶ OBDD: in all paths variables appear in the same
order

▶ There are small OBDD-representations of clauses,
parities and linear inequalities with small
coefficients.

▶ Binary operations for OBDDs in the same order can
be computed in polynomial time.

▶ If partition agrees with the order, then
communication complexity of an OBDD of size S
is at most ⌈log S⌉+ 1.

5 / 14

Branching programs

x1

x2x2

x3x3

10

1

1

1

0

0

0

1

1

0

0

▶ 1-BP: every path contains different variables.

▶ OBDD: in all paths variables appear in the same
order

▶ There are small OBDD-representations of clauses,
parities and linear inequalities with small
coefficients.

▶ Binary operations for OBDDs in the same order can
be computed in polynomial time.

▶ If partition agrees with the order, then
communication complexity of an OBDD of size S
is at most ⌈log S⌉+ 1.

5 / 14

Branching programs

x1

x2x2

x3x3

10

1

1

1

0

0

0

1

1

0

0

▶ 1-BP: every path contains different variables.

▶ OBDD: in all paths variables appear in the same
order

▶ There are small OBDD-representations of clauses,
parities and linear inequalities with small
coefficients.

▶ Binary operations for OBDDs in the same order can
be computed in polynomial time.

▶ If partition agrees with the order, then
communication complexity of an OBDD of size S
is at most ⌈log S⌉+ 1.

5 / 14

Branching programs

x1

x2x2

x3x3

10

1

1

1

0

0

0

1

1

0

0

▶ 1-BP: every path contains different variables.

▶ OBDD: in all paths variables appear in the same
order

▶ There are small OBDD-representations of clauses,
parities and linear inequalities with small
coefficients.

▶ Binary operations for OBDDs in the same order can
be computed in polynomial time.

▶ If partition agrees with the order, then
communication complexity of an OBDD of size S
is at most ⌈log S⌉+ 1.

5 / 14

OBDD-proofs

▶ [Atserias, Kolaitis, Vardi, 2004] OBDD-based proof systems.

▶ φ = C1 ∧ C2 ∧ · · · ∧ Ct is unsatisfiable CNF.

▶ Choose order π; every Ci is represented as π-ordered OBDD.
▶ Rules:

▶ Conjunction rule (∧): Dπ
1 ,Dπ

2

(D1∧D2)π

▶ Weakening rule (w): Dπ

Dπ
1
if D |= D1.

▶ Projection rule (∃): Dπ

∃xDπ

▶ Partial case of weakening rule

▶ Reordering rule (r):
D

π1
1

D
π2
2

if Dπ1
1 ≡ Dπ2

2

▶ Goal: to derive a constant false OBDD.

▶ Particular system has its set of rules: OBDD(∧), OBDD(∧,w),...

6 / 14

OBDD-proofs

▶ [Atserias, Kolaitis, Vardi, 2004] OBDD-based proof systems.

▶ φ = C1 ∧ C2 ∧ · · · ∧ Ct is unsatisfiable CNF.

▶ Choose order π; every Ci is represented as π-ordered OBDD.
▶ Rules:

▶ Conjunction rule (∧): Dπ
1 ,Dπ

2

(D1∧D2)π

▶ Weakening rule (w): Dπ

Dπ
1
if D |= D1.

▶ Projection rule (∃): Dπ

∃xDπ

▶ Partial case of weakening rule

▶ Reordering rule (r):
D

π1
1

D
π2
2

if Dπ1
1 ≡ Dπ2

2

▶ Goal: to derive a constant false OBDD.

▶ Particular system has its set of rules: OBDD(∧), OBDD(∧,w),...

6 / 14

OBDD-proofs

▶ [Atserias, Kolaitis, Vardi, 2004] OBDD-based proof systems.

▶ φ = C1 ∧ C2 ∧ · · · ∧ Ct is unsatisfiable CNF.

▶ Choose order π; every Ci is represented as π-ordered OBDD.
▶ Rules:

▶ Conjunction rule (∧): Dπ
1 ,Dπ

2

(D1∧D2)π

▶ Weakening rule (w): Dπ

Dπ
1
if D |= D1.

▶ Projection rule (∃): Dπ

∃xDπ

▶ Partial case of weakening rule

▶ Reordering rule (r):
D

π1
1

D
π2
2

if Dπ1
1 ≡ Dπ2

2

▶ Goal: to derive a constant false OBDD.

▶ Particular system has its set of rules: OBDD(∧), OBDD(∧,w),...

6 / 14

OBDD-proofs

▶ [Atserias, Kolaitis, Vardi, 2004] OBDD-based proof systems.

▶ φ = C1 ∧ C2 ∧ · · · ∧ Ct is unsatisfiable CNF.

▶ Choose order π; every Ci is represented as π-ordered OBDD.
▶ Rules:

▶ Conjunction rule (∧): Dπ
1 ,Dπ

2

(D1∧D2)π

▶ Weakening rule (w): Dπ

Dπ
1
if D |= D1.

▶ Projection rule (∃): Dπ

∃xDπ

▶ Partial case of weakening rule

▶ Reordering rule (r):
D

π1
1

D
π2
2

if Dπ1
1 ≡ Dπ2

2

▶ Goal: to derive a constant false OBDD.

▶ Particular system has its set of rules: OBDD(∧), OBDD(∧,w),...

6 / 14

OBDD-proofs

▶ [Atserias, Kolaitis, Vardi, 2004] OBDD-based proof systems.

▶ φ = C1 ∧ C2 ∧ · · · ∧ Ct is unsatisfiable CNF.

▶ Choose order π; every Ci is represented as π-ordered OBDD.
▶ Rules:

▶ Conjunction rule (∧): Dπ
1 ,Dπ

2

(D1∧D2)π

▶ Weakening rule (w): Dπ

Dπ
1
if D |= D1.

▶ Projection rule (∃): Dπ

∃xDπ

▶ Partial case of weakening rule

▶ Reordering rule (r):
D

π1
1

D
π2
2

if Dπ1
1 ≡ Dπ2

2

▶ Goal: to derive a constant false OBDD.

▶ Particular system has its set of rules: OBDD(∧), OBDD(∧,w),...

6 / 14

OBDD-proofs

▶ [Atserias, Kolaitis, Vardi, 2004] OBDD-based proof systems.

▶ φ = C1 ∧ C2 ∧ · · · ∧ Ct is unsatisfiable CNF.

▶ Choose order π; every Ci is represented as π-ordered OBDD.
▶ Rules:

▶ Conjunction rule (∧): Dπ
1 ,Dπ

2

(D1∧D2)π

▶ Weakening rule (w): Dπ

Dπ
1
if D |= D1.

▶ Projection rule (∃): Dπ

∃xDπ

▶ Partial case of weakening rule

▶ Reordering rule (r):
D

π1
1

D
π2
2

if Dπ1
1 ≡ Dπ2

2

▶ Goal: to derive a constant false OBDD.

▶ Particular system has its set of rules: OBDD(∧), OBDD(∧,w),...

6 / 14

OBDD-proofs

▶ [Atserias, Kolaitis, Vardi, 2004] OBDD-based proof systems.

▶ φ = C1 ∧ C2 ∧ · · · ∧ Ct is unsatisfiable CNF.

▶ Choose order π; every Ci is represented as π-ordered OBDD.
▶ Rules:

▶ Conjunction rule (∧): Dπ
1 ,Dπ

2

(D1∧D2)π

▶ Weakening rule (w): Dπ

Dπ
1
if D |= D1.

▶ Projection rule (∃): Dπ

∃xDπ

▶ Partial case of weakening rule

▶ Reordering rule (r):
D

π1
1

D
π2
2

if Dπ1
1 ≡ Dπ2

2

▶ Goal: to derive a constant false OBDD.

▶ Particular system has its set of rules: OBDD(∧), OBDD(∧,w),...

6 / 14

OBDD(∧,∃)-proofs

▶ OBDD(∧,∃)-proofs
▶ [Atserias, Kolaitis, Vardi, 2004]

▶ Short proofs of unsatisfiable linear systems over F2:

∃x

{
x + y + z = 1

x + t + f = 0
⇐⇒ y + z + t + f = 1.

▶ OBDD(∧,∃) simulates and strictly stronger than resolution:

∃x

{
x ∨ C

¬x ∨ D
⇐⇒ C ∨ D.

▶ [Chen, Zhang 2009] Short proof of the pigeonhole principle

▶ Open question: whether OBDD(∧,∃) simulates CP∗?

7 / 14

OBDD(∧,∃)-proofs

▶ OBDD(∧,∃)-proofs
▶ [Atserias, Kolaitis, Vardi, 2004]

▶ Short proofs of unsatisfiable linear systems over F2:

∃x

{
x + y + z = 1

x + t + f = 0
⇐⇒ y + z + t + f = 1.

▶ OBDD(∧,∃) simulates and strictly stronger than resolution:

∃x

{
x ∨ C

¬x ∨ D
⇐⇒ C ∨ D.

▶ [Chen, Zhang 2009] Short proof of the pigeonhole principle

▶ Open question: whether OBDD(∧,∃) simulates CP∗?

7 / 14

OBDD(∧,∃)-proofs

▶ OBDD(∧,∃)-proofs
▶ [Atserias, Kolaitis, Vardi, 2004]

▶ Short proofs of unsatisfiable linear systems over F2:

∃x

{
x + y + z = 1

x + t + f = 0
⇐⇒ y + z + t + f = 1.

▶ OBDD(∧,∃) simulates and strictly stronger than resolution:

∃x

{
x ∨ C

¬x ∨ D
⇐⇒ C ∨ D.

▶ [Chen, Zhang 2009] Short proof of the pigeonhole principle

▶ Open question: whether OBDD(∧,∃) simulates CP∗?

7 / 14

OBDD(∧, weakening)-proofs
▶ [Atserias, Kolaitis, Vardi, 2004] OBDD(∧,w) simulates CP∗

▶ [Buss, I., Knop, Sokolov, 2018] OBDD(∧,w) has short proofs of Clique-Coloring
principle.

▶ [Atserias, Kolaitis, Vardi, 2004] There is an order π s.t. all π −OBDD(∧,w)
proofs of Clique-Coloring are of exp. size.

▶ [Krajicek, 2008] 2n
Ω(1)

-lower bound for dag-like OBDD(∧,w)-proofs:
▶ φ(x) is a formula hard for one order π;
▶ K(φ) = (σ encodes a permutation) ∧ φ(σ(x));

▶ [Segerlind, 2008]
▶ Orification: φ(x1, . . . , xn) 7→ φ∨m = φ(

∨m
i=1 y1,i , . . . ,

∨m
i=1 yn,i).

▶ S(φ) =
∧

σ∈Π ((z encodes σ) → φ∨m(σ(y))), where Π is a small family of
2-independent permutations.

▶ OBDD(∧,w) does not simulate Res(O(log n)).

▶ [Buss, I., Knop, Sokolov, 2018] Reordering rule makes proof systems stronger.
▶ S(Clique-Coloring) separates OBDD(∧,w, r) and OBDD(∧,w).

8 / 14

OBDD(∧, weakening)-proofs
▶ [Atserias, Kolaitis, Vardi, 2004] OBDD(∧,w) simulates CP∗

▶ [Buss, I., Knop, Sokolov, 2018] OBDD(∧,w) has short proofs of Clique-Coloring
principle.

▶ [Atserias, Kolaitis, Vardi, 2004] There is an order π s.t. all π −OBDD(∧,w)
proofs of Clique-Coloring are of exp. size.

▶ [Krajicek, 2008] 2n
Ω(1)

-lower bound for dag-like OBDD(∧,w)-proofs:
▶ φ(x) is a formula hard for one order π;
▶ K(φ) = (σ encodes a permutation) ∧ φ(σ(x));

▶ [Segerlind, 2008]
▶ Orification: φ(x1, . . . , xn) 7→ φ∨m = φ(

∨m
i=1 y1,i , . . . ,

∨m
i=1 yn,i).

▶ S(φ) =
∧

σ∈Π ((z encodes σ) → φ∨m(σ(y))), where Π is a small family of
2-independent permutations.

▶ OBDD(∧,w) does not simulate Res(O(log n)).

▶ [Buss, I., Knop, Sokolov, 2018] Reordering rule makes proof systems stronger.
▶ S(Clique-Coloring) separates OBDD(∧,w, r) and OBDD(∧,w).

8 / 14

OBDD(∧, weakening)-proofs
▶ [Atserias, Kolaitis, Vardi, 2004] OBDD(∧,w) simulates CP∗

▶ [Buss, I., Knop, Sokolov, 2018] OBDD(∧,w) has short proofs of Clique-Coloring
principle.

▶ [Atserias, Kolaitis, Vardi, 2004] There is an order π s.t. all π −OBDD(∧,w)
proofs of Clique-Coloring are of exp. size.

▶ [Krajicek, 2008] 2n
Ω(1)

-lower bound for dag-like OBDD(∧,w)-proofs:
▶ φ(x) is a formula hard for one order π;
▶ K(φ) = (σ encodes a permutation) ∧ φ(σ(x));

▶ [Segerlind, 2008]
▶ Orification: φ(x1, . . . , xn) 7→ φ∨m = φ(

∨m
i=1 y1,i , . . . ,

∨m
i=1 yn,i).

▶ S(φ) =
∧

σ∈Π ((z encodes σ) → φ∨m(σ(y))), where Π is a small family of
2-independent permutations.

▶ OBDD(∧,w) does not simulate Res(O(log n)).

▶ [Buss, I., Knop, Sokolov, 2018] Reordering rule makes proof systems stronger.
▶ S(Clique-Coloring) separates OBDD(∧,w, r) and OBDD(∧,w).

8 / 14

OBDD(∧, weakening)-proofs
▶ [Atserias, Kolaitis, Vardi, 2004] OBDD(∧,w) simulates CP∗

▶ [Buss, I., Knop, Sokolov, 2018] OBDD(∧,w) has short proofs of Clique-Coloring
principle.

▶ [Atserias, Kolaitis, Vardi, 2004] There is an order π s.t. all π −OBDD(∧,w)
proofs of Clique-Coloring are of exp. size.

▶ [Krajicek, 2008] 2n
Ω(1)

-lower bound for dag-like OBDD(∧,w)-proofs:
▶ φ(x) is a formula hard for one order π;
▶ K(φ) = (σ encodes a permutation) ∧ φ(σ(x));

▶ [Segerlind, 2008]
▶ Orification: φ(x1, . . . , xn) 7→ φ∨m = φ(

∨m
i=1 y1,i , . . . ,

∨m
i=1 yn,i).

▶ S(φ) =
∧

σ∈Π ((z encodes σ) → φ∨m(σ(y))), where Π is a small family of
2-independent permutations.

▶ OBDD(∧,w) does not simulate Res(O(log n)).

▶ [Buss, I., Knop, Sokolov, 2018] Reordering rule makes proof systems stronger.
▶ S(Clique-Coloring) separates OBDD(∧,w, r) and OBDD(∧,w).

8 / 14

OBDD(∧, weakening)-proofs
▶ [Atserias, Kolaitis, Vardi, 2004] OBDD(∧,w) simulates CP∗

▶ [Buss, I., Knop, Sokolov, 2018] OBDD(∧,w) has short proofs of Clique-Coloring
principle.

▶ [Atserias, Kolaitis, Vardi, 2004] There is an order π s.t. all π −OBDD(∧,w)
proofs of Clique-Coloring are of exp. size.

▶ [Krajicek, 2008] 2n
Ω(1)

-lower bound for dag-like OBDD(∧,w)-proofs:
▶ φ(x) is a formula hard for one order π;
▶ K(φ) = (σ encodes a permutation) ∧ φ(σ(x));

▶ [Segerlind, 2008]
▶ Orification: φ(x1, . . . , xn) 7→ φ∨m = φ(

∨m
i=1 y1,i , . . . ,

∨m
i=1 yn,i).

▶ S(φ) =
∧

σ∈Π ((z encodes σ) → φ∨m(σ(y))), where Π is a small family of
2-independent permutations.

▶ OBDD(∧,w) does not simulate Res(O(log n)).

▶ [Buss, I., Knop, Sokolov, 2018] Reordering rule makes proof systems stronger.
▶ S(Clique-Coloring) separates OBDD(∧,w, r) and OBDD(∧,w).

8 / 14

OBDD picture

ResCP∗

OBDD(∧)

OBDD(∧, r)

OBDD(∧,∃)OBDD(∧,w)

OBDD(∧,∃, r)OBDD(∧,w, r)

▶ If there is a path consisting of solid (straight) edges from Π1 and Π2, then Π1

simulates Π2.

▶ If there is a path from Π1 to Π2, but every such path contains a dotted (arched)
edge, then it is open, whether Π1 simulates Π2.

▶ If there are no paths from Π1 to Π2 at all, then Π1 does not simulate Π2.

9 / 14

OBDD picture

ResCP∗

OBDD(∧)

OBDD(∧, r)

OBDD(∧,∃)OBDD(∧,w)

OBDD(∧,∃, r)OBDD(∧,w, r)

▶ If there is a path consisting of solid (straight) edges from Π1 and Π2, then Π1

simulates Π2.

▶ If there is a path from Π1 to Π2, but every such path contains a dotted (arched)
edge, then it is open, whether Π1 simulates Π2.

▶ If there are no paths from Π1 to Π2 at all, then Π1 does not simulate Π2.

9 / 14

Hardness of automation

Theorem. [I., Riazanov, 2022] There exists a polytime function R mapping CNF
formulas to CNF formulas: for any 3-CNF ϕ with n variables

▶ if ϕ ∈ SAT, then R(ϕ) has a resolution refutation of size at most nα;

▶ if ϕ ∈ UNSAT, then any OBDD(∧,w) refutation of R(ϕ) has size 2Ω(n).

Corollary. It is NP-hard to automate OBDD(∧,w) and OBDD(∧, ∃).
Proof strategy:

1. Prove for one particular variable order.
▶ Lifting from resolution blockwidth (Atserias, Muller 2019) to dag-like

communication protocols with o(n) participants in the number-in-the-hand model.
Similar theorem for non-automatability of Cutting Planes and n + 1 participants was
proved by [Göös, Koroth, Mertz, Pitassi, 2020].

2. Apply Segerlind’s transformation.

10 / 14

Hardness of automation

Theorem. [I., Riazanov, 2022] There exists a polytime function R mapping CNF
formulas to CNF formulas: for any 3-CNF ϕ with n variables

▶ if ϕ ∈ SAT, then R(ϕ) has a resolution refutation of size at most nα;

▶ if ϕ ∈ UNSAT, then any OBDD(∧,w) refutation of R(ϕ) has size 2Ω(n).

Corollary. It is NP-hard to automate OBDD(∧,w) and OBDD(∧, ∃).
Proof strategy:

1. Prove for one particular variable order.
▶ Lifting from resolution blockwidth (Atserias, Muller 2019) to dag-like

communication protocols with o(n) participants in the number-in-the-hand model.
Similar theorem for non-automatability of Cutting Planes and n + 1 participants was
proved by [Göös, Koroth, Mertz, Pitassi, 2020].

2. Apply Segerlind’s transformation.

10 / 14

Hardness of automation

Theorem. [I., Riazanov, 2022] There exists a polytime function R mapping CNF
formulas to CNF formulas: for any 3-CNF ϕ with n variables

▶ if ϕ ∈ SAT, then R(ϕ) has a resolution refutation of size at most nα;

▶ if ϕ ∈ UNSAT, then any OBDD(∧,w) refutation of R(ϕ) has size 2Ω(n).

Corollary. It is NP-hard to automate OBDD(∧,w) and OBDD(∧, ∃).
Proof strategy:

1. Prove for one particular variable order.
▶ Lifting from resolution blockwidth (Atserias, Muller 2019) to dag-like

communication protocols with o(n) participants in the number-in-the-hand model.
Similar theorem for non-automatability of Cutting Planes and n + 1 participants was
proved by [Göös, Koroth, Mertz, Pitassi, 2020].

2. Apply Segerlind’s transformation.

10 / 14

1-BP(∧)
▶ 1-BP(∧) has short refutations for formulas based on bipartite graphs: PHP,

Tseitin formulas on bipartite graphs, etc.
▶ [Buss, I., Knop, Riazanov, Sokolov, 2021] Lower bound for 1-BP(∧):

▶ PM(G): graph G (V ,E) has a perfect matching:
▶ Every v ∈ V is covered:

∨
v∈e xe

▶ v is not covered twice.

▶ Theorem. If G is good enough expander, then PM(G) and Tseitin(G) require
1-BP(∧) of size 2Ω(n).

▶ Proof idea: Consider a moment, when 1-BP contains θ(|V |) clauses of the first
type, then prove that the size of 1-BP representation is exponential.

▶ Lower bound also holds for 1-NBP(∧).
▶ Extension rule can not decrease the size of 1-NBP(∧) proof.
▶ φ ∧ (extension axioms) is easy for tree-like Resolution;

▶ 1-NBP(∧) does not simulate tree-like Resolution.

▶ Exponential lower bound for 1-NBP(∧, ∃cn).

x1

∨x2

x4x3

10

1

1

0

0

0

1

1

0

11 / 14

1-BP(∧)
▶ 1-BP(∧) has short refutations for formulas based on bipartite graphs: PHP,

Tseitin formulas on bipartite graphs, etc.
▶ [Buss, I., Knop, Riazanov, Sokolov, 2021] Lower bound for 1-BP(∧):

▶ PM(G): graph G (V ,E) has a perfect matching:
▶ Every v ∈ V is covered:

∨
v∈e xe

▶ v is not covered twice.

▶ Theorem. If G is good enough expander, then PM(G) and Tseitin(G) require
1-BP(∧) of size 2Ω(n).

▶ Proof idea: Consider a moment, when 1-BP contains θ(|V |) clauses of the first
type, then prove that the size of 1-BP representation is exponential.

▶ Lower bound also holds for 1-NBP(∧).
▶ Extension rule can not decrease the size of 1-NBP(∧) proof.
▶ φ ∧ (extension axioms) is easy for tree-like Resolution;

▶ 1-NBP(∧) does not simulate tree-like Resolution.

▶ Exponential lower bound for 1-NBP(∧, ∃cn).

x1

∨x2

x4x3

10

1

1

0

0

0

1

1

0

11 / 14

1-BP(∧)
▶ 1-BP(∧) has short refutations for formulas based on bipartite graphs: PHP,

Tseitin formulas on bipartite graphs, etc.
▶ [Buss, I., Knop, Riazanov, Sokolov, 2021] Lower bound for 1-BP(∧):

▶ PM(G): graph G (V ,E) has a perfect matching:
▶ Every v ∈ V is covered:

∨
v∈e xe

▶ v is not covered twice.

▶ Theorem. If G is good enough expander, then PM(G) and Tseitin(G) require
1-BP(∧) of size 2Ω(n).

▶ Proof idea: Consider a moment, when 1-BP contains θ(|V |) clauses of the first
type, then prove that the size of 1-BP representation is exponential.

▶ Lower bound also holds for 1-NBP(∧).
▶ Extension rule can not decrease the size of 1-NBP(∧) proof.
▶ φ ∧ (extension axioms) is easy for tree-like Resolution;

▶ 1-NBP(∧) does not simulate tree-like Resolution.

▶ Exponential lower bound for 1-NBP(∧, ∃cn).

x1

∨x2

x4x3

10

1

1

0

0

0

1

1

0

11 / 14

1-BP(∧)
▶ 1-BP(∧) has short refutations for formulas based on bipartite graphs: PHP,

Tseitin formulas on bipartite graphs, etc.
▶ [Buss, I., Knop, Riazanov, Sokolov, 2021] Lower bound for 1-BP(∧):

▶ PM(G): graph G (V ,E) has a perfect matching:
▶ Every v ∈ V is covered:

∨
v∈e xe

▶ v is not covered twice.

▶ Theorem. If G is good enough expander, then PM(G) and Tseitin(G) require
1-BP(∧) of size 2Ω(n).

▶ Proof idea: Consider a moment, when 1-BP contains θ(|V |) clauses of the first
type, then prove that the size of 1-BP representation is exponential.

▶ Lower bound also holds for 1-NBP(∧).
▶ Extension rule can not decrease the size of 1-NBP(∧) proof.
▶ φ ∧ (extension axioms) is easy for tree-like Resolution;

▶ 1-NBP(∧) does not simulate tree-like Resolution.

▶ Exponential lower bound for 1-NBP(∧, ∃cn).

x1

∨x2

x4x3

10

1

1

0

0

0

1

1

0

11 / 14

1-BP(∧)
▶ 1-BP(∧) has short refutations for formulas based on bipartite graphs: PHP,

Tseitin formulas on bipartite graphs, etc.
▶ [Buss, I., Knop, Riazanov, Sokolov, 2021] Lower bound for 1-BP(∧):

▶ PM(G): graph G (V ,E) has a perfect matching:
▶ Every v ∈ V is covered:

∨
v∈e xe

▶ v is not covered twice.

▶ Theorem. If G is good enough expander, then PM(G) and Tseitin(G) require
1-BP(∧) of size 2Ω(n).

▶ Proof idea: Consider a moment, when 1-BP contains θ(|V |) clauses of the first
type, then prove that the size of 1-BP representation is exponential.

▶ Lower bound also holds for 1-NBP(∧).
▶ Extension rule can not decrease the size of 1-NBP(∧) proof.
▶ φ ∧ (extension axioms) is easy for tree-like Resolution;

▶ 1-NBP(∧) does not simulate tree-like Resolution.

▶ Exponential lower bound for 1-NBP(∧, ∃cn).

x1

∨x2

x4x3

10

1

1

0

0

0

1

1

0

11 / 14

1-BP(∧)
▶ 1-BP(∧) has short refutations for formulas based on bipartite graphs: PHP,

Tseitin formulas on bipartite graphs, etc.
▶ [Buss, I., Knop, Riazanov, Sokolov, 2021] Lower bound for 1-BP(∧):

▶ PM(G): graph G (V ,E) has a perfect matching:
▶ Every v ∈ V is covered:

∨
v∈e xe

▶ v is not covered twice.

▶ Theorem. If G is good enough expander, then PM(G) and Tseitin(G) require
1-BP(∧) of size 2Ω(n).

▶ Proof idea: Consider a moment, when 1-BP contains θ(|V |) clauses of the first
type, then prove that the size of 1-BP representation is exponential.

▶ Lower bound also holds for 1-NBP(∧).
▶ Extension rule can not decrease the size of 1-NBP(∧) proof.
▶ φ ∧ (extension axioms) is easy for tree-like Resolution;

▶ 1-NBP(∧) does not simulate tree-like Resolution.

▶ Exponential lower bound for 1-NBP(∧, ∃cn).

x1

∨x2

x4x3

10

1

1

0

0

0

1

1

0

11 / 14

OBDD-based SAT algorithms

Input: CNF formula ϕ

1. Choose order π, Dπ. Initially D ≡ 1.

2. S := {clauses of ϕ}.
3. While S ̸= ∅ apply the following operations:

▶ Conjunction (∧): Choose C ∈ S ; S := S − C ; Dπ := Dπ ∧ C
▶ Projection (∃): If x does not appear in S , then Dπ := (∃xD)π

▶ Reordering (r): Choose π′ and Fπ′
such that F ≡ D; π := π′ and D := F .

4. If S = ∅ then report whether D is satisfiable or not.

Running time is polynomially connected with the size of the largest D.
▶ (Aguirre, Vardi 2001), (Pan, Vardi 2005). SAT-solving by symbolic quantifier

elimination: OBDD(∧, ∃) algorithms.
▶ Easy formulas: Tseitin formulas, pigeonhole principle.
▶ Hard formulas: formulas that are hard for OBDD(∧,w)

12 / 14

OBDD-based SAT algorithms

Input: CNF formula ϕ

1. Choose order π, Dπ. Initially D ≡ 1.

2. S := {clauses of ϕ}.
3. While S ̸= ∅ apply the following operations:

▶ Conjunction (∧): Choose C ∈ S ; S := S − C ; Dπ := Dπ ∧ C
▶ Projection (∃): If x does not appear in S , then Dπ := (∃xD)π

▶ Reordering (r): Choose π′ and Fπ′
such that F ≡ D; π := π′ and D := F .

4. If S = ∅ then report whether D is satisfiable or not.

Running time is polynomially connected with the size of the largest D.
▶ (Aguirre, Vardi 2001), (Pan, Vardi 2005). SAT-solving by symbolic quantifier

elimination: OBDD(∧, ∃) algorithms.
▶ Easy formulas: Tseitin formulas, pigeonhole principle.
▶ Hard formulas: formulas that are hard for OBDD(∧,w)

12 / 14

OBDD-based SAT algorithms

Input: CNF formula ϕ

1. Choose order π, Dπ. Initially D ≡ 1.

2. S := {clauses of ϕ}.
3. While S ̸= ∅ apply the following operations:

▶ Conjunction (∧): Choose C ∈ S ; S := S − C ; Dπ := Dπ ∧ C
▶ Projection (∃): If x does not appear in S , then Dπ := (∃xD)π

▶ Reordering (r): Choose π′ and Fπ′
such that F ≡ D; π := π′ and D := F .

4. If S = ∅ then report whether D is satisfiable or not.

Running time is polynomially connected with the size of the largest D.
▶ (Aguirre, Vardi 2001), (Pan, Vardi 2005). SAT-solving by symbolic quantifier

elimination: OBDD(∧, ∃) algorithms.
▶ Easy formulas: Tseitin formulas, pigeonhole principle.
▶ Hard formulas: formulas that are hard for OBDD(∧,w)

12 / 14

OBDD-based SAT algorithms

Input: CNF formula ϕ

1. Choose order π, Dπ. Initially D ≡ 1.

2. S := {clauses of ϕ}.
3. While S ̸= ∅ apply the following operations:

▶ Conjunction (∧): Choose C ∈ S ; S := S − C ; Dπ := Dπ ∧ C
▶ Projection (∃): If x does not appear in S , then Dπ := (∃xD)π

▶ Reordering (r): Choose π′ and Fπ′
such that F ≡ D; π := π′ and D := F .

4. If S = ∅ then report whether D is satisfiable or not.

Running time is polynomially connected with the size of the largest D.
▶ (Aguirre, Vardi 2001), (Pan, Vardi 2005). SAT-solving by symbolic quantifier

elimination: OBDD(∧, ∃) algorithms.
▶ Easy formulas: Tseitin formulas, pigeonhole principle.
▶ Hard formulas: formulas that are hard for OBDD(∧,w)

12 / 14

OBDD-based SAT algorithms

Input: CNF formula ϕ

1. Choose order π, Dπ. Initially D ≡ 1.

2. S := {clauses of ϕ}.
3. While S ̸= ∅ apply the following operations:

▶ Conjunction (∧): Choose C ∈ S ; S := S − C ; Dπ := Dπ ∧ C
▶ Projection (∃): If x does not appear in S , then Dπ := (∃xD)π

▶ Reordering (r): Choose π′ and Fπ′
such that F ≡ D; π := π′ and D := F .

4. If S = ∅ then report whether D is satisfiable or not.

Running time is polynomially connected with the size of the largest D.
▶ (Aguirre, Vardi 2001), (Pan, Vardi 2005). SAT-solving by symbolic quantifier

elimination: OBDD(∧, ∃) algorithms.
▶ Easy formulas: Tseitin formulas, pigeonhole principle.
▶ Hard formulas: formulas that are hard for OBDD(∧,w)

12 / 14

OBDD-based SAT algorithms

Input: CNF formula ϕ

1. Choose order π, Dπ. Initially D ≡ 1.

2. S := {clauses of ϕ}.
3. While S ̸= ∅ apply the following operations:

▶ Conjunction (∧): Choose C ∈ S ; S := S − C ; Dπ := Dπ ∧ C
▶ Projection (∃): If x does not appear in S , then Dπ := (∃xD)π

▶ Reordering (r): Choose π′ and Fπ′
such that F ≡ D; π := π′ and D := F .

4. If S = ∅ then report whether D is satisfiable or not.

Running time is polynomially connected with the size of the largest D.
▶ (Aguirre, Vardi 2001), (Pan, Vardi 2005). SAT-solving by symbolic quantifier

elimination: OBDD(∧, ∃) algorithms.
▶ Easy formulas: Tseitin formulas, pigeonhole principle.
▶ Hard formulas: formulas that are hard for OBDD(∧,w)

12 / 14

OBDD-based SAT algorithms

Input: CNF formula ϕ

1. Choose order π, Dπ. Initially D ≡ 1.

2. S := {clauses of ϕ}.
3. While S ̸= ∅ apply the following operations:

▶ Conjunction (∧): Choose C ∈ S ; S := S − C ; Dπ := Dπ ∧ C
▶ Projection (∃): If x does not appear in S , then Dπ := (∃xD)π

▶ Reordering (r): Choose π′ and Fπ′
such that F ≡ D; π := π′ and D := F .

4. If S = ∅ then report whether D is satisfiable or not.

Running time is polynomially connected with the size of the largest D.
▶ (Aguirre, Vardi 2001), (Pan, Vardi 2005). SAT-solving by symbolic quantifier

elimination: OBDD(∧,∃) algorithms.
▶ Easy formulas: Tseitin formulas, pigeonhole principle.
▶ Hard formulas: formulas that are hard for OBDD(∧,w)

12 / 14

OBDD-based SAT algorithms

Input: CNF formula ϕ

1. Choose order π, Dπ. Initially D ≡ 1.

2. S := {clauses of ϕ}.
3. While S ̸= ∅ apply the following operations:

▶ Conjunction (∧): Choose C ∈ S ; S := S − C ; Dπ := Dπ ∧ C
▶ Projection (∃): If x does not appear in S , then Dπ := (∃xD)π

▶ Reordering (r): Choose π′ and Fπ′
such that F ≡ D; π := π′ and D := F .

4. If S = ∅ then report whether D is satisfiable or not.

Running time is polynomially connected with the size of the largest D.
▶ (Aguirre, Vardi 2001), (Pan, Vardi 2005). SAT-solving by symbolic quantifier

elimination: OBDD(∧,∃) algorithms.
▶ Easy formulas: Tseitin formulas, pigeonhole principle.
▶ Hard formulas: formulas that are hard for OBDD(∧,w)

12 / 14

Hard formulas for 1-NBP(∧,∃) SAT algorithms

▶ [Itsykson et al, 2017] Hard satisfiable formulas:
▶ C ⊆ {0, 1}n is a linear code with a large distance and its parity check matrix has

O(1) ones in every row and some expansion property.
▶ Formula encodes that x ∈ C .

▶ [I., 2021] Hard unsatisfiable formulas:
▶ Weak point: to apply projection on x we have to download all clauses that contain

x . Adding extra clauses can make a formula harder.
▶ Hard formulas based on tradeoff: either we do not use projection rule and have to

solve hard for 1-NBP(∧) formula or we have to download too many clauses and
simulate work of 1-NBP(∧,∃)-algorithm on hard satisfiable formulas.

▶ 1-NBP(∧,∃)-algorithms do not simulate tree-like Resolution.

▶ [Ovcharov, 2022] BPHP2ℓ+1
2ℓ

are hard for OBDD(∧,∃, r) algorithms.

13 / 14

Hard formulas for 1-NBP(∧,∃) SAT algorithms

▶ [Itsykson et al, 2017] Hard satisfiable formulas:
▶ C ⊆ {0, 1}n is a linear code with a large distance and its parity check matrix has

O(1) ones in every row and some expansion property.
▶ Formula encodes that x ∈ C .

▶ [I., 2021] Hard unsatisfiable formulas:
▶ Weak point: to apply projection on x we have to download all clauses that contain

x . Adding extra clauses can make a formula harder.
▶ Hard formulas based on tradeoff: either we do not use projection rule and have to

solve hard for 1-NBP(∧) formula or we have to download too many clauses and
simulate work of 1-NBP(∧,∃)-algorithm on hard satisfiable formulas.

▶ 1-NBP(∧,∃)-algorithms do not simulate tree-like Resolution.

▶ [Ovcharov, 2022] BPHP2ℓ+1
2ℓ

are hard for OBDD(∧,∃, r) algorithms.

13 / 14

Open questions

1. Prove natural lower bound for OBDD(∧,w). Hard candidate: binary pigeonhole
principle.

2. Separate OBDD(∧,∃) and OBDD(∧,w). Separation candidate: Clique Coloring
principle.

3. Prove lower bound for OBDD(∧,w, r).
4. Does AC0-Frege simulate OBDD(∧)? Does resolution quasi-polynomially simulate

OBDD(∧)?
5. Separate dag-like and tree-like OBDD(∧).
6. Prove that random 3CNFs are hard for OBDD(∧).
7. Prove superpolynomial lower bound for 2-BP(∧)
8. Is OBDD(∧) automatable?

14 / 14

Open questions

1. Prove natural lower bound for OBDD(∧,w). Hard candidate: binary pigeonhole
principle.

2. Separate OBDD(∧,∃) and OBDD(∧,w). Separation candidate: Clique Coloring
principle.

3. Prove lower bound for OBDD(∧,w, r).
4. Does AC0-Frege simulate OBDD(∧)? Does resolution quasi-polynomially simulate

OBDD(∧)?
5. Separate dag-like and tree-like OBDD(∧).
6. Prove that random 3CNFs are hard for OBDD(∧).
7. Prove superpolynomial lower bound for 2-BP(∧)
8. Is OBDD(∧) automatable?

14 / 14

Open questions

1. Prove natural lower bound for OBDD(∧,w). Hard candidate: binary pigeonhole
principle.

2. Separate OBDD(∧,∃) and OBDD(∧,w). Separation candidate: Clique Coloring
principle.

3. Prove lower bound for OBDD(∧,w, r).
4. Does AC0-Frege simulate OBDD(∧)? Does resolution quasi-polynomially simulate

OBDD(∧)?
5. Separate dag-like and tree-like OBDD(∧).
6. Prove that random 3CNFs are hard for OBDD(∧).
7. Prove superpolynomial lower bound for 2-BP(∧)
8. Is OBDD(∧) automatable?

14 / 14

Open questions

1. Prove natural lower bound for OBDD(∧,w). Hard candidate: binary pigeonhole
principle.

2. Separate OBDD(∧,∃) and OBDD(∧,w). Separation candidate: Clique Coloring
principle.

3. Prove lower bound for OBDD(∧,w, r).
4. Does AC0-Frege simulate OBDD(∧)? Does resolution quasi-polynomially simulate

OBDD(∧)?
5. Separate dag-like and tree-like OBDD(∧).
6. Prove that random 3CNFs are hard for OBDD(∧).
7. Prove superpolynomial lower bound for 2-BP(∧)
8. Is OBDD(∧) automatable?

14 / 14

Open questions

1. Prove natural lower bound for OBDD(∧,w). Hard candidate: binary pigeonhole
principle.

2. Separate OBDD(∧,∃) and OBDD(∧,w). Separation candidate: Clique Coloring
principle.

3. Prove lower bound for OBDD(∧,w, r).
4. Does AC0-Frege simulate OBDD(∧)? Does resolution quasi-polynomially simulate

OBDD(∧)?
5. Separate dag-like and tree-like OBDD(∧).
6. Prove that random 3CNFs are hard for OBDD(∧).
7. Prove superpolynomial lower bound for 2-BP(∧)
8. Is OBDD(∧) automatable?

14 / 14

Open questions

1. Prove natural lower bound for OBDD(∧,w). Hard candidate: binary pigeonhole
principle.

2. Separate OBDD(∧,∃) and OBDD(∧,w). Separation candidate: Clique Coloring
principle.

3. Prove lower bound for OBDD(∧,w, r).
4. Does AC0-Frege simulate OBDD(∧)? Does resolution quasi-polynomially simulate

OBDD(∧)?
5. Separate dag-like and tree-like OBDD(∧).
6. Prove that random 3CNFs are hard for OBDD(∧).
7. Prove superpolynomial lower bound for 2-BP(∧)
8. Is OBDD(∧) automatable?

14 / 14

Open questions

1. Prove natural lower bound for OBDD(∧,w). Hard candidate: binary pigeonhole
principle.

2. Separate OBDD(∧,∃) and OBDD(∧,w). Separation candidate: Clique Coloring
principle.

3. Prove lower bound for OBDD(∧,w, r).
4. Does AC0-Frege simulate OBDD(∧)? Does resolution quasi-polynomially simulate

OBDD(∧)?
5. Separate dag-like and tree-like OBDD(∧).
6. Prove that random 3CNFs are hard for OBDD(∧).
7. Prove superpolynomial lower bound for 2-BP(∧)
8. Is OBDD(∧) automatable?

14 / 14

Open questions

1. Prove natural lower bound for OBDD(∧,w). Hard candidate: binary pigeonhole
principle.

2. Separate OBDD(∧,∃) and OBDD(∧,w). Separation candidate: Clique Coloring
principle.

3. Prove lower bound for OBDD(∧,w, r).
4. Does AC0-Frege simulate OBDD(∧)? Does resolution quasi-polynomially simulate

OBDD(∧)?
5. Separate dag-like and tree-like OBDD(∧).
6. Prove that random 3CNFs are hard for OBDD(∧).
7. Prove superpolynomial lower bound for 2-BP(∧)
8. Is OBDD(∧) automatable?

14 / 14

