Batch Proofs are Statistically Hiding

Prashant Nalin; Vasudevan

Based on work with:

Nir Bitansky Chethan Kamath
Omer Paneth Ron Rothblum
When Can You Batch Proofs?

Prashant Nalin Vasudevan

Based on work with:

Nir Bitansky Chethan Kamath
Omer Paneth Ron Rothblum
Batch Proofs for NP language \(L \)

\[
(x_1, \ldots, x_t) \\
(P, V) \\
(w_1, \ldots, w_t)
\]

Proof that

\[
\forall i \in [t]: x_i \in L
\]

\(t \gg \|w_i\| \)

Efficiency: \(P, V \) poly-time

Succinctness:

Total Communication \(< t^{1-\epsilon} \) bits

Soundness: Statistical
Which languages in NP have Batch Proofs?

- [RRRRR] all LE U P
- some structured languages

How about SAT?
What We Show

Batch Proof \Rightarrow SWI^* Proof

for L
Witness Indistinguishability [FLS]

Theorem: For all witnesses w_0, w_1, $x \in L$, and PPT V^*:

1. Statistical WI:
 - $P(w_0) \xrightarrow{\text{look same to}} V^*$
 - $P(w_1) \xrightarrow{\text{look same to}} V^*$
 - $\forall PPT V^*, x \in L, \text{valid witnesses } w_0, w_1:
 \text{View}_{V^*}(w_0) \approx \text{View}_{V^*}(w_1)$
 - WI error

2. Honest-Verifier SWI:
 - Above holds only for honest verifier V
What We Show

Batch Proof for L \Rightarrow HVSWI Proof for L \Rightarrow SWI Proof for L

non-uniform prover
\(1/\text{poly}\) - SWI error
[GSV]

if public-coin
non-uniform prover
\(1/\text{poly}\) - SWI error
What We Show

L does not have $\text{SWI}^* \implies L$ does not have Batch Proof
Which languages in NP have SWI Proofs?

- UP, vacuously
- SZK \& NP
- Some combinations thereof

How about SAT?
Interactive Batch Arguments

\[(x_1, \ldots, x_t)\]

\[P \quad V\]

\[(w_1, \ldots, w_t)\]

\[\iff\]

Proof that

\[\forall i \in [t]: x_i \in L\]

Efficiency: \(P, V\) poly-time

Succinctness:
Total Communication \(< t^{1-\epsilon}\) bits

Soundness: Computational
What assumptions are sufficient to get Batch Arguments for NP?

[Killian] Collision-Resistant Hash Functions

[BKP, KNY] Multicollision-Resistant Hash Functions

What assumptions are necessary for Batch Arguments for NP?
What We Show

Batch Arguments for NP

r rounds

\Rightarrow

HVSWI Args. for NP

$(r+1)$ rounds

non-uniform prover

$\forall \text{poly WI error}$

\Rightarrow

OWF [GMW]

[FLS]

SZK Args. for NP

$O(r)$ rounds

non-uniform prover

$\forall \text{poly 2K error}$
What We Show

$O(1)$-round Batch Arguments for NP + OWF \Rightarrow $O(1)$-round SZK Arguments for NP

only known from $O(1)$-round Statistically Hiding Commitments

If OWF \Rightarrow $O(1)$-round Batch Arguments for NP

Then OWF \Rightarrow $O(1)$-round SZK Arguments for NP
Non-Interactive Batch Arguments

\[(x_1, \ldots, x_t)\]

\[\text{CRS} \]

\[P \rightarrow V\]

\[(w_1, \ldots, w_t)\]

Proof that \(\forall i \in [t]: x_i \in L\)

Efficiency: \(P, V\) poly-time

Succinctness:
Total Communication < \(t^{1-\epsilon}\) bits

Soundness: Computational Adaptive
What assumptions are sufficient for non-interactive Batch Args. for \(\text{NP} \)?

- LWE \([\text{CJJ}]\)
- Bilinear maps \([\text{WW}]\)
- DDH \([\text{BKM, HJKS, CGJJZ}]\)

What assumptions are necessary for non-interactive Batch Args. for \(\text{NP} \)?
What We Show

Non-interactive Batch Argument for NP

\Rightarrow

Non-Interactive SWI Argument for NP

\Rightarrow

Non-Interactive SZK Argument for NP

\downarrow

Lossy PKE

\non-uniform prover

\frac{\text{poly}}{\text{WI error}}

\uparrow

\non-uniform prover

\text{negl. ZK error}
Batch Proofs to WI

Simplest case: L has Batch "NP" proof

$\begin{array}{c}
\frac{P}{(w_1, \ldots, w_t)} \\
\overline{(x_1, \ldots, x_t)} \\
\end{array}$

$\Pi \leftarrow f((x_1, w_1), \ldots, (x_t, w_t))$ Π Accepts Π iff

\[\forall i \in [t]: x_i \in L \]

Want: SWI proof for L
Approach: T_j cannot remember all of the w_i's.

Given (x, w), hide it among the inputs to f.

$P(u) \times \nabla$

Pick $(x_i, w_i) \in R_L$, $j \in [t]$

$T_j \leftarrow f((x_1, w_1), \ldots, (x, w), \ldots, (x_t, w_t))$

View

$\{x_i, j, T_j\}$

Run Batch Verifier with instance $(x_1, \ldots, x, \ldots x_t)$ proof T_j
\[\text{\underline{WI?}} \]

\[\text{TI} \leftarrow f ((x_i, w_i), \ldots, (x, w), \ldots, (x_t, w_t)) \]

- Fix \(x \in L \), witnesses \(w^0, w^1 \)
- Can we pick \((x_i, w_i)\)'s so that \(\text{TI} \) looks same for \(w = w^0 \) and \(w = w^1 \)?

Yes! Set \(x_i = x \), \(w_i \leftarrow \{ w^0, w^1 \} \)
Compression Lemma [Drucker, Dell]:

A function \(g : \{0, 1\}^t \rightarrow \{0, 1\}^{p \cdot t} \) \((p < 1)\)

\((j, g(b_1, \ldots, b_{j-1}, 0, b_{j+1}, \ldots, b_t)) \sim_{\sqrt{p}} (j, g(b_1, \ldots, 1, \ldots, b_t))\)

where \(j \leftarrow [t] \)

\(b_i \leftarrow \{0, 1\} \)
Fix \((x, w^0, w^1)\)

Set \(x_j = x, w_j \leftarrow \{w^0, w^1\}, j \leftarrow [t]\)

\[\prod_b = f((x_1, w_1), \ldots, (x, w^b), \ldots, (x_t, w_t))\]

Compiled Lemma with \(g(b_1, \ldots, b_t) = f((x, w^{b_1}), \ldots, (x, w^{b_t}))\)

\[\Rightarrow (j, \prod_0) \approx (j, \prod_1)\]
Fix distribution D over (x, w_0, w_1)

$$(x, w^0, w^1) \leftarrow D$$

Sample $(x_i, w^0_i, w^1_i) \leftarrow D$, $w_i \leftarrow \{w^0_i, w^1_i\}$, $j \in [t]$

$$\Pi_b = \mathcal{f}((x_i, w_i), \ldots, (x_i, w^b_i), \ldots, (x_t, w_t))$$

Comp. Lemma with $g(b_1, \ldots, b_t) = \mathcal{f}((x_i, w^b_i), \ldots, (x_t, w^b_t))$

$$\Rightarrow (x, \{x_i\}, j, \Pi_0) \sim (x, \{x_i\}, j, \Pi_1) \quad \text{Distributional WI}$$
Have: A distribution over \((x, w_0, w_1)\):
 \[\exists \text{distrib. over } (x_i, w_i)'s: \]
 proof is WI

Want: \[\exists \text{distrib. over } (x_i, w_i)'s: \]
 A tuple \((x, w_0, w_1)\):
 proof is WI

\[\text{Min max!} \]
Dist: $WI \rightarrow WI$

Two-Player Zero-Sum Game

P_1 picks (x, w^0, w')

P_2 picks $\{ (x_i, w_i^0, w_i') \}$

Payoff $= \| (x, \{x_i, j, T_i\}) - (x, \{x_i^0, j, T_i^0\}) \|_1$

Dist: WI

A mixed strat of P_1

\exists mixed strat of P_2:

$E[\text{payoff}] < \text{small}$

WI

A mixed strat of P_2

\exists mixed strat of P_2:

$E[\text{payoff}] < \text{small}$
Have: A distribution over \((x, w_0, w_1)\):

\[\exists \text{ distribution over } (x_i, w_i)\]'s:

proof is WI

Want: \(\exists \text{ distribution over } (x_i, w_i)\)'s:

A tuple \((x, w_0, w_1)\):

proof is WI

\[\text{Min max!} \]

Sparse minmax [Lipton-Young]
gives efficient non-uniform sampleability
Handling More Rounds

Identical approach - insert \((x, w)\) at a random location and use batch proof.

\[P \xrightarrow{a} V(r) \]

\[P' \xrightarrow{a} V' \]

\[(P, V) \text{ is HVSWI} \quad \text{iff} \quad (P', V') \text{ is HVSWI} \]
Questions

1. Is \(NP \leq SWI \)?
 - General study of SWI

2. Remove caveats in our constructions
 - Make prover uniform
 - Get negligible SWI error

3. Show stronger bounds for non-interactive Batch Proofs
 - Can these exist for UP?
 - Even with unbounded provers?

4. Batch Proofs for classes other than UP?
Instance Compression [HN, BDFH]

AND-Compression of L : poly-time R s.t.
- $R(x_1, \ldots, x_t) = y \in L$ if $\forall i \in [t]: x_i \in L$
- $|y| \ll t$

[FS, Drucker] L has AND-Comp. $\Rightarrow L \in \text{SZK}^*$

Compare : L has Batch $\Rightarrow L \in \text{SWI}^*$

Proof