## Advisor-Verifier-Prover Games & The Hardness of Information Theoretic Cryptography

**Benny Applebaum and Oded Nir** 

Under what assumptions Cryptography needs assumptions?

Minimal Complexity Assumptions for Cryptography: Simons 2023

Fundamental Thm of Crypto [IL89...]: Interesting Crypto requires OWFs

Image credits: Author: Neill, John R. Publisher: Reilly & Britton Co. Date: 1914 Location: Oz (Imaginary place) Some rights reserved by Norman B. Leventhal Map Center at the BPL



## Private Information Retrieval [CKGS 98]

 $f: \{0, 1\}^n \to \{0, 1\}$ 







## Generalized Secret Sharing [Sha,Bla79,ISN87]

 $f: \{0, 1\}^n \to \{0, 1\}$ 



## Generalized Secret Sharing [Sha,Bla79,ISN87]

 $f: \{0, 1\}^n \to \{0, 1\}$ 



## Generalized Secret Sharing [Sha,Bla79,ISN87]



#### **Fully-Decomposable Randomized Encodings**

#### [Yao, FKN90, IK00, AIK04]



#### **Fully-Decomposable Randomized Encodings**

#### [Yao, FKN90, IK00, AIK04]





- Upper-bounds: (sub-)Exponential vs Lower-bounds: (almost) Linear
- Unlike Complexity theory, not even non-constructive LB, no general reductions
- Why should we care?
  - Basic questions
  - Toy versions of advanced primitives (witness encryption, functional encryption,..)
  - Highlights basic gaps in our understandings



This work: New Hypothesis  $\Rightarrow$  super-polynomial lower-bounds for all the above

- Space/Query tradeoff in Interactive Proof setting
- Provides new insights regarding the differences
- Unifies some existing lower-bounds
- Separate some existing LB's techniques

## **Advisor-Verifier-Prover Games**



Defaults:

- All parties are computationally-unbounded (can't talk about fixed f)
- Perfect completeness and constant soundness (e.g., 1/2)
- One-time advice
- **Goal**: Minimize total communication |a|+|b|+|c|



No prover: one-way communication complexity [KNR95]

• Lower-bound of  $\Omega(2^n)$ 



Non-adaptive Yao's BB model [Yao90]

• Lower-bound of  $\Omega(2^{n/2})$ 



Online (read-only) Memory Checking [BEGKN94, NR09]

• Lower-bound of  $\Omega(2^{n/2})$ 



Non-Uniform Delegation [GKR08]

- Upper-bound: poly(n) communication in O(n log n)
- f in (D-depth,S-size)  $\Rightarrow$  poly(D, log(S)) communication in D log n rounds



**Soundness error**: 1-1/n, amplify via parallel repetitions **Communication complexity** (after repetitions):  $O(n^3 \log n)$ **Prover's message**: polynomially-long

# Hypothesis: Prover-Laconic AVP has super-poly complexity



**Thm:** poly(n) PIR/SSS/DRE  $\Rightarrow$  Prover-Laconic AVP with polynomial complexity

**Cor:** Hypothesis  $\Rightarrow$  super-poly lower-bounds for PIR, Secret Sharing, DRE

#### From Secrecy to Soundness



accept/reject

#### From Secrecy to Soundness

PIR





### From Secrecy to Soundness



#### **AVPs with Extra Features**





#### **AVPs with Extra Features**



### Can we unify LBs?

![](_page_24_Figure_1.jpeg)

### Can we unify LBs?

![](_page_25_Figure_1.jpeg)

### Can we unify LBs?

Cannot be unified!

![](_page_26_Figure_2.jpeg)

# Conclusion

Basic IT-primitives  $\Rightarrow$  Online/Offline Decomposition

New Advisor-Verifier-Prover Model

- Single hypothesis ⇒ several super-poly LBs
- Induces new partial order over primitives
- Unify some existing lower bounds
- New separations

#### Future:

- Scale down to functions in P
- More (conditional) lower-bounds? Relations to existing questions?