Advisor-Verifier-Prover Games

\&

The Hardness of Information Theoretic Cryptography

Benny Applebaum and Oded Nir

Under what assumptions Cryptography needs assumptions?

Minimal Complexity Assumptions for Cryptography: Simons 2023

Private Information Retrieval [CKGS 98]

$f:\{\mathbf{0}, \mathbf{1}\}^{n} \rightarrow\{\mathbf{0}, \mathbf{1}\}$
$\longleftarrow N=2^{n} \rightarrow$

Information-Theoretic PIR [CKGS 98]

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

$$
\longleftarrow N=2^{n} \quad \rightarrow
$$

[AlrGurKotMan23]

~3n for 3 servers

[Man98,KT00,...,Woo07]

$$
n+\Omega_{k}(n) \leq
$$

Poly(n) communication?
$\leq \exp (\tilde{O}(\sqrt{n}))$
[Yek08, Efr09, DGY11]

Short downstream:
(1) servers \& $O(1)$-bit answers

$$
x \in\{\mathbf{0}, \mathbf{1}\}^{n}
$$

Equivalently [KT00],
Binary Locally-Decodable Codes with "short" length?

Information-Theoretic PIR [CKGS 98]

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

$$
\longleftarrow N=2^{n} \quad \rightarrow
$$

[Man98,KT00,...,Woo07]

$$
n+\Omega_{k}(n) \leq
$$

Poly(n) communication?

Short downstream:
$\mathrm{K}=\mathrm{O}(1)$ servers \& $\mathrm{O}(1)$-bit answers

$$
x \in\{\mathbf{0}, \mathbf{1}\}^{n}
$$

Computationally exists assuming

$$
\leq \exp (\tilde{O}(\sqrt{n}))
$$

[Yek08, Efr09, DGY11]

Generalized Secret Sharing

 [Sha,Bla79,ISN87]$$
f:\{\mathbf{0}, \mathbf{1}\}^{n} \rightarrow\{\mathbf{0}, \mathbf{1}\}
$$

Generalized Secret Sharing

 [Sha,Bla79,ISN87]$$
f:\{\mathbf{0}, \mathbf{1}\}^{n} \rightarrow\{\mathbf{0}, \mathbf{1}\}
$$

Generalized Secret Sharing

 [Sha,Bla79,ISN87]$$
f:\{\mathbf{0}, \mathbf{1}\}^{n} \rightarrow\{\mathbf{0}, \mathbf{1}\}
$$

Monotone function
[Csirmaz 94]

$$
\widetilde{\Omega}(n) \leq
$$

Computationally exists assuming sub-exp strong RSAs [ABIKLV23]!

Fully-Decomposable Randomized Encodings

[Yao,FKN90,IK00, AIKO4]

$$
f:\{\mathbf{0}, \mathbf{1}\}^{n} \rightarrow\{\mathbf{0}, \mathbf{1}\}
$$

Fully-Decomposable Randomized Encodings

[Yao,FKN90,IK00, AIKO4]

$$
f:\{\mathbf{0}, \mathbf{1}\}^{n} \rightarrow\{\mathbf{0}, \mathbf{1}\}
$$

Random String

poly(n)
max-message?

$$
\leq 2^{n / 2}
$$

[BIKK14,BKN18]

$$
f:\{\mathbf{0}, \mathbf{1}\}^{n} \rightarrow\{\mathbf{0}, \mathbf{1}\}
$$

- Upper-bounds: (sub-)Exponential vs Lower-bounds: (almost) Linear
- Unlike Complexity theory, not even non-constructive LB, no general reductions
- Why should we care?
- Basic questions
- Toy versions of advanced primitives (witness encryption, functional encryption,..)
- Highlights basic gaps in our understandings

$$
f:\{\mathbf{0}, \mathbf{1}\}^{n} \rightarrow\{\mathbf{0}, \mathbf{1}\}
$$

This work: New Hypothesis \Rightarrow super-polynomial lower-bounds for all the above - Space/Query tradeoff in Interactive Proof setting

- Provides new insights regarding the differences
- Unifies some existing lower-bounds
- Separate some existing LB's techniques

Advisor-Verifier-Prover Games

Defaults:

- All parties are computationally-unbounded (can't talk about fixed f)
- Perfect completeness and constant soundness (e.g., 1/2)
- One-time advice

Goal: Minimize total communication $|\mathrm{a}|+|\mathrm{b}|+|\mathrm{c}|$

Related Models

No prover: one-way communication complexity [KNR95]

- Lower-bound of $\Omega\left(2^{n}\right)$

Related Models

Non-adaptive Yao's BB model [Yao90]

- Lower-bound of $\Omega\left(2^{n / 2}\right)$

Related Models

Online (read-only) Memory Checking [BEGKN94, NR09]

- Lower-bound of $\Omega\left(2^{n / 2}\right)$

Related Models

Non-Uniform Delegation [GKR08]

- Upper-bound: poly(n) communication in O(n log n)
- f in (D-depth,S-size) \Rightarrow poly (D, log(S)) communication in $\mathrm{D} \log \mathrm{n}$ rounds

Poly(n) Communication in a single round?

$g: \mathbb{F}^{n} \rightarrow \mathbb{F} \quad$ Multilinear extension of f

Check consistency
\& interpolate $g(x)$
Soundness error: $1-1 / n$, amplify via parallel repetitions Communication complexity (after repetitions): $O\left(n^{3} \log n\right)$
Prover's message: polynomially-long

Hypothesis:
 Prover-Laconic AVP has super-poly complexity

Thm: poly(n) PIR/SSS/DRE \Rightarrow Prover-Laconic AVP with polynomial complexity
Cor: Hypothesis \Rightarrow super-poly lower-bounds for PIR, Secret Sharing, DRE

From Secrecy to Soundness

From Secrecy to Soundness
PI

From Secrecy to Soundness

AVPs with Extra Features

AVPs with Extra Features

Can we unify LBs?

Can we unify LBs?

Cannot be unified!

Can we unify LBs?

Cannot be unified!

Conclusion

Basic IT-primitives \Rightarrow Online/Offline Decomposition

New Advisor-Verifier-Prover Model

- Single hypothesis \Rightarrow several super-poly LBs
- Induces new partial order over primitives
- Unify some existing lower bounds
- New separations

Future:

- Scale down to functions in P
- More (conditional) lower-bounds? Relations to existing questions?

