
Journey with Eric Allender:
From Turing machines to circuits,

and back

Michal Koucký

Charles University

Turing machine

𝑥1 𝑥2 ⋅ ⋅ ⋅ 𝑥𝑛 ∎ ∎ ∎ ∎ ∎ ∎ ⋯

⋅ ⋅ ⋅ ⋅ ⋅ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⋯

⋅ ⋅ ⋅ ⋅ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ∎ ⋯

𝑄

Nondeterministic computation

𝑥

Acc

× × ×

Acc Acc

Computation tree

Co-nondeteministic computation

𝑥

Acc

× × ×

Acc Acc

𝑥

× × ×× ×

𝑥 ∈ 𝐿 iff ∃ accepting computation 𝑥 ∈ 𝐿 iff ∄ accepting
computation

×

NP = coNP?

Unambiguous computation
[Valiant-Vazirani’86]

𝑥

Acc

× × ×

Acc Acc

𝑥

× × ×

Acc

× ×

𝑥 ∈ 𝐿 iff ∃ accepting computation 𝑥 ∈ 𝐿 iff ∃ unique accepting
computation

“NP ⊆ UP/poly”

formula 𝜙 → formula 𝜙′

𝜙 is satisfiable then 𝜙′ has unique satisfying assignment

𝜙 is unsatisfiable then 𝜙′ is unsatisfiable

Unambiguous computation
[Valiant-Vazirani’86]

“NP ⊆ UP/poly”

Co-nondeteministic computation
[Immerman-Szelepscényi’87]

𝑥

Acc

× × ×

Acc Acc

𝑥

× × ×× ×

𝑥 ∈ 𝐿 iff ∃ accepting computation 𝑥 ∈ 𝐿 iff ∄ accepting
computation

×

NL = coNL

(𝐺, 𝑠, 𝑡) → (𝐺′, 𝑠′, 𝑡′)

path from 𝑠 to 𝑡 in 𝐺 iff no path from 𝑠′ to 𝑡′ in 𝐺′

NL = coNL
𝐺

𝐺′

→
𝑠

𝑡 𝑠′
𝑡′

Co-nondeteministic computation
[Immerman-Szelepscényi’87]

Unambiguous computation
[Allender-Reinhardt’00]

𝑥

Acc

× × ×

Acc Acc

𝑥

× × ×

Acc

× ×

𝑥 ∈ 𝐿 iff ∃ accepting computation 𝑥 ∈ 𝐿 iff ∃ unique accepting
computation

NL ⊆ UL/poly

(𝐺, 𝑠, 𝑡) → (𝐺′, 𝑠′, 𝑡′)

path from 𝑠 to 𝑡 in 𝐺 then unique path from 𝑠′ to 𝑡′ in 𝐺′

no path from 𝑠 to 𝑡 in 𝐺 then no path from 𝑠′ to 𝑡′ in 𝐺′

NL ⊆ UL/poly
𝐺

𝐺′
→

𝑠
𝑡 𝑠′

𝑡′

Unambiguous computation
[Allender-Reinhardt’00]

Nondeterministic computation

𝑥

Acc

× × ×

Acc Acc

Computation tree

Alternating computation

𝑥

Acc

× × ×

Acc Acc

Computation tree

∃

∀

∀ ∀

∀ ∃

⋯

Alternating computation → circuits
[Ruzzo’80]

𝑥

Acc

× × ×

Acc Acc

𝑥

Polynomial Hierarchy → exp. size AC0 circuits

∃

∀

∀ ∀

∀ ∃

⋯ ⋁

⋀

⋀ ⋀

⋀ ⋁

⋯

Polynomial Hierarchy in BPP⊕P

[Toda’89]

𝑥

Acc

× × ×

Acc Acc

∀

∀

∀ ∀

Polynomial Hierarchy → BPP ⋅ ⊕P computation

𝑥

Acc

× × ×

Acc Acc

⊕

BPP

⊕ ⊕

∃ ∃

⋯

AC0[⊕] in TC0

[Allender’89]

𝑥

⋀

⋀

⋀ ⋀

AC0[⊕] = poly-size, 𝑂 1 -depth quasi-poly-size, 2-depth
AND, OR, ⊕, NOT gates ⊕ ∘ AND (probabilistic)

𝑥

⋀

⊕

⋀ ⋀

⋁ ⋁

⋯

AC0[⊕] in TC0

[Allender’89]

𝑥

⋀

⋀

⋀ ⋀

AC0[⊕] = poly-size, 𝑂 1 -depth quasi-poly-size, 3-depth
AND, OR, ⊕, NOT gates MAJ, NOT gates

𝑥

MAJ

MAJ
⋁ ⋁

⋯
MAJ MAJ

MAJ

MAJ

ACC0 depth reduction
[Yao’90, Beigel-Tarui’94]

𝑥

⋀

⋀

⋀ ⋀

ACC0 = poly-size, 𝑂 1 -depth quasi-poly-size, 2-depth
AND, OR, MOD-m gates AND gates and a SYM gate

𝑥

⋁ ⋁

⋯
⋀

SYM

⋀ ⋀ log𝑂(1) 𝑛

Lower bounds

Allender-Gore’94: PERM ∉ uniform-ACC0 of size 2𝑛
𝑜(1)

Allender’99: PERM ∉ uniform-TC0 of size 2log
𝑜(1) 𝑛

Williams’14: NEXP ∉ ACC0 of size 2𝑛
𝑜(1)

Permanent vs Determinant

BMM ∈ NC1 𝐴 × 𝐴 over Boolean semiring

CONN ∈ NC2 𝐴𝑛 over Boolean semiring

L ⊆ NL ⊆ NC2

PERM DET

#P-complete ≈ #L

#L ⊆ NC3

NC𝑖 binary AND, OR, NOT
poly-size, log𝑖 𝑛-depth

Small depth circuits

Question: ACC0 = TC0 ? Known: ACC0 ⊆ TC0

Question: TC0 = NC1 ? TC0 ⊆ NC1

Question: PERM in uniform-NC3 ? DET in uniform-NC3

Allender-me’10: If MAJ is in ACC0 then MAJ has ACC0 ckt’s of size 𝑛1+𝜀.

If FLE is in TC0 then FLE has TC0 ckt’s of size 𝑛1+𝜀.

Chen-Tell’19: If MAJ is in ACC0 then MAJ has ACC0 ckt’s of size 𝑛1+1/𝑐
𝑑

.

If FLE is in TC0 then FLE has TC0 ckt’s of size 𝑛1+1/𝑐
𝑑

.

Arithmetic functions

• ADD, SUM ∈ AC0 x + y → z 2𝑛 bits → 𝑛 + 1 bits

• MULT ∈ TC0 x * y → z 2𝑛 bits → 𝑛2 bits

• DIV ∈ TC0 Allender-Barrington-Hesse’02

Question: DET ∈ TC0 ?

Turing machines into circuits

Pippenger-Fischer’77: DTIME(𝑡(𝑛)) ⊆ SIZE-DEPTH[𝑡 𝑛 log 𝑡(𝑛), 𝑡(𝑛)]

Turing machines into circuits

Exc: DTIME(𝑡(𝑛)) ⊆ SIZE-DEPTH[𝑡 𝑛 2, 𝑡(𝑛)]

𝑥1 𝑥2 ⋅ ⋅ ⋅ 𝑥𝑛 ∎ ∎ ∎ ∎ ∎ ∎ ⋯

𝑎 𝑏 𝑐

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋯

𝑑

⋅ 𝑥2 ⋅ ⋅ ⋅ 𝑥𝑛 ∎ ∎ ∎ ∎ ∎ ∎ ⋯

1

𝑡(𝑛)

2

1 2 3 ⋯ 𝑡(𝑛)

Turing machines into circuits

𝐶2𝑚

𝐶𝑚

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅

Rotate by 1/6-th

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅

Un-rotate by 1/6-th
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅

𝐶𝑚

Rotate by 1/6-th

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅

Un-rotate by 1/6-th
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅

Pippenger-Fischer’77:
DTIME(𝑡(𝑛)) ⊆
SIZE-DEPTH[𝑡 𝑛 log 𝑡(𝑛), 𝑡(𝑛)]

𝐶2𝑚 ≤ 2 𝐶𝑚 + 𝑂(𝑚)

𝐶𝑚 ≤ 𝑂(𝑚 log 𝑚)

Turing machines into circuits

Pippenger-Fischer’77: DTIME(𝑡(𝑛)) ⊆ SIZE-DEPTH[𝑡 𝑛 log 𝑡(𝑛), 𝑡(𝑛)]

Unbounded fan-in gates:

DTIME(𝑡(𝑛)) ⊆ SIZE-DEPTH[𝑡 𝑛 log 𝑡(𝑛), 𝑡(𝑛)/ log log 𝑡(𝑛)]

DTIME(𝑡(𝑛)) ⊆ SIZE-DEPTH[𝑡 𝑛 1+𝜀, 𝑡(𝑛)/ log 𝑛]

Question: DTIME(𝑡(𝑛)) ⊆ SIZE [o(𝑡 𝑛 log 𝑡 𝑛)] ?

… for 1-tape TM ?

Sorting

Sorting: 𝑛 integers, 2 log 𝑛 bits each.

TM … time 𝑂(𝑛 log2 𝑛)

circuits … size 𝑂(𝑛 log2 𝑛)

Question: Can you do better?

Turing machines into circuits

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅

𝐶𝑚

⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅

Rotate by multiple of 1/6-th

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅

Un-rotate by multiple of 1/6-th

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅

𝐶2𝑚

