Journey with Eric Allender: From Turing machines to circuits, and back

Michal Koucký

Charles University

Turing machine

Nondeterministic computation

Computation tree

Co-nondeteministic computation

$$
N P=c o N P ?
$$

$x \in L$ iff \exists accepting computation
$x \in L$ iff \nexists accepting
computation

Unambiguous computation

[Valiant-Vazirani'86]
"NP \subseteq UP/poly"

$x \in L$ iff \exists accepting computation

$x \in L$ iff \exists unique accepting computation

Unambiguous computation
 [Valiant-Vazirani'86]
 "NP $\subseteq U P /$ poly"

formula $\phi \quad \rightarrow \quad$ formula ϕ^{\prime}
ϕ is satisfiable then ϕ^{\prime} has unique satisfying assignment
ϕ is unsatisfiable then ϕ^{\prime} is unsatisfiable

Co-nondeteministic computation [Immerman-Szelepscényi'87]

$$
\mathrm{NL}=\mathrm{coNL}
$$

$x \in L$ iff \exists accepting computation

Co-nondeteministic computation [Immerman-Szelepscényi'87]

$N L=c o N L$

(G, s, t)
path from s to t in G
iff
no path from s^{\prime} to t^{\prime} in G^{\prime}

Unambiguous computation

 [Allender-Reinhardt'00]$\mathrm{NL} \subseteq \mathrm{UL} /$ poly

$x \in L$ iff \exists accepting computation

$x \in L$ iff \exists unique accepting computation

Unambiguous computation
 [Allender-Reinhardt'00]

(G, s, t)
path from s to t in G no path from s to t in G
$\mathrm{NL} \subseteq \mathrm{UL} /$ poly

$$
\rightarrow \quad\left(G^{\prime}, s^{\prime}, t^{\prime}\right)
$$

then unique path from s^{\prime} to t^{\prime} in G^{\prime} then no path from s^{\prime} to t^{\prime} in G^{\prime}

Nondeterministic computation

Computation tree

Alternating computation

Computation tree

Alternating computation \rightarrow circuits [Ruzzo'80]

Polynomial Hierarchy \rightarrow
exp. size $A C^{0}$ circuits

Polynomial Hierarchy in BPP ${ }^{\oplus}$

[Toda'89]

Polynomial Hierarchy

\rightarrow

$\mathrm{AC}^{0}[\oplus]$ in TC^{0} [Allender'89]

$$
\begin{aligned}
\mathrm{AC}^{0}[\oplus]= & \text { poly-size, } O(1) \text {-depth } \\
& \text { AND, OR, } \oplus \text {, } \mathrm{NOT} \text { gates }
\end{aligned}
$$

quasi-poly-size, 2-depth
$\oplus \circ$ AND (probabilistic)

$$
\begin{aligned}
\mathrm{AC}^{0}[\oplus]= & \text { poly-size, } O(1) \text {-depth } \\
& \text { AND, OR, } \oplus \text {, NOT gates }
\end{aligned}
$$

quasi-poly-size, 3-depth MAJ, NOT gates

ACC ${ }^{0}$ depth reduction [Yao'90, Beigel-Tarui'94]

$$
\begin{aligned}
\mathrm{ACC}^{0}= & \text { poly-size, } O(1) \text {-depth } \\
& \text { AND, OR, MOD-m gates }
\end{aligned}
$$

quasi-poly-size, 2-depth AND gates and a SYM gate

Lower bounds

Allender-Gore'94:

Allender'99:

Williams'14:

PERM \notin uniform-ACC ${ }^{0}$ of size $2^{n^{o(1)}}$

PERM \notin uniform-TC ${ }^{0}$ of size $2^{\log ^{o(1)} n}$

NEXP \notin ACC 0 of size $2^{n^{o(1)}}$

Permanent vs Determinant

PERM
\#P-complete

DET
\approx \#
$\# \mathrm{~L} \subseteq \mathrm{NC}^{3}$
$B M M \in N^{1}$
$C O N N \in N C^{2}$
$\mathrm{L} \subseteq \mathrm{NL} \subseteq \mathrm{NC}^{2}$
$A \times A$ over Bonleabifapmy rinad, OR, NOT
$A^{n} \quad$ over Booleanoly-sizizeng $\log ^{i} n$-depth

Small depth circuits

Question: $\mathrm{ACC}^{0}=\mathrm{TC}^{0}$?
Question: $\mathrm{TC}^{0}=\mathrm{NC}^{1}$?
Question: PERM in uniform-NC ${ }^{3}$?

Known: $\mathrm{ACC}^{0} \subseteq \mathrm{TC}^{0}$
$\mathrm{TC}^{0} \subseteq \mathrm{NC}^{1}$
DET in uniform-NC ${ }^{3}$

Allender-me'10: If MAJ is in ACC ${ }^{0}$ then MAJ has $\mathrm{ACC}^{0} \mathrm{ckt}^{\prime}$ s of size $n^{1+\varepsilon}$. If FLE is in TC ${ }^{0}$ then FLE has TC^{0} ckt's of size $n^{1+\varepsilon}$.

Chen-Tell'19: If MAJ is in ACC ${ }^{0}$ then MAJ has ACC ${ }^{0} \mathrm{ckt}^{\prime}$'s of size $n^{1+1 / c^{d}}$. If FLE is in TC ${ }^{0}$ then FLE has TC^{0} ckt's of size $n^{1+1 / c^{d}}$.

Arithmetic functions

- ADD, SUM $\in A C^{0}$
- MULT \in TC ${ }^{0}$
- DIV \in TC ${ }^{0}$

Question: $D E T \in T C^{0}$?
$x+y \rightarrow z \quad 2 n$ bits $\rightarrow n+1$ bits
$x^{*} y \rightarrow z \quad 2 n$ bits $\rightarrow n^{2}$ bits
Allender-Barrington-Hesse'02

Turing machines into circuits

Pippenger-Fischer'77: $\operatorname{DTIME}(t(n)) \subseteq \operatorname{SIZE}-\operatorname{DEPTH}[t(n) \log t(n), t(n)]$

Turing machines into circuits

$\operatorname{Exc}: \operatorname{DTIME}(t(n)) \subseteq \operatorname{SIZE-DEPTH}\left[t(n)^{2}, t(n)\right]$
$t(n)$

2
1

123
...
$t(n)$

Turing machines into circuits

```
Pippenger-Fischer'77:
DTIME (t (n)) \subseteq
SIZE-DEPTH[t(n)}\operatorname{log}t(n),t(n)
```

$\left|C_{2 m}\right| \leq 2\left|C_{m}\right|+O(m)$
$\left|C_{m}\right| \leq O(m \log m)$

Turing machines into circuits

Pippenger-Fischer'77: $\operatorname{DTIME}(t(n)) \subseteq \operatorname{SIZE}-\operatorname{DEPTH}[t(n) \log t(n), t(n)]$

Unbounded fan-in gates:
$\operatorname{DTIME}(t(n)) \subseteq \operatorname{SIZE}-\operatorname{DEPTH}[t(n) \log t(n), t(n) / \log \log t(n)]$
$\operatorname{DTIME}(t(n)) \subseteq \operatorname{SIZE-DEPTH}\left[t(n)^{1+\varepsilon}, t(n) / \log n\right]$

Question: $\operatorname{DTIME}(t(n)) \subseteq \operatorname{SIZE}[\mathrm{o}(t(n) \log t(n))]$?
... for 1-tape TM ?

Sorting

Sorting: n integers, $2 \log n$ bits each.

$$
\begin{array}{lll}
\text { TM } & \ldots & \text { time } O\left(n \log ^{2} n\right) \\
\text { circuits } & \ldots & \text { size } O\left(n \log ^{2} n\right)
\end{array}
$$

Question: Can you do better?

Turing machines into circuits

Rotate by multiple of $1 / 6$-th

