Journey with Eric Allender: From Turing machines to circuits, and back

Michal Koucký Charles University

Turing machine

Nondeterministic computation

Computation tree

Co-nondeteministic computation

NP = coNP?

 $x \in L$ iff \exists accepting computation

 $x \in L$ iff \nexists accepting computation

Unambiguous computation

[Valiant-Vazirani'86]

 $"\mathsf{NP} \subseteq \mathsf{UP}/\mathsf{poly}"$

 $x \in L$ iff \exists accepting computation

 $x \in L$ iff \exists unique accepting computation

Unambiguous computation

[Valiant-Vazirani'86]

"NP \subseteq UP/poly"

- formula $\phi \rightarrow \text{formula } \phi'$
- ϕ is satisfiable then ϕ' has unique satisfying assignment

 ϕ is unsatisfiable then ϕ' is unsatisfiable

Co-nondeteministic computation [Immerman-Szelepscényi'87]

 $x \in L$ iff \exists accepting computation

 $x \in L$ iff \nexists accepting computation

Co-nondeteministic computation [Immerman-Szelepscényi'87]

NL = coNL

path from s to t in G

iff no path from s' to t' in G'

Unambiguous computation

[Allender-Reinhardt'00]

 $NL \subseteq UL/poly$

 $x \in L$ iff \exists accepting computation

 $x \in L$ iff \exists unique accepting computation

(G, s, t)

 \rightarrow (G', s', t')

path from s to t in Gno path from s to t in G then unique path from s' to t' in G'then no path from s' to t' in G'

Nondeterministic computation

Computation tree

Alternating computation

Computation tree

Alternating computation \rightarrow circuits [Ruzzo'80]

Polynomial Hierarchy

 \rightarrow

exp. size AC⁰ circuits

Polynomial Hierarchy in BPP[⊕]^P [Toda'89]

 \rightarrow

Polynomial Hierarchy

 $BPP \cdot \bigoplus P$ computation

 $AC^{0}[\bigoplus] = poly-size, O(1)-depth$ AND, OR, \bigoplus , NOT gates quasi-poly-size, 2-depth $\bigoplus \circ AND$ (probabilistic)

 $AC^{0}[\bigoplus] = poly-size, O(1)-depth$ AND, OR, \bigoplus , NOT gates quasi-poly-size, 3-depth MAJ, NOT gates

ACC⁰ = poly-size, O(1)-depth AND, OR, MOD-m gates

quasi-poly-size, 2-depth AND gates and a SYM gate

Lower bounds

Allender-Gore'94:

PERM \notin uniform-ACC⁰ of size $2^{n^{o(1)}}$

Allender'99:

PERM ∉ uniform-TC⁰ of size $2^{\log^{o(1)} n}$

Williams'14:

NEXP \notin ACC⁰ of size $2^{n^{o(1)}}$

Permanent vs Determinant

PERM	DET
#P-complete	pprox #L

 $\#L ⊆ NC^3$

$BMM \in NC^1$	$A \times A$	over Boneaning Winned, OR, NOT
$CONN \in NC^2$	<i>A</i> ⁿ	poly-size, log ⁱ n-depth over Boolean semiring

 $\mathsf{L}\subseteq\mathsf{N}\mathsf{L}\subseteq\mathsf{N}\mathsf{C}^2$

Small depth circuits

Question: ACC⁰ = TC⁰ ? Question: TC⁰ = NC¹ ? Question: PERM in uniform-NC³ ? Known: $ACC^0 \subseteq TC^0$ $TC^0 \subseteq NC^1$ DET in uniform-NC³

Allender-me'10: If MAJ is in ACC⁰ then MAJ has ACC⁰ ckt's of size $n^{1+\varepsilon}$. If FLE is in TC⁰ then FLE has TC⁰ ckt's of size $n^{1+\varepsilon}$.

Chen-Tell'19: If MAJ is in ACC⁰ then MAJ has ACC⁰ ckt's of size n^{1+1/c^d} . If FLE is in TC⁰ then FLE has TC⁰ ckt's of size n^{1+1/c^d} .

Arithmetic functions

- ADD, SUM $\in AC^0$
- MULT $\in TC^0$
- DIV $\in TC^0$

 $x + y \rightarrow z$ $2n \text{ bits} \rightarrow n + 1 \text{ bits}$ $x * y \rightarrow z$ $2n \text{ bits} \rightarrow n^2 \text{ bits}$

Allender-Barrington-Hesse'02

Question: DET \in TC⁰?

Pippenger-Fischer'77: DTIME $(t(n)) \subseteq$ SIZE-DEPTH $[t(n) \log t(n), t(n)]$

Exc: $DTIME(t(n)) \subseteq SIZE-DEPTH[t(n)^2, t(n)]$

 x_2 x_n ٠ • ٠ • χ_1 x_2 x_n .

2

1

1 2 3

. . .

t(n)

. . .

...

Pippenger-Fischer'77: DTIME $(t(n)) \subseteq$ SIZE-DEPTH $[t(n) \log t(n), t(n)]$

 $|C_{2m}| \le 2 |C_m| + O(m)$

 $|C_m| \le O(m \log m)$

Pippenger-Fischer'77: DTIME $(t(n)) \subseteq$ SIZE-DEPTH $[t(n) \log t(n), t(n)]$

Unbounded fan-in gates: DTIME $(t(n)) \subseteq$ SIZE-DEPTH $[t(n) \log t(n), t(n) / \log \log t(n)]$ DTIME $(t(n)) \subseteq$ SIZE-DEPTH $[t(n)^{1+\varepsilon}, t(n) / \log n]$

Question: DTIME $(t(n)) \subseteq$ SIZE $[o(t(n) \log t(n))]$? ... for 1-tape TM ?

Sorting

Sorting: n integers, $2 \log n$ bits each.

TM...time $O(n \log^2 n)$ circuits...size $O(n \log^2 n)$

Question: Can you do better?

