Cryptography from Sublinear-Time Average-Case Hardness of Time-Bounded Kolmogorov Complexity

Yanyi LiuRafael PassCornell TechCornell Tech &Tel Aviv University

Properties of Meta-Complexity Problems

- Let **C** be a complexity measure
- MCP[s] = {x | C(x) <= s(|x|)}

Question: Does hardness of MCP[n/4] => hardness of MCP[n/2]? Or, MCP[polylog] is hard for TIME[n] <=> MCP[n/2] is hard for $TIME[2^{n^{\epsilon}}]$?

[RS21]: ∃ oracle world in which **MCSP[n/4]** is hard but **MCSP[n/2]** is easy.

Main Result: Yes (for both)!

(when considering appropriate notions for K^t and avg-case hardness) Our proof goes through the notion of **OWFs**.

One-way Functions (OWF) [Diffie-Hellman'76]

A function **f** that is

- Easy to compute: can be computed in poly time
- Hard to invert: no PPT can invert it

Ex [Factoring]: use x to pick 2 random "large" primes p,q, and output $y = p^* q$

One-way Functions (OWF) [Diffie-Hellman'76]

A function **f** that is

- Easy to compute: can be computed in poly time
- Hard to invert: no PPT can invert it

Definition 2.1. Let $f : \{0,1\}^* \to \{0,1\}^*$ be a polynomial-time computable function. f is said to be a one-way function (OWF) if for every PPT algorithm \mathcal{A} , there exists a negligible function μ such that for all $n \in \mathbb{N}$,

$$\Pr[x \leftarrow \{0, 1\}^n; y = f(x) : A(1^n, y) \in f^{-1}(f(x))] \le \mu(n)$$

One-way Functions (OWF) [Diffie-Hellman'76]

A function **f** that is

- Easy to compute: can be computed in poly time
- Hard to invert: no PPT can invert it

OWF both necessary [IL'89] and sufficient for:

- Private-key encryption [GM84,HILL99]
- Pseudorandom generators [HILL99]
- Digital signatures [Rompel90]
- Authentication schemes [FS90]
- Pseudorandom functions [GGM84]
- Commitment schemes [Naor90]
- Coin-tossing [Blum'84]

...

Not included:

public-key encryption, OT, obfuscation

Whether OWF exists is the most important problem in Cryptography

Characterization of OWFs [LP'20]

For every polynomial t(n)>1.1n: **OWFs** exist iff **MK^tP[n - O(log n)]** is mildly hard-on-average

MK^tP[s]: the set of strings x with t-bounded Kolmogorov complexity at most s(|x|)

Today: what happens when the threshold changes?

Time-Bounded Kolmogorov Complexity

Give a truthtable $x \in \{0,1\}^n$ of a Boolean function, what is the size of the smallest "program" that computes x?

When "program" = time-bounded TMs

- t-time-bounded Kolmogorov Complexity [Kol'68, Ko'86, Sip'83, Har'83, AKB+06]
- There are many ways to define time-bounded Kolmogorov complexity. We here consider the "**local compression**" version.

When "program" = circuits

• Minimum Circuit Size problem (MCSP) [KC'00, Tra'84]

Time-Bounded Kolmogorov Complexity

Give a truthtable $x \in \{0,1\}^n$ of a Boolean function, what is the size of the smallest "program" that computes x?

When "program" = time-bounded TMs

• t-time-bounded Kolmogorov Complexity [Kol'68, Ko'86, Sip'83, Har'83, AKB+06]

 $K^{t}(x) = \text{length of the shortest program } \Pi$ such that Π computes truthtable x within time $t(|\Pi|)$

Fix a universal TM U, and a running time bound t. We are looking for the length of the shortest program Π s.t. U($\Pi(i), 1^{t(|\Pi|)}$) = $x_i, \forall i \le |x|$.

MK^tP[s] : {x | $K^{t}(x) \le s(|x|)$ }

Characterization of OWFs [LP'20]

OWFs exist iff **MK^tP[n - O(log n)]** is mildly hard-on-average

What happens if the threshold **s** << **n**?

Does (avg-case) hardness of **MK^tP[poly log n]** imply OWFs? Is **MK^tP[n - O(log n)]** harder than **MK^tP[poly log n]** (on avg)?

Our main theorem demonstrates that for an *appropriate* notion of mild avg-case hardness:

- Subexp-secure OWF ⇔ mild avg-case hardness of MK^tP[polylog n] w.r.t. sublinear algorithms (running in time n^ε, ε<1)
- 2. Qpoly-secure OWF \Leftrightarrow mild avg-case hardness of MK^tP[$2^{O(\sqrt{\log n})}$] w.r.t. sublinear algorithms

Proving the existence of **Subexp OWFs** is **equivalent** to proving a **sublinear** avg-case lowerbound

Our main theorem demonstrates that for an *appropriate* notion of mild avg-case hardness:

 Subexp-secure OWF ⇔ mild avg-case hardness of MK^tP[polylog n] w.r.t. sublinear algorithms (running in time n^ε, ε<1)

2. **Qpoly**-secure OWF \Leftrightarrow mild avg-case hardness of MK^tP[$2^{O(\sqrt{\log n})}$] w.r.t. sublinear algorithms

Unconditional Lower Bounds

- MK^tP[polylog n] is worst-case hard for sublinear time algorithms.
- MK^tP[n-log n] is mildly avg-case hard for Dtime(t/n^3)

Our main theorem demonstrates that for an *appropriate* notion of mild avg-case hardness:

- Subexp-secure OWF ⇔ mild avg-case hardness of MK^tP[polylog n] w.r.t. sublinear algorithms (running in time n^ε, ε<1)
- 2. Qpoly-secure OWF \Leftrightarrow mild avg-case hardness of MK^tP[$2^{O(\sqrt{\log n})}$] w.r.t. sublinear algorithms

Threshold **s** for the **MK^tP[s]** captures the **quantitative** hardness of OWFs (or **MK^tP[n -O(log n)]**) Smaller s ⇔ "Easier" **MK^tP[s]**

The brute-force attacker running time "ratio" remains the same.

Avg-case Hardness for Sparse Languages

Observation: $|\mathbf{MK^tP[s]} \cap \{0,1\}^n| \approx 2^{s(n)}$.

When s(n) = n/2, the trivial outputting NO heuristic succeeds w.p. $1-2^{-n/2}$. so MK^tP[s] is trivially **easy-on-average**.

Our notion: require hardness conditioned on both YES and NO.

μ-heuristic^{*} H for L: H succeeds on at least a 1-μ(n^{*}) fraction of YES instances, and at least a 1-μ(n^{*}) fraction of NO instances, where $n^* = \log |L \cap \{0,1\}^n$

Avg-case* hardness: We say that MK^tP[s] is mildly hard on average* (HoA*) if there exists a poly p such that MK^tP[s] does not have (1/p)-heuristic* w.r.t. infinitely many input length.

"Nice" classes: We say that **F** is a "nice" class of time-bounds if (a) all $T \in F$, T is strictly increasing and (b) all $T \in F$, T is closed under poly-composition ($T \in F => T(n^{\varepsilon})^{\varepsilon} \in F$).

Main THM: Let F be a "nice" class of super-polynomial (but subexp) functions. Let t(n) >= 1.1n be a polynomial. The following are equivalent:

- 1. $\exists T \in F \text{ s.t. } T\text{-Hard secure OWF} \text{ exists}$
- 2. $\exists T \in F MK^{t}P[T^{-1}]$ is mildly HoA* w.r.t. sublinear (i.e time n^{ε}) algorithms.
- 3. $\exists T \in F MK^{t}P[n/2]$ is mildly HoA* w.r.t. T-time algorithms.

Corr:

- **1.** Quasipoly-secure OWF \Leftrightarrow
- **2.** Subexp-secure OWF \Leftrightarrow

MK^tP[$2^{O(\sqrt{\log n})}$] is sublinear mild-HOA* MK^tP[polylog n] is sublinear mild-HOA*

Related Work

- Hardness Magnification[OS18, MMW19, CT19, OPS19, CMMW19, Oli19, CJW19, CHO+20]
 - weak lower bounds => breakthrough separations
 - compress an instance in a sparse language into another much shorter instance
 - Our result: hardness magnification for OWFs
- Fine-grained Complexity[BRSV17, BRSV18, GR18, LLW19, BABB19, DLW20]
 - fine-grained lower bounds => fine-grained OWFs (secure w.r.t. a-priori bounded poly-time attacker)
 - Our result: **sublinear lower bounds <=> super-poly hard OWFs**

Main THM: Let F be a "nice" class of super-polynomial (but subexp) functions. Let t(n) >= 1.1n be a polynomial. The following are equivalent:

- 1. $\exists T \in F \text{ s.t. } T\text{-Hard secure OWF} \text{ exists}$
- 2. $\exists T \in F MK^{t}P[T^{-1}]$ is mildly HoA* w.r.t. sublinear (i.e time n^{ε}) algorithms.
- 3. $\exists T \in F MK^{t}P[n/2]$ is mildly HoA* w.r.t. T-time algorithms.

Today: (1) ⇔ (2)

(2) \Leftrightarrow (3) follows from the same type of argument (in the paper)

Let F be a "nice" class of super-polynomial (but subexp) functions. Let t(n) >= 1.1n be a polynomial.

Theorem 1: Assume that $\exists s \in F^{-1} MK^tP[s]$ is mildly HoA* w.r.t. **sublinear** algorithms. Then $\exists T \in F$ s.t. **T-Hard secure OWF exists**

Theorem 2:

Assume that $\exists T \in F$ s.t. T-Hard secure OWF exists. Then $\exists T \in F MK^{t}P[T^{-1}]$ is mildly HoA* w.r.t. sublinear (i.e time n^{ϵ}) algorithms.

Theorem 1

Assume that $\exists s \in F^{-1} MK^t P[s]$ is mildly HoA* w.r.t. sublinear algorithms. Then $\exists T \in F$ s.t. **T-Hard secure OWF exists**

For simplicity, we focus our attention on F = F_{subexp} and s = polylog n. That is: **MK^tP[s]** is mildly HoA* w.r.t. **sublinear** attackers => **Subexp OWFs**

Theorem 1

Assume that $\exists s \in F^{-1} MK^t P[s]$ is mildly HoA* w.r.t. sublinear algorithms. Then $\exists T \in F$ s.t. **T-Hard secure OWF exists**

By Yao's hardness amplification Lemma [Yao'82], it suffices to construct a weak **T**-hard OWF.

Weak T-hard OWF: "mild-HoA version" of a OWF: efficient function f s.t. no T-time algorithms can invert f w.p. 1-1/p(n) for inf many n, for some poly p(n)>0. Let t be a (polynomial) time-bound (the time-bound from the K-complexity problem)

OWF **f** construction

- Use the input to sample a random length $\ell \leq n$ and a length- ℓ program Π
- For i ϵ [2n], let y_i = output of $\Pi(i)$ after t(ℓ) steps. (y_i is a single bit.)
- Output $y_1 y_2 \dots y_{2n-1} y_{2n}$

Assume for contradiction that f is not a weak T-hard OWF. That is, there exists a **subexp-time attacker A** that inverts f w.h.p.

We construct a **sublinear-time heuristic H** (using A) that **decides MK^tP[s] w.h.p.**, which concludes that **MK^tP[s]** is not mildly HoA, a contradiction.

Given an instance $\mathbf{x} \in \{0, 1\}^n$, need to **decide** whether $\mathbf{K}^{\mathsf{t}}(\mathbf{x}) \leq \mathbf{s}(\mathbf{n})$.

H(x) first truncates x to 2s(n) bits (and gets x') and outputs 1 if A(x') outputs a K^t-witness for x' of length <= s(n).

Although **A** runs in subexp-time, $\mathbf{x'}$ is so short that **H** just runs in sublinear time in $|\mathbf{x}|$ (since $s(n) = poly \log n$).

If x is a YES Instance for MK^tP[s]

We have to argue that **H** succeeds with high probability. **Problem 1**: x does not have the right distribution (similar to [LP20]) **Problem 2**: The "truncating mapping" is **not** one-to-one: many YES-instances x could lead to the same x'.

If x is a YES Instance for MK^tP[s]

Key observation: The **more** YES-instances that are mapped to **x**', the **larger** the probability mass **x**' has in the OWF experiment!

Can next use similar analysis to [LP'20].

If x is a NO Instance for MK^tP[s]

If **x** is a **NO** instance, after being truncated, **x'** could become a **YES** instance. But we only need to show **H** works on a random NO instance.

```
It follows that A can rarely find K<sup>t</sup>-witness of length <= s(n)
```

Let F be a "nice" class of super-polynomial (but subexp) functions. Let t(n) >= 1.1n be a polynomial.

Theorem 1: Assume that $\exists s \in F^{-1} MK^tP[s]$ is mildly HoA* w.r.t. **sublinear** algorithms. Then $\exists T \in F$ s.t. **T-Hard secure OWF exists**

Theorem 2:

Assume that $\exists T \in F$ s.t. T-Hard secure OWF exists. Then $\exists T \in F MK^{t}P[T^{-1}]$ is mildly HoA* w.r.t. sublinear (i.e time n^{ϵ}) algorithms.

Let F be a "nice" class of super-polynomial (but subexp) functions. Let t(n) >= 1.1n be a polynomial.

Theorem 1:

Assume that $\exists s \in F^{-1} MK^t P[s]$ is mildly HoA* w.r.t. sublinear algorithms. Then $\exists T \in F$ s.t. **T-Hard secure OWF exists**

Theorem 2:

Assume that $\exists T \in F$ s.t. **T-Hard secure OWF exists**. Then $\exists T \in F MK^tP[T^{-1}]$ is mildly HoA* w.r.t. sublinear (i.e time n^{ϵ}) algorithms.

Theorem 2

Assume that $\exists T \in F$ s.t. **T-Hard secure OWF exists**.

Then $\exists s \in F^{-1} MK^{t}P[s]$ is mildly HoA* w.r.t. sublinear (i.e time n^{ε}) algorithms.

cond-EP PRG w/ sublinear stretch $G:\{0,1\}^n \rightarrow \{0,1\}^{n+n^{\epsilon}}$

- **Pseudorandomness:** $G(U_n | E)$ indistinguishable from $U_{n+n^{\epsilon}}$
- Entropy-preserving: $[G(U_n | E)]_n$ has Shannon entropy n-O(log n)

Lemma 1: cond-EP PRG w/ sublinear stretch => MK^tP[s] is mildly HoA* (passes through PRFs)

Lemma 2: cond-EP PRG w/ sublinear stretch from OWF

cond-EP PRG from OWFs

Lemma: OWFs => cond-EP PRG w/ sublinear stretch

[LP'20]: OWFs => cond-EP PRG w/ logarithmic stretch Why not do repeated applications G(...G(G(-))...)

This does **not** give us a cond-EP PRG w/ sublinear stretch directly.

We here give a new construction of a cond-EP PRG with sublinear stretch.

cond-EP PRG from OWFs

Lemma: OWFs => cond-EP PRG w/ sublinear stretch

Proof:

- OWFs => PRGs [HILL'99]
- Let **G** $\{0,1\}^n \rightarrow \{0,1\}^{2n}$ be a PRG. Sample **i** as a guess of "degeneracy" of **G(x)**.
- If i is correct, given G(x), x has min-entropy i.
- Applying hash functions as extractors

 $G^{*}(i, x, h1) = h1, G(x), [h1(x)]_{i-O(\log n)}$

• Not pseudorandom: length i is leaked.

 $G'(i, x, h1, h2) = h1, h2, [h2(G(x), [h1(x)]_{i-O(\log n)})]_{3n/2}$

Entropy (roughly) n - O(log n)

cond-EP PRG from OWFs

$G'(i, x, h1, h2) = h1, h2, [h2(G(x), [h1(x)]_{i-O(\log n)})]_{3n/2}$

Pseudorandomness:

- We need to show that if ∃ D' that breaks G' conditioned on i being correct, then ∃ D that breaks G
- Bad news: D does not know i
- Guessing i does not work, as the distinguisher can be very bad when the guess is incorrect.
- A central contribution is dealing with this issue.

Conclusion

- **1.** Subexp-OWFs ⇔ proving an avg-case lowerbound w.r.t. sublinear attackers.
- The threshold s(n), for the MK^tP[s] problem captures the quantitative hardness of OWFs.
- 3. Technically: the notion of a **"EP-PRG with large stretch"** plays a central role.

Open question: can we characterize exponential OWF!

Thank You