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• Let C be a complexity measure
• MCP[s] = {x | C(x) <= s(|x|)}

Question: Does hardness of MCP[n/4] => hardness of MCP[n/2]?

Properties of Meta-Complexity Problems

Main Result: Yes (for both)!
(when considering appropriate notions for K^t and avg-case hardness)
Our proof goes through the notion of OWFs.

[RS21]: ∃ oracle world in which MCSP[n/4] is hard but MCSP[n/2] is easy.

Or, MCP[polylog] is hard for TIME[n] <=> MCP[n/2] is hard for TIME[2n^𝝐]?



A function f that is
• Easy to compute: can be computed in poly time
• Hard to invert: no PPT can invert it

One-way Functions (OWF) [Diffie-Hellman’76]

x y=f(x)

easy

hard

Ex [Factoring]: use x to pick 2 random “large” primes p,q, and output y = p* q
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A function f that is
• Easy to compute: can be computed in poly time
• Hard to invert: no PPT can invert it

OWF both necessary [IL’89] and sufficient for:
• Private-key encryption [GM84,HILL99]
• Pseudorandom generators [HILL99]
• Digital signatures [Rompel90]
• Authentication schemes [FS90]
• Pseudorandom functions [GGM84]
• Commitment schemes [Naor90]
• Coin-tossing [Blum’84]
• …

One-way Functions (OWF) [Diffie-Hellman’76]

Whether OWF exists is the most important problem in Cryptography

Not included:
public-key encryption, OT, obfuscation 



Characterization of OWFs [LP’20]

For every polynomial t(n)>1.1n:
OWFs exist iff MKtP[n - O(log n)] is mildly hard-on-average

MKtP[s]: the set of strings x with t-bounded Kolmogorov complexity at most s(|x|)

Today: what happens when the threshold changes?



Give a truthtable x ∈ {0,1}n of a Boolean function, what is the size of the 
smallest “program” that computes x?

Time-Bounded Kolmogorov Complexity

When “program” = circuits
• Minimum Circuit Size problem (MCSP) [KC’00, Tra’84]

When “program” = time-bounded TMs
• t-time-bounded Kolmogorov Complexity [Kol’68, Ko’86, Sip’83, Har’83, AKB+06]

• There are many ways to define time-bounded Kolmogorov complexity. 
We here consider the “local compression” version.



Give a truthtable x ∈ {0,1}n of a Boolean function, what is the size of the 
smallest “program” that computes x?

Time-Bounded Kolmogorov Complexity

Fix a universal TM U, and a running time bound t. We are looking for the 
length of the shortest program 𝚷 s.t. U(𝚷(i),1t(|𝚷|)) = xi, ∀ i <= |x|.

MKtP[s] : {x | Kt(x) <= s(|x|) }

Kt(x) = length of the shortest program 𝚷 such that 𝚷 computes truthtable x
within time t(|𝚷|)

When “program” = time-bounded TMs
• t-time-bounded Kolmogorov Complexity [Kol’68, Ko’86, Sip’83, Har’83, AKB+06]



Characterization of OWFs [LP’20]

OWFs exist iff MKtP[n - O(log n)] is mildly hard-on-average

What happens if the threshold s << n?

Does (avg-case) hardness of MKtP[poly log n] imply OWFs?
Is MKtP[n - O(log n)] harder than MKtP[poly log n] (on avg)?



Main Theorem
Our main theorem demonstrates that for an appropriate notion of mild avg-case 
hardness:
1. Subexp-secure OWF ⟺ mild avg-case hardness of MKtP[ polylog n ] w.r.t. 

sublinear algorithms (running in time nε, ε<1)

2. Qpoly-secure OWF ⟺ mild avg-case hardness of MKtP[𝟐𝑶( log 𝒏 )] w.r.t. 
sublinear algorithms 

Proving the existence of Subexp OWFs is equivalent to proving a sublinear avg-case 
lowerbound



Main Theorem
Our main theorem demonstrates that for an appropriate notion of mild avg-case 
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1. Subexp-secure OWF ⟺ mild avg-case hardness of MKtP[ polylog n ] w.r.t. 

sublinear algorithms (running in time nε, ε<1)

2. Qpoly-secure OWF    ⟺ mild avg-case hardness of MKtP[𝟐𝑶( log 𝒏 )] w.r.t. 
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Unconditional Lower Bounds
• MKtP[polylog n] is worst-case hard for sublinear time algorithms.
• MKtP[n-log n] is mildly avg-case hard for Dtime(t/n^3)



Main Theorem
Our main theorem demonstrates that for an appropriate notion of mild avg-case 
hardness:
1. Subexp-secure OWF ⟺ mild avg-case hardness of MKtP[ polylog n ] w.r.t. 

sublinear algorithms (running in time nε, ε<1)

2. Qpoly-secure OWF ⟺ mild avg-case hardness of MKtP[𝟐𝑶( log 𝒏 )] w.r.t. 
sublinear algorithms 

Threshold s for the MKtP[s] captures the quantitative hardness of OWFs (or MKtP[n -
O(log n)])
Smaller s  “Easier” MKtP[s]

The brute-force attacker running time “ratio” remains the same.



Avg-case Hardness for Sparse Languages
Observation: |MKtP[s] ∩ {0,1}n| ≈ 2s(n) .

When s(n) = n/2, the trivial outputting NO heuristic succeeds w.p. 1-2-n/2.
so MKtP[s] is trivially easy-on-average.

Our notion: require hardness conditioned on both YES and NO. 

𝝁-heuristic* H for L: H succeeds on at least a 1-𝜇(n*) fraction of YES instances, and at 
least a 1-𝜇(n*) fraction of NO instances, where n* = log|L∩ {0,1}n|

Avg-case* hardness: We say that MKtP[s] is mildly hard on average* (HoA*) if there 
exists a poly p such that MKtP[s] does not have (1/p)-heuristic* w.r.t. infinitely many 
input length.



Main Theorem
“Nice” classes: We say that F is a “nice” class of time-bounds if (a) all T ∈F, T is strictly 
increasing and (b) all T ∈F, T is closed under poly-composition (T ∈F => T(nε) ε ∈F).

Main THM: Let F be a “nice” class of super-polynomial (but subexp) functions. 
Let t(n) >= 1.1n be a polynomial. The following are equivalent:
1. ∃T ∊ F s.t. T-Hard secure OWF exists 
2. ∃T ∊ F MKtP[T-1] is mildly HoA* w.r.t. sublinear (i.e time nε) algorithms.
3. ∃T ∊ F MKtP[n/2] is mildly HoA* w.r.t. T-time algorithms.

Corr:

1. Quasipoly-secure OWF ⟺ MKtP[𝟐𝑶( log 𝒏 )] is sublinear mild-HOA*
2. Subexp-secure OWF ⟺ MKtP[ polylog n ] is sublinear mild-HOA*



Related Work

• Hardness Magnification[OS18, MMW19, CT19, OPS19, CMMW19, Oli19, CJW19, 
CHO+20] 

- weak lower bounds => breakthrough separations
- compress an instance in a sparse language into another much shorter instance
- Our result: hardness magnification for OWFs

• Fine-grained Complexity[BRSV17, BRSV18, GR18, LLW19, BABB19, DLW20]
- fine-grained lower bounds => fine-grained OWFs (secure w.r.t. a-priori bounded

poly-time attacker)
- Our result: sublinear lower bounds <=> super-poly hard OWFs



Main Theorem
Main THM: Let F be a “nice” class of super-polynomial (but subexp) functions. 
Let t(n) >= 1.1n be a polynomial. The following are equivalent:
1. ∃T ∊ F s.t. T-Hard secure OWF exists 
2. ∃T ∊ F MKtP[T-1] is mildly HoA* w.r.t. sublinear (i.e time nε) algorithms.
3. ∃T ∊ F MKtP[n/2] is mildly HoA* w.r.t. T-time algorithms.

Today: (1)  (2)
(2)  (3) follows from the same type of argument (in the paper)



Let F be a “nice” class of super-polynomial (but subexp) functions. 
Let t(n) >= 1.1n be a polynomial. 

Theorem 1:
Assume that ∃s ∊ F-1 MKtP[s] is mildly HoA* w.r.t. sublinear algorithms. Then ∃T ∊ F s.t.
T-Hard secure OWF exists 

Theorem 2:
Assume that ∃T ∊ F s.t. T-Hard secure OWF exists. Then ∃T ∊ F MKtP[T-1] is mildly HoA* 
w.r.t. sublinear (i.e time nε) algorithms.



Theorem 1
Assume that ∃s ∊ F-1 MKtP[s] is mildly HoA* w.r.t. sublinear algorithms. 
Then ∃T ∊ F s.t. T-Hard secure OWF exists 

For simplicity, we focus our attention on F = Fsubexp and s = polylog n. 
That is: MKtP[s] is mildly HoA* w.r.t. sublinear attackers => Subexp OWFs



Theorem 1
Assume that ∃s ∊ F-1 MKtP[s] is mildly HoA* w.r.t. sublinear algorithms. 
Then ∃T ∊ F s.t. T-Hard secure OWF exists 

By Yao’s hardness amplification Lemma [Yao’82], it suffices to construct a 
weak T-hard OWF.

Weak T-hard OWF: “mild-HoA version” of a OWF:
efficient function f s.t. no T-time algorithms can invert f w.p. 1-1/p(n)
for inf many n, for some poly p(n)>0.



Let t be a (polynomial) time-bound (the time-bound from the K-complexity problem)

OWF f construction
• Use the input to sample a random length ℓ <= n and a length-ℓ program 𝚷
• For i 𝜖 [2n], let yi = output of 𝚷(i) after t(ℓ) steps. (yi is a single bit.)
• Output  y1 y2… y2n-1 y2n

Assume for contradiction that f is not a weak T-hard OWF.
That is, there exists a subexp-time attacker A that inverts f w.h.p.

We construct a sublinear-time heuristic H (using A) that decides MKtP[s] w.h.p., which 
concludes that MKtP[s] is not mildly HoA, a contradiction.



x

Given an instance x ∈{0, 1}n, need to decide whether Kt(x) <= s(n).

n bits

x’

2s(n) bits

H(x) first truncates x to 2s(n) bits (and gets x’) and outputs 1 if A(x’) outputs a 
Kt-witness for x’ of length <= s(n).

Although A runs in subexp-time, x’ is so short that H just runs in sublinear
time in |x| (since s(n) = poly log n).

A: subexp-time heuristic for f.



x

n bits

x’

2s(n) bits

If x is a YES Instance for MKtP[s]

Kt(x) <= s(n)

Kt(x’) <= Kt(x) <= s(n)

We have to argue that H succeeds with high probability.
Problem 1: x does not have the right distribution (similar to [LP20])
Problem 2: The “truncating mapping” is not one-to-one: many YES-instances x 
could lead to the same x’.

A(x’) should be able to find a 
witness of x’ 



x

n bits

x’

2s(n) bits

Kt(x) <= s(n)

Kt(x’) <= Kt(x) <= s(n)

Key observation: The more YES-instances that are mapped to x’, the larger the 
probability mass x’ has in the OWF experiment!

Can next use similar analysis to [LP’20].

A(x’) should be able to find a 
witness of x’ 

If x is a YES Instance for MKtP[s]



x

n bits

x’

2s(n) bits

If x is a NO instance, after being truncated, x’ could become a YES instance.
But we only need to show H works on a random NO instance.

If x is a NO Instance for MKtP[s]

It follows that A can rarely find Kt-witness of length <= s(n)

≈ Un

Since MKtP[s] is very sparse

truncating

U2s(n)



Let F be a “nice” class of super-polynomial (but subexp) functions. 
Let t(n) >= 1.1n be a polynomial. 

Theorem 1:
Assume that ∃s ∊ F-1 MKtP[s] is mildly HoA* w.r.t. sublinear algorithms. Then ∃T ∊ F s.t.
T-Hard secure OWF exists 

Theorem 2:
Assume that ∃T ∊ F s.t. T-Hard secure OWF exists. Then ∃T ∊ F MKtP[T-1] is mildly HoA* 
w.r.t. sublinear (i.e time nε) algorithms.
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Theorem 2
Assume that ∃T ∊ F s.t. T-Hard secure OWF exists. 
Then ∃s ∊ F-1 MKtP[s] is mildly HoA* w.r.t. sublinear (i.e time nε) algorithms.

Lemma 1: cond-EP PRG w/ sublinear stretch => MKtP[s] is mildly HoA*
(passes through PRFs)

Lemma 2: cond-EP PRG w/ sublinear stretch  from OWF

cond-EP PRG w/ sublinear stretch G:{0,1}n-> {0,1}n+n^𝝐

• Pseudorandomness: G(Un | E) indistinguishable from Un+n^𝜖

• Entropy-preserving: [G(Un | E)]n has Shannon entropy n-O(log n)



cond-EP PRG from OWFs
Lemma: OWFs => cond-EP PRG w/ sublinear stretch

[LP’20]:  OWFs => cond-EP PRG w/ logarithmic stretch
Why not do repeated applications G(…G(G(-))…)

This does not give us a cond-EP PRG w/ sublinear stretch directly.

We here give a new construction of a cond-EP PRG with sublinear stretch.



cond-EP PRG from OWFs
Lemma: OWFs => cond-EP PRG w/ sublinear stretch

Proof: 
• OWFs => PRGs [HILL’99]
• Let G {0,1}n->{0,1}2n be a PRG. Sample i as a guess of “degeneracy” of G(x). 
• If i is correct, given G(x), x has min-entropy i.
• Applying hash functions as extractors

G*(i, x, h1) = h1, G(x), [h1(x)]i-O(log n)

• Not pseudorandom: length i is leaked.

G’(i, x, h1, h2) = h1, h2, [h2( G(x), [h1(x)]i-O(log n) )]3n/2

Entropy (roughly) n - O(log n)



cond-EP PRG from OWFs

Pseudorandomness: 
• We need to show that if ∃ D’ that breaks G’ conditioned on i being correct, then ∃ D that 

breaks G
• Bad news: D does not know i
• Guessing i does not work, as the distinguisher can be very bad when the guess is incorrect.

• A central contribution is dealing with this issue. 

G’(i, x, h1, h2) = h1, h2, [h2( G(x), [h1(x)]i-O(log n) )]3n/2



Conclusion

1. Subexp-OWFs proving an avg-case lowerbound w.r.t. sublinear attackers. 

2. The threshold s(n), for the MKtP[s] problem captures the quantitative
hardness of OWFs.

3. Technically: the notion of a “EP-PRG with large stretch” plays a central role.

Open question: can we characterize exponential OWF!
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