Unstructured hardness to
average-case randomness

Lijie Chen and Ron Rothblum and Roei Tell
Simons, Feb 2023

Context

» what are we doing here?

» Recall that BPP =P If:
» TIME[2"] is hard for circuits of size 28" [NW94, IW97]

y TIMEDEPTH[n'°°, n?]is almost-all-inputs hard for
probabilistic time n?° [CT21b, LP22a, LP22b, vMS23, ...]

1 it's actually promiseBPP = promiseP, but I'll ignore it throughout the talk

Context

» what are we doing here?

» What if we only want BPP € P “on average”?

[IW98, CWO02, CIS18]

1 “on average” = the derandomization succeeds on 1-1/n of inputs (over the uniform distribution)

Context

» what are we doing here?

» What if we only want BPP € P “on average”?

» standard hardness for algorithms?

[IW98, CWO02, CIS18]

1 “on average” = the derandomization succeeds on 1-1/n of inputs (over the uniform distribution)

Context

» what are we doing here?

» What if we only want BPP € P “on average”?
» standard hardness for algorithms?

> weak and intuitive assumptions?

[IW98, CWO02, CIS18]

1 “on average” = the derandomization succeeds on 1-1/n of inputs (over the uniform distribution)

A sample theorem

y ...jumping way ahead

» Thm: Assume that counting k-cliques requires

probabilistic time n°®, where c(k) grows with k.

Then, RP = P on average.

1 “on average” = the derandomization succeeds on 1-1/n of inputs (over the uniform distribution)

Plan

y let'sdoit

1. A classical missing piece in hardness vs randomness
.. A natural and intuitive setting for hardness vs randomness

J. Some constructions & proof ideas

» targeted PRGs, tolerant instance checkers, worst-case to avg-case

1 Classical missing piece

Hardness vs randommness

» historic recap

» Main focus is equivalence between explicit
» Lower bounds for circuits

» Pseudorandom generators for circuits

Hardness vs randomness

)

)

historic recap

Main focus is equivalence between explicit

>y Lower bounds for circuits

» Pseudorandom generators for circuits

TIME[2"] ¢ i0SIZE[2°" "]

[NWO4,IW97]

—

log-seed PRG for ckts

Hardness vs randomness

)

)

historic recap

Main focus is equivalence between explicit

>y Lower bounds for circuits

» Pseudorandom generators for circuits

TIME[2"] ¢ i0SIZE[2°" "]

[NWO4,IW97]

—

log-seed PRG for ckts

~

BPP = P

General smooth tradeoff

» proved in [SUO02, UmaO03]

T
e TIME[2"] ¢ SIZE[S]
=
BPTIME[n] € DTIME[T]
T=27{O(S(n°))
poly(n)

poly(n) 28" S

Hardness vs randommness

» historic recap

» Second focus is equivalence between explicit
» Lower bounds for uniform probabilistic algs

» PRGs for uniform probabilistic distinguishers

Hardness vs randommness

» historic recap

» Second focus is equivalence between explicit
» Lower bounds for uniform probabilistic algs

» PRGs for uniform probabilistic distinguishers

BPP C ioSUBEXP
TIME[2"] ¢ BPP > on average
[IW98]

Hardness vs randomness

» historic recap

» infinitely-often
VS
almost-always

) average-case over
which distribution

(= always uniform)

General smooth tradeoff

» an analogous “ideal” result

T TIME[2"] ¢ BPTIME[T'®]
28N =
BPTIME[n] € avg-DTIME[T]
~ ~
~ ~
~ ~
~ ~
~ ~
~ ~
poly(n) S <A

poly(n) 22" Tlb

A non-smooth tradeoff

y best known result [IW98]

T
2£'ﬁ

poly(n)

~—

TIME[2"] ¢ BPTIME[T'®]
=

BPTIME[n] € avg-DTIME[T]

>

poly(n)

2£~n le

Proof approach

y reconstruction argument

> Proof by a reconstruction argument:

» break the PRG = “efficiently” compute the hard func

> Reconstruction hard-wires non-uniform advice
= vyields a circuit computing the hard func

= we assume hardness for circuits

Proof approach

y uniform reconstruction arguments

> Proof by a uniform reconstruction argument:

» break the PRG = compute the hard func by a uniform alg
» Reconstruction has to be a uniform algorithm

» Problem: No efficient uniform reconstruction for

arbitrary functions in time 2"

Classical barrier

y uniform reconstruction arguments

» ldea [IW98, CNS99, TVO2]: Use specific hard functions

that have “nice” structural properties

» downward self-reducible + random self-reducible

» Uniform reconstruction, relying on nice properties

A tradeoff for specific functions

y best known result for PSPACE [TV02, CRTY20]

T TQBF ¢ BPTIME[T'®]
28N =

BPTIME[n] € avg-DTIME[T]

poly(n) 22" Tlb

poly(n)

A tradeoff for specific functions

y best known result for PSPACE [TV02, CRTY20]

T TQBF ¢ BPTIME[T'®]
28N =

BPTIME[n] € avg-DTIME[T]

poly(n) 22" Tlb

poly(n)

Classical barrier

y uniform reconstruction arguments

» Limitations of the idea:

1. such funcs (provably) exist only in PSPACE
.. these are very specific funcs
). known suitable funcs aren’t hard enough

4. arguments incur runtime overheads

First main result

y informal diagram

T C'd BPTIME[T®]
2£'ﬁ :

RTIME[Nn] € avg-DTIME|T]

poly(n)

poly(n) ZA

First main result

» informal diagram

T C'¢ BPTIME[T"]
2e~n =>

RTIME[Nn] € avg-DTIME|T]

poly(n)

poly(n) 28T

First main result

y informal diagram

T C'd BPTIME[T®]
2£'ﬁ :

RTIME[n] & avg-DTIME[T]

poly(n)

poly(n) ZA

First main result

y informal diagram

T C'd BPTIME[T®]
2£'ﬁ :

RTIME[n] & avg-DTIME[T]

poly(n)

poly(n) ZA

First main result

» breaking the PSPACE barrier, getting polytime derand
» Thm 1: For C' = lu-SIZEDEPTH[20, 200]

C'¢ BPTIME[2¢"] = RP C avg-P

1 lu = logspace-uniform = printable by a machine using space logarithmic in the circuit size

First main result

» breaking the PSPACE barrier, getting polytime derand
» Thm 1: For C' = lu-SIZEDEPTH[20, 200]
C'¢ BPTIME[2¢:"] = RP C avg-P

CdBPTIME[T] = RP € avg-TIME[2t]
t(n) = T'(poly(n))2/O(log n)

1 lu = logspace-uniform = printable by a machine using space logarithmic in the circuit size

First main result

» breaking the PSPACE barrier, getting polytime derand
» Thm 1: For C' = lu-SIZEDEPTH[20, 200]
C'¢ BPTIME[2¢"] = BPP < avg-P/O(log n)

C'¢BPTIME[T] = BPP C avg-P/a(n)

t(n) = T'(poly(n))?/O(log n)
a(n) = o(T"(poly(n)) + O(log T'(n))

First main result

y breaking the PSPACE barrier, getting polytime derand
» Thm 1: For C'= |lu-SIZEDEPTH] 2°M), 20]
C'¢ BPTIME[2¢:"] = RP C avg-P

»y C 2 TQBF, likely contains funcs outside PSPACE
» Nno “special structure” needed, any func in C'will do

» polytime derandomization

1 lu = logspace-uniform = printable by a machine using space logarithmic in the circuit size

First main result

» breaking the PSPACE barrier, getting polytime derand
» Thm 1: For C' = lu-SIZEDEPTH[20, 200]
C'¢ BPTIME[2¢:"] = RP C avg-P

» derand only of RP, or of BPP but with advice

» C'seems like a proper subset of TIME[2"]

» tradeoff isn't perfectly smooth

1 lu = logspace-uniform = printable by a machine using space logarithmic in the circuit size

2 Derand from fine-grained
hardness assumptions

The general question

» natural hardness assumptions

y Motivating guestion: Can we deduce derandomization

from hardness for natural problems?

» Nice setting: Fine-grained hardness for problems in P
> rich study of k-clique, k-OV, k-SUM, ...

» Key point: This is trying to do something harder

» hardness in TIME[2"] is stronger assumption

Typically correct derandomization

» non-uniform hardness [GWO02, MSO5, Shal0, Shall, KvMS12]

> Thm [KVMSI12]: Assume that Vc there's L € P that's

(1/n)-hard for circuits of size n°. Then, BPP < avg-P.

Typically correct derandomization

» non-uniform hardness [GWO02, MSO5, Shal0, Shall, KvMS12]

» Thm [KVMSI12]: Assume that Vc there's L € P that's

(1/n)-hard for circuits of size n°. Then, BPP < avg-P.

» clean and general result ...
» ... but hardness is for non-uniform circuits

> ..and also requires mild average-case hardness

Typically correct derandomization

» non-uniform hardness [GWO02, MSO5, Shal0, Shall, KvMS12]

» Thm [KVMSI12]: Assume that Vc there's L € P that's

(1/n)-hard for circuits of size n°. Then, BPP < avg-P.

» Goal: Get a uniform analogue

» lower bounds for machines, no advice

» uniform hypothesis is necessary

Problem-centric derandomization

» hardness for specific problems

» Thm [CIS18]: Assume that V Kk, counting k-cliques is

hard for probabilistic algorithms that run in time nt”>*&k

Then, BPP € avg-P.

Problem-centric derandomization

» hardness for specific problems

» Thm [CIS18]: Assume that V Kk, counting k-cliques is

hard for probabilistic algorithms that run in time nt”>*&k

Then, BPP € avg-P.

» uniform hardness assumption ...
» ... but for specific problems with “nice structure”

» ..and requires specific hardness

Problem-centric derandomization

» hardness for specific problems

» Thm [CIS18]: Assume that V k, counting k-cliques is

hard for probabilistic algorithms that run in time nt”>*&k

Then, BPP € avg-P.

» Goal: Be more general wrt function & time bound

Second main result

y derandomization from weak fine-grained hardness

» Thm 2: Assume that for every ¢ € N there's
L. € Iu-TIMEDEPTH[n°, n*] that's (1/n)-hard for

probabilistic time n°.

Then, RP = P on average.

Third main result

y derandomization from weak fine-grained hardness

» Thm 3: Assume that for every ¢ € N there's L computable
by lu arithmetic formulas of polysize and degree n? over

GF(n°") that's hard for probabilistic time n°.

Then, RP = P on average.

Third main result

y derandomization from weak fine-grained hardness

» Proof idea:

= efficiently balance low-degree formulas » low depth

= amplify worst-case hard = mild avgcase hard

(because these are still low-degree formulas)

= appeal to Thm 2 as a black box

3 Constructions and proof ideas

Natural hardness assumptions

> unstructured hardness in P

» Thm 2: Assume that for every ¢ € N there's
L. € Iu-TIMEDEPTHI[n°, n?] that's (1/n)-hard for

probabilistic time n°.

Then, RP = P on average.

Basic building block

» refinement of a construction from [CT2T]

» Prop: For every f € |[u-SIZEDEPTH[n'°°, n?] there is a
targeted HSG H_that gets input x, prints a list of n-bit

strings, and: V time-n machine M & V fixed x,
H.(x) isn't pseudorandom for M(x,)

= Pr[F,,(x) = f(x)] 2 %5, where F, runs in time n'®

Basic building block

» refinement of a construction from [CT2T]

» Prop: Forevery f € [u-SIZEDEPTH[T, d] there is a
targeted HSG H. that gets input x, prints a list of T°'-bit

strings, and: V time-T°' machine M & V fixed x,
H.(x) isn't pseudorandom for M(x,)

= Pr[F,,(x) =f(x)] 2?5, F, runs in time poly(d,n) - T

Basic building block

» refinement of a construction from [CT2T]

y Key points:

y fis hard on x for time n'°

= H. pseudorandom on x

y any f € Iu-SIZEDEPTH[n'°°, n?] will do

Proof idea

> use the tarHSG for derandomization

)

ldea: Use the targeted HSG, rely on instance-wise

hardness vs randomness

f hard in the
worst case

—

fhard on 99%
of inputs

—

derand on
99% of inputs

Proof idea

> use the tarHSG for derandomization

)

ldea: Use the targeted HSG, rely on instance-wise

hardness vs randomness

f hard in the
worst case

—

fhard on 99%
of inputs

—

derand on
99% of inputs

Proof idea

y getting strong average-case hardness

y High-level approach:

1. Lis hard, every n?°-time alg fails on 1/n of inputs

2. encode Lto L' by an efficient code (approximately

locally list-decodable), say direct product

3. L'is hard, every n'°-time alg fails on 1-1/n of inputs

.. right?

Proof idea

y getting strong average-case hardness

»y What goes wrong?

= fix an algorithm A’ computing L' correctly on

more than 1/n of inputs

= |ocal approximate list-decoder A=Dec” should

compute L correctly on more than1-1/n of inputs

= problem: Dec only succeeds with low probability

Worst-case to average-case reductions

> Vvia nhew instance checkers

y Def:
M is an instance checker for fif
y PriMf(x) =f(x)] =1

» VO, Pr[M®(x) € { f(x), L }] <.01

Worst-case to average-case reductions

> Vvia nhew instance checkers

» Revised approach: (after building an instance checker)

=

=

L is hard, every n?°-time alg fails on 1/n of inputs

reduce L to L' that has a good instance checker,

argue that hardness is preserved

encode L' to L" with (say) direct product, argue that

every n'%-time alg fails on 1-1/n of inputs ... right?

Worst-case to average-case reductions

> Vvia nhew instance checkers

y Def:
M is an (g, €')-tolerant instance checker for fif

» fagrees with f on 1-¢ of inputs

= for1-¢' of inputs, Pr[M"(x) =f(x)] = 25

y VO, Pr[MP(x) ¢ {f(x), L }]<.01

Worst-case to average-case reductions

> Vvia nhew instance checkers

)

because of infinitely-often
vs almost-always issues,

which are under the rug,

the instance checker will
need to tolerate very high
corruption, think € = 1/n
instead of 1- €= 1-1/n

Worst-case to average-case reductions

> Vvia nhew instance checkers

» Working approach: (w/ tolerant instance checker)

=

=

L is hard, every n?°-time alg fails on 1/n of inputs

reduce L to L' that has a good tolerant instance

checker, argue that hardness is preserved

encode L' to L" with (say) direct product, argue that

every n'°-time alg fails on 1-1/n of inputs

Worst-case to average-case reductions

> Vvia nhew instance checkers

» Prop: Every L € |u-SIZEDEPTH] T, d] is reducible in linear
time to L' € lu-SIZEDEPTH[T, d - polylog(T)] that has a
same-length tolerant instance checker running in

time poly(d, log(T), n).

Worst-case to average-case reductions

> Vvia nhew instance checkers

» Prop: There is L that's complete for SPACE[O(n)] under
linear-time reductions and has a same-length tolerant

iInstance checker running in time poly(n).

= optimal wc2ac for computing SPACE[O(n)]
by probabilistic algorithms

Technical contribution

y optimal worst-case to average-case results

> Thm: V niceeg>0
SPACE[O(Nn)] ¢ io-BPTIME[T]
= SPACE[O(n)] ¢ io-avg,,, BPTIME[T'],

where T' = T(n/c) - poly(g/n).

INnstance checker construction

y ideas

» Instance checker based on [GKR'15] proof system

X~ (X 1,])

» pretend that the proof system is history-independent

(in actuality it depends only on last O(1) rounds)

INnstance checker construction

y ideas

» Instance checker based on [GKR'15] proof system

X~ (X 1,])

y #roundsxd<T = |i|=O(log T)

y #coins=O(logT) = [j|=0(logT)

INnstance checker construction

y ideas

» Instance checker based on [GKR'15] proof system

X~ (X 1,])

» trivial linear-time reduction from original problem
» prover is efficient = complexity upper-bound is preserved

> verifier is super-efficient = fast same-length instance checker

INnstance checker construction

y ideas

» Instance checker based on [GKR'15] proof system

X~ (X 1,])

> problem: it's not tolerant!

» adversary can corrupt (say) only the last round

INnstance checker construction

y ideas
» Instance checker based on [GKR'15] proof system
X~ (X 1,])

p (i"j) = interpolates the ~ n* polynomials

» p, can self-correct from errors

= doesn’t matter if error concentrated on one i

4 Open problems

Open problems

» classical “hardness vs randomness” framework still isn't complete!

1. Polytime derand from hardness in TIME[2"]
(and then!) from fine-grained hardness in P

.. Strengthen conclusion to BPP = P on avg

» goal: construct a computational merger

3. Prove smooth tradeoffs

> match the non-uniform setting

Thank you!

= breaking through a classical barrier
= derand from natural fine-grained hardness
= |ots of open questions in hardness vs randomness

