Unstructured hardness to average-case randomness Lijie Chen and Ron Rothblum and Roei Tell Simons, Feb 2023

- > what are we doing here?
 - > Recall that BPP = P if:
 - > TIME[2^n] is hard for circuits of size $2^{\epsilon \cdot n}$ [NW94, IW97]
 - TIMEDEPTH[n¹⁰⁰, n²] is almost-all-inputs hard for probabilistic time n²⁰ [CT21b, LP22a, LP22b, vMS23, ...]

- > what are we doing here?
 - > What if we only want BPP \subseteq P "on average"?

[IW98, GW02, CIS18]

1 "on average" = the derandomization succeeds on 1-1/n of inputs (over the uniform distribution)

- > what are we doing here?
 - > What if we only want BPP \subseteq P "on average"?
 - > standard hardness for algorithms?

[IW98, GW02, CIS18]

1 "on average" = the derandomization succeeds on 1-1/n of inputs (over the uniform distribution)

- > what are we doing here?
 - > What if we only want BPP \subseteq P "on average"?
 - > standard hardness for algorithms?
 - > weak and intuitive assumptions?

[IW98, GW02, CIS18]

^{1 &}quot;on average" = the derandomization succeeds on 1-1/n of inputs (over the uniform distribution)

A sample theorem

- > ... jumping way ahead
 - > **Thm:** Assume that counting k-cliques requires probabilistic time n^{c(k)}, where c(k) grows with k.

Then, RP = P on average.

^{1 &}quot;on average" = the derandomization succeeds on 1-1/n of inputs (over the uniform distribution)

Plan

> let's do it

- 1. A classical missing piece in hardness vs randomness
- 2. A natural and intuitive setting for hardness vs randomness
- 3. Some constructions & proof ideas
 - > targeted PRGs, tolerant instance checkers, worst-case to avg-case

1 Classical missing piece

1. Classical missing piece

2. Fine-grained assumptions

3. Constructions and proof ideas

- historic recap
 - > Main focus is equivalence between explicit
 - > Lower bounds for circuits
 - > Pseudorandom generators for circuits

USED FOTZ DETZANDOMIZATION

- historic recap
 - > Main focus is equivalence between explicit
 - > Lower bounds for circuits
 - > Pseudorandom generators for circuits

log-seed PRG for ckts

[NW94,IW97]

- historic recap
 - > Main focus is equivalence between explicit
 - > Lower bounds for circuits
 - > Pseudorandom generators for circuits

General smooth tradeoff

> proved in [SU02, Uma03]

- historic recap
 - > Second focus is equivalence between explicit
 - > Lower bounds for uniform probabilistic algs
 - > PRGs for uniform probabilistic distinguishers

EQUIVALENT TO AVETZAGE-CASE DETZANDOMIZATION

- historic recap
 - > Second focus is equivalence between explicit
 - > Lower bounds for uniform probabilistic algs
 - > PRGs for uniform probabilistic distinguishers

> historic recap

- infinitely-often
 vs
 almost-always
- average-case over which distribution
 - $(\Rightarrow always uniform)$

General smooth tradeoff

> an analogous "ideal" result

A non-smooth tradeoff

> best known result [IW98]

Proof approach

- > reconstruction argument
 - > Proof by a reconstruction argument:
 - > break the PRG \Rightarrow "efficiently" compute the hard func
 - > Reconstruction hard-wires non-uniform advice
 - \Rightarrow yields a circuit computing the hard func
 - \Rightarrow we assume hardness for circuits

Proof approach

- > uniform reconstruction arguments
 - > Proof by a uniform reconstruction argument:
 - break the PRG \Rightarrow compute the hard func by a uniform alg
 - > Reconstruction has to be a uniform algorithm
 - <u>Problem</u>: No efficient uniform reconstruction for arbitrary functions in time 2ⁿ

Classical barrier

- > uniform reconstruction arguments
 - Idea [IW98, CNS99, TV02]: Use specific hard functions
 that have "nice" structural properties
 - > downward self-reducible + random self-reducible
 - > Uniform reconstruction, relying on nice properties

A tradeoff for specific functions

> best known result for PSPACE [TV02, CRTY20]

A tradeoff for specific functions

> best known result for PSPACE [TV02, CRTY20]

Classical barrier

- > uniform reconstruction arguments
 - > Limitations of the idea:
 - 1. such funcs (provably) exist only in PSPACE
 - 2. these are very specific funcs
 - 3. known suitable funcs aren't hard enough
 - 4. arguments incur runtime overheads

> breaking the PSPACE barrier, getting polytime derand

> **Thm 1:** For $C = \text{Iu-SIZEDEPTH}[2^{O(n)}, 2^{O(n)}]$

 $C \notin BPTIME[2^{\epsilon \cdot n}] \Rightarrow RP \subseteq avg-P$

1 lu = logspace-uniform = printable by a machine using space logarithmic in the circuit size

> breaking the PSPACE barrier, getting polytime derand

> **Thm 1:** For $C = \text{Iu-SIZEDEPTH}[2^{O(n)}, 2^{O(n)}]$

 $C \notin BPTIME[2^{\varepsilon \cdot n}] \Rightarrow RP \subseteq avg \cdot P$ $C \notin BPTIME[T] \Rightarrow RP \subseteq avg \cdot TIME[2^{t(n)}]$ $t(n) = T^{-1}(poly(n))^{2} / O(\log n)$

> breaking the PSPACE barrier, getting polytime derand

> **Thm 1:** For $C = \text{Iu-SIZEDEPTH}[2^{O(n)}, 2^{O(n)}]$

C ∉ BPTIME[2^{ε·n}] ⇒ BPP ⊆ avg-P / O(log n)

C ∉ BPTIME[T] ⇒ BPP ⊆ avg-P / a(n)

 $t(n) = T^{-1}(poly(n))^2 / O(\log n)$ $a(n) = o(T^{-1}(poly(n)) + O(\log T^{-1}(n))$

 $a(n) = o(T^{-1}(poly(n)) + O(log T^{-1}(n)))$

> breaking the PSPACE barrier, getting polytime derand

> **Thm 1:** For $C = \text{Iu-SIZEDEPTH}[2^{O(n)}, 2^{O(n)}]$

 $C \notin BPTIME[2^{\epsilon \cdot n}] \Rightarrow RP \subseteq avg-P$

- > $C \Rightarrow$ TQBF, likely contains funcs outside PSPACE
- \rightarrow no "special structure" needed, any func in C will do
- > polytime derandomization

¹ lu = logspace-uniform = printable by a machine using space logarithmic in the circuit size

> breaking the PSPACE barrier, getting polytime derand

> **Thm 1:** For $C = \text{Iu-SIZEDEPTH}[2^{O(n)}, 2^{O(n)}]$

 $C \notin BPTIME[2^{\epsilon \cdot n}] \Rightarrow RP \subseteq avg-P$

- > derand only of RP, or of BPP but with advice
- C seems like a proper subset of TIME[2ⁿ]
- > tradeoff isn't perfectly smooth

¹ lu = logspace-uniform = printable by a machine using space logarithmic in the circuit size

2 Derand from fine-grained hardness assumptions

Classical missing piece

2. Fine-grained assumptions

3. Constructions and proof ideas

The general question

- > natural hardness assumptions
 - Motivating question: Can we deduce derandomization from hardness for natural problems?
 - > Nice setting: Fine-grained hardness for problems in P
 - > rich study of k-clique, k-OV, k-SUM, ...
 - > Key point: This is trying to do something harder
 - > hardness in TIME[2ⁿ] is stronger assumption

Typically correct derandomization

- > non-uniform hardness [GW02, MS05, Sha10, Sha11, KvMS12]
 - > Thm [KvMS12]: Assume that $\forall c$ there's $L_c \in P$ that's (1/n)-hard for circuits of size n^c . Then, BPP \subseteq avg-P.

Typically correct derandomization

- > non-uniform hardness [GW02, MS05, Sha10, Sha11, KvMS12]
 - > Thm [KvMS12]: Assume that $\forall c$ there's $L_c \in P$ that's (1/n)-hard for circuits of size n^c . Then, BPP \subseteq avg-P.
 - > clean and general result ...
 - > ... but hardness is for non-uniform circuits
 - > ... and also requires mild average-case hardness

Typically correct derandomization

- > non-uniform hardness [GW02, MS05, Sha10, Sha11, KvMS12]
 - > Thm [KvMS12]: Assume that $\forall c$ there's $L_c \in P$ that's (1/n)-hard for circuits of size n^c . Then, BPP \subseteq avg-P.
 - > <u>Goal:</u> Get a uniform analogue
 - > lower bounds for machines, no advice
 - > uniform hypothesis is necessary

Problem-centric derandomization

- > hardness for specific problems
 - > Thm [CIS18]: Assume that $\forall k$, counting k-cliques is hard for probabilistic algorithms that run in time $n^{(\frac{1}{2}+\epsilon)\cdot k}$.

Then, BPP \subseteq avg-P.

Problem-centric derandomization

- > hardness for specific problems
 - > Thm [CIS18]: Assume that $\forall k$, counting k-cliques is hard for probabilistic algorithms that run in time $n^{(\frac{1}{2}+\epsilon)\cdot k}$.

Then, BPP \subseteq avg-P.

- > uniform hardness assumption ...
- > ... but for specific problems with "nice structure"
- > ... and requires specific hardness

Problem-centric derandomization

- > hardness for specific problems
 - > Thm [CIS18]: Assume that $\forall k$, counting k-cliques is hard for probabilistic algorithms that run in time $n^{(\frac{1}{2}+\epsilon)\cdot k}$.

Then, BPP \subseteq avg-P.

> <u>Goal:</u> Be more general wrt function & time bound

Second main result

> derandomization from weak fine-grained hardness

> Thm 2: Assume that for every c ∈ N there's $L_{c} \in Iu-TIMEDEPTH[n^{O(1)}, n^{2}] \text{ that's (1/n)-hard for}$ probabilistic time n^c.

```
Then, RP = P on average.
```

Third main result

> derandomization from weak fine-grained hardness

> Thm 3: Assume that for every $c \in N$ there's L_c computable by lu arithmetic formulas of polysize and degree n^2 over $GF(n^{O(1)})$ that's hard for probabilistic time n^c .

Then, RP = P on average.

Third main result

> derandomization from weak fine-grained hardness

> Proof idea:

- ⇒ efficiently balance low-degree formulas → low depth
- ⇒ amplify worst-case hard ⇒ mild avgcase hard
 (because these are still low-degree formulas)
- \Rightarrow appeal to Thm 2 as a black box

3 Constructions and proof ideas

1. Classical missing piece

2. Fine-grained assumptions

3. Constructions and proof ideas

Natural hardness assumptions

- > unstructured hardness in P
 - Thm 2: Assume that for every c ∈ N there's
 L_c ∈ lu-TIMEDEPTH[n^{O(1)}, n²] that's (1/n)-hard for
 probabilistic time n^c.

```
Then, RP = P on average.
```

Basic building block

refinement of a construction from [CT21]

Prop: For every f ∈ lu-SIZEDEPTH[n¹⁰⁰, n²] there is a targeted HSG H_f that gets input x, prints a list of n-bit strings, and: ∀ time-n machine M & ∀ fixed x,

 $H_{f}(x)$ isn't pseudorandom for $M(x, \cdot)$

⇒ Pr[$F_M(x) = f(x)$] ≥ $\frac{2}{3}$, where F_M runs in time n¹⁰

Basic building block

refinement of a construction from [CT21]

> Prop: For every f ∈ lu-SIZEDEPTH[T, d] there is a targeted HSG H_f that gets input x, prints a list of T^{.01}-bit strings, and: ∀ time-T^{.01} machine M & ∀ fixed x,

 $H_{f}(x)$ isn't pseudorandom for $M(x, \cdot)$

⇒ Pr[$F_M(x) = f(x)$] ≥ $\frac{2}{3}$, F_M runs in time poly(d,n) · T^{.02}

Basic building block

> refinement of a construction from [CT21]

- > <u>Key points:</u>
 - → f is hard on x for time n¹⁰ ⇒ H_f pseudorandom on x
 - → any f ∈ lu-SIZEDEPTH[n^{100} , n^2] will do

- > use the tarHSG for derandomization
 - <u>Idea:</u> Use the targeted HSG, rely on instance-wise hardness vs randomness

- > use the tarHSG for derandomization
 - <u>Idea:</u> Use the targeted HSG, rely on instance-wise hardness vs randomness

NOT KNOWN FOTZ THE TZELEVANT CLASSES!

- > getting strong average-case hardness
 - > <u>High-level approach:</u>
 - 1. L is hard, every n²⁰-time alg fails on 1/n of inputs
 - 2. encode L to L' by an efficient code (approximately locally list-decodable), say direct product
 - 3. L' is hard, every n¹⁰-time alg fails on 1-1/n of inputs ... *right*?

- > getting strong average-case hardness
 - > What goes wrong?
 - ⇒ fix an algorithm A' computing L' correctly on more than 1/n of inputs
 - ⇒ local approximate list-decoder A=Dec^{A'} should compute L correctly on more than 1 - 1/n of inputs
 - ⇒ problem: Dec only succeeds with low probability

> via new instance checkers

> **<u>Def:</u>**

M is an instance checker for f if

>
$$\Pr[M^{f}(x) = f(x)] = 1$$

> $\forall O$, $\Pr[M^O(x) \notin \{f(x), ⊥\}] \le .01$

- > via new instance checkers
 - > <u>Revised approach:</u> (after building an instance checker)
 - \Rightarrow L is hard, every n²⁰-time alg fails on 1/n of inputs
 - ⇒ reduce L to L' that has a good instance checker, argue that hardness is preserved
 - ⇒ encode L' to L' with (say) direct product, argue that every n¹⁰-time alg fails on 1-1/n of inputs ... right?

via new instance checkers

> <u>Def:</u>

M is an $(\varepsilon, \varepsilon')$ -tolerant instance checker for f if

> f' agrees with f on 1- ϵ of inputs

⇒ for 1- ϵ ' of inputs, Pr[M^{f'}(x) = f(x)] ≥ $\frac{2}{3}$

> \forall O, Pr[M^O(x) ∉ { f(x), ⊥ }] ≤ .01

> via new instance checkers

because of infinitely-often
 vs almost-always issues,

which are under the rug,

the instance checker will need to tolerate very high corruption, think $\epsilon \approx 1/n$ instead of 1 - $\epsilon \approx 1-1/n$

- via new instance checkers
 - > <u>Working approach:</u> (w/ tolerant instance checker)
 - \Rightarrow L is hard, every n²⁰-time alg fails on 1/n of inputs
 - ⇒ reduce L to L' that has a good tolerant instance checker, argue that hardness is preserved
 - ⇒ encode L' to L' with (say) direct product, argue that every n¹⁰-time alg fails on 1-1/n of inputs

- > via new instance checkers
 - > Prop: Every L ∈ lu-SIZEDEPTH[T, d] is reducible in linear time to L' ∈ lu-SIZEDEPTH[T^{O(1)}, d · polylog(T)] that has a same-length tolerant instance checker running in time poly(d, log(T), n).

- via new instance checkers
 - Prop: There is L that's complete for SPACE[O(n)] under linear-time reductions and has a same-length tolerant instance checker running in time poly(n).

⇒ optimal wc2ac for computing SPACE[O(n)] by probabilistic algorithms

Technical contribution

> optimal worst-case to average-case results

> **Thm:** \forall nice $\varepsilon > 0$

SPACE[O(n)] ⊄ io-BPTIME[T]

⇒ SPACE[O(n)] \triangleleft io-avg_{1/2+ε}BPTIME[T'],

where T' = T(n/c) \cdot poly(ϵ/n).

ideas

> Instance checker based on [GKR'15] proof system

pretend that the proof system is history-independent
 (in actuality it depends only on last O(1) rounds)

ideas

>

>

> Instance checker based on [GKR'15] proof system

videas

> Instance checker based on [GKR'15] proof system

- > trivial linear-time reduction from original problem
- > prover is efficient \Rightarrow complexity upper-bound is preserved
- > verifier is super-efficient ⇒ fast same-length instance checker

ideas

> Instance checker based on [GKR'15] proof system

- problem: it's not tolerant!
- > adversary can corrupt (say) only the last round

ideas

> Instance checker based on [GKR'15] proof system

x ↦ (x, i', j)

 $p_x(i',j)$ = interpolates the $\approx n^2$ polynomials

- $\rightarrow p_x$ can self-correct from errors
 - ⇒ doesn't matter if error concentrated on one i

4 Open problems

1. Classical missing piece

2. Fine-grained assumptions

3. Results, constructions, proof ideas

Open problems

> classical "hardness vs randomness" framework still isn't complete!

1. Polytime derand from hardness in TIME[2ⁿ]

(and then!) from fine-grained hardness in P

- 2. Strengthen conclusion to BPP = P on avg
 - > goal: construct a computational merger
- 3. Prove smooth tradeoffs
 - > match the non-uniform setting

Thank you!

⇒ breaking through a classical barrier
 ⇒ derand from natural fine-grained hardness
 ⇒ lots of open questions in hardness vs randomness