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Context
>   what are we doing here?

   >   Recall that BPP = P if:

   >   TIME[ 2n ] is hard for circuits of size 2ε⋅n [NW94, IW97]

   >   TIMEDEPTH[ n100, n2 ] is almost-all-inputs hard for 

probabilistic time n20 [CT21b, LP22a, LP22b, vMS23, … ]

1    it’s actually promiseBPP = promiseP, but I’ll ignore it throughout the talk



Context
>   what are we doing here?

   >   What if we only want BPP ⊆ P “on average”?

[IW98, GW02, CIS18]

1    “on average” = the derandomization succeeds on 1-1/n of inputs (over the uniform distribution)
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Context
>   what are we doing here?

   >   What if we only want BPP ⊆ P “on average”?

   >   standard hardness for algorithms?

   >   weak and intuitive assumptions?

[IW98, GW02, CIS18]

1    “on average” = the derandomization succeeds on 1-1/n of inputs (over the uniform distribution)



   >   Thm: Assume that counting k-cliques requires 

probabilistic time nc(k), where c(k) grows with k.

Then, RP = P on average.

A sample theorem
>   … jumping way ahead

1    “on average” = the derandomization succeeds on 1-1/n of inputs (over the uniform distribution)



Plan
>   let’s do it

   1.  A classical missing piece in hardness vs randomness

   2.   A natural and intuitive setting for hardness vs randomness

   3.   Some constructions & proof ideas

>   targeted PRGs, tolerant instance checkers, worst-case to avg-case



1 Classical missing piece

   1.   Classical missing piece

   2.   Fine-grained assumptions

  3.   Constructions and proof ideas



Hardness vs randomness
>   historic recap

   >   Main focus is equivalence between explicit

  >   Lower bounds for circuits

  >   Pseudorandom generators for circuits

used for 
derandomization
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Hardness vs randomness
>   historic recap

   >   Main focus is equivalence between explicit

  >   Lower bounds for circuits

  >   Pseudorandom generators for circuits

TIME[2n] ⊄ ioSIZE[2.01⋅n]

BPP = P

log-seed PRG for ckts

[NW94,IW97]



General smooth tradeoff
>   proved in [SU02, Uma03]

S

T

poly(n)

poly(n)

2ε⋅n

2ε⋅n

TIME[2n] ⊄ SIZE[S]
⇒

BPTIME[n] ⊆ DTIME[T]

hardness

derand 
speed

T = 2^{ O(S-1(nO(1))) }



   >   Second focus is equivalence between explicit

  >   Lower bounds for uniform probabilistic algs

  >   PRGs for uniform probabilistic distinguishers

Hardness vs randomness
>   historic recap

equivalent to 
average-case 
derandomization 



Hardness vs randomness
>   historic recap

TIME[2n] ⊄ BPP BPP ⊆ ioSUBEXP 
on average

   >   Second focus is equivalence between explicit

  >   Lower bounds for uniform probabilistic algs

  >   PRGs for uniform probabilistic distinguishers

[IW98]



Hardness vs randomness
>   historic recap

   >   infinitely-often
vs

almost-always

   >   average-case over 
which distribution 

( ⇒ always uniform)



General smooth tradeoff
>   an analogous “ideal” result

Tlb

T

poly(n)

poly(n)

2ε⋅n

2ε⋅n

TIME[2n] ⊄ BPTIME[Tlb]
⇒

BPTIME[n] ⊆ avg-DTIME[T]
what we 
hope for



A non-smooth tradeoff
>   best known result [IW98]

Tlb

T

poly(n)

poly(n)

2ε⋅n

2ε⋅n

what we 
know

TIME[2n] ⊄ BPTIME[Tlb]
⇒

BPTIME[n] ⊆ avg-DTIME[T]



Proof approach
>   reconstruction argument

   >   Proof by a reconstruction argument:

  >   break the PRG ⇒ “efficiently” compute the hard func

   >   Reconstruction hard-wires non-uniform advice

⇒ yields a circuit computing the hard func

⇒ we assume hardness for circuits 



Proof approach
>   uniform reconstruction arguments

   >   Proof by a uniform reconstruction argument:

  >   break the PRG ⇒ compute the hard func by a uniform alg

   >   Reconstruction has to be a uniform algorithm

   >   Problem: No efficient uniform reconstruction for 

arbitrary functions in time 2n



   >   Idea [IW98, CNS99, TV02]: Use specific hard functions 

that have “nice” structural properties

   >   downward self-reducible + random self-reducible

   >   Uniform reconstruction, relying on nice properties

Classical barrier
>   uniform reconstruction arguments



>   best known result for PSPACE [TV02, CRTY20]

Tlb

T

poly(n)

poly(n)

2ε⋅n

2ε⋅n

A tradeoff for specific functions

TQBF ⊄ BPTIME[Tlb]
⇒

BPTIME[n] ⊆ avg-DTIME[T]



TQBF ⊄ BPTIME[Tlb]
⇒

BPTIME[n] ⊆ avg-DTIME[T]

>   best known result for PSPACE [TV02, CRTY20]

Tlb

T

poly(n)

poly(n)

2ε⋅n

2ε⋅n

specific func
in pspace

derand still in 
super-poly time

A tradeoff for specific functions



   >   Limitations of the idea:

   1.  such funcs (provably) exist only in PSPACE

   2.  these are very specific funcs

   3.  known suitable funcs aren’t hard enough

   4.  arguments incur runtime overheads

Classical barrier
>   uniform reconstruction arguments
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Ƈ ⊄ BPTIME[Tlb]
⇒

RTIME[n] ⊆ avg-DTIME[T]

>   informal diagram

First main result
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⇒
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Tlb

T

poly(n)

poly(n)

2ε⋅n

2ε⋅n

polytime
derand

>   informal diagram

First main result

one-sided error

Ƈ ⊄ BPTIME[Tlb]
⇒

RTIME[n] ⊆ avg-DTIME[T]
class extends 
beyond pspace



>   breaking the PSPACE barrier, getting polytime derand

First main result

   >   Thm 1: For Ƈ = lu-SIZEDEPTH[ 2O(n), 2o(n) ]

Ƈ ⊄ BPTIME[ 2ε⋅n ] ⇒ RP ⊆ avg-P

1    lu = logspace-uniform = printable by a machine using space logarithmic in the circuit size
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First main result

   >   Thm 1: For Ƈ = lu-SIZEDEPTH[ 2O(n), 2o(n) ]

Ƈ ⊄ BPTIME[ 2ε⋅n ] ⇒ RP ⊆ avg-P

Ƈ ⊄ BPTIME[ T ] ⇒ RP ⊆ avg-TIME[ 2t(n) ]
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>   breaking the PSPACE barrier, getting polytime derand

First main result

   >   Thm 1: For Ƈ = lu-SIZEDEPTH[ 2O(n), 2o(n) ]

Ƈ ⊄ BPTIME[ 2ε⋅n ] ⇒ BPP ⊆ avg-P / O(log n) 

Ƈ ⊄ BPTIME[ T ] ⇒ BPP ⊆ avg-P / a(n)
t(n) =  T-1(poly(n))2 / O( log n )
a(n) =  o(T-1(poly(n)) + O(log T-1(n))



>   breaking the PSPACE barrier, getting polytime derand

First main result

   >   Thm 1: For Ƈ = lu-SIZEDEPTH[ 2O(n), 2o(n) ]

Ƈ ⊄ BPTIME[ 2ε⋅n ] ⇒ RP ⊆ avg-P

   >   Ƈ  ∋ TQBF, likely contains funcs outside PSPACE

   >   no “special structure” needed, any func in Ƈ will do

   >   polytime derandomization

1    lu = logspace-uniform = printable by a machine using space logarithmic in the circuit size



>   breaking the PSPACE barrier, getting polytime derand

First main result

   >   Thm 1: For Ƈ = lu-SIZEDEPTH[ 2O(n), 2o(n) ]

Ƈ ⊄ BPTIME[ 2ε⋅n ] ⇒ RP ⊆ avg-P

   >   derand only of RP, or of BPP but with advice

   >   Ƈ seems like a proper subset of TIME[ 2n ]

   >   tradeoff isn’t perfectly smooth

1    lu = logspace-uniform = printable by a machine using space logarithmic in the circuit size



2 Derand from fine-grained 
hardness assumptions

   1.   Classical missing piece

   2.   Fine-grained assumptions

  3.   Constructions and proof ideas



The general question
>   natural hardness assumptions

   >   Motivating question: Can we deduce derandomization 

from hardness for natural problems?

   >   Nice setting: Fine-grained hardness for problems in P

   >   rich study of k-clique, k-OV, k-SUM, …

   >   Key point: This is trying to do something harder

   >   hardness in TIME[ 2n ] is stronger assumption



Typically correct derandomization
>   non-uniform hardness [GW02, MS05, Sha10, Sha11, KvMS12]

   >   Thm [KvMS12]: Assume that ∀c there’s Lc ∈ P that’s 

(1/n)-hard for circuits of size nc. Then, BPP ⊆ avg-P.



Typically correct derandomization
>   non-uniform hardness [GW02, MS05, Sha10, Sha11, KvMS12]

   >   Thm [KvMS12]: Assume that ∀c there’s Lc ∈ P that’s 

(1/n)-hard for circuits of size nc. Then, BPP ⊆ avg-P.

   >   clean and general result …

   >   … but hardness is for non-uniform circuits

   >   … and also requires mild average-case hardness



Typically correct derandomization
>   non-uniform hardness [GW02, MS05, Sha10, Sha11, KvMS12]

   >   Thm [KvMS12]: Assume that ∀c there’s Lc ∈ P that’s 

(1/n)-hard for circuits of size nc. Then, BPP ⊆ avg-P.

   >   Goal: Get a uniform analogue

   >   lower bounds for machines, no advice

   >   uniform hypothesis is necessary



Problem-centric derandomization
>   hardness for specific problems

   >   Thm [CIS18]: Assume that ∀k, counting k-cliques is

hard for probabilistic algorithms that run in time n(½+ε)⋅k.

Then, BPP ⊆ avg-P.



>   hardness for specific problems

   >   Thm [CIS18]: Assume that ∀k, counting k-cliques is

hard for probabilistic algorithms that run in time n(½+ε)⋅k. 

Then, BPP ⊆ avg-P.

   >   uniform hardness assumption …

   >   … but for specific problems with “nice structure”

   >   … and requires specific hardness

Problem-centric derandomization



>   hardness for specific problems

   >   Thm [CIS18]: Assume that ∀k, counting k-cliques is

hard for probabilistic algorithms that run in time n(½+ε)⋅k. 

Then, BPP ⊆ avg-P.

   >   Goal: Be more general wrt function & time bound

Problem-centric derandomization



Second main result
>   derandomization from weak fine-grained hardness

   >   Thm 2: Assume that for every c ∈ N there’s 

Lc ∈ lu-TIMEDEPTH[ nO(1), n2 ] that’s (1/n)-hard for 

probabilistic time nc.

Then, RP = P on average.



   >   Thm 3: Assume that for every c ∈ N there’s Lc computable 

by lu arithmetic formulas of polysize and degree n2 over 

GF(nO(1)) that’s hard for probabilistic time nc.

Then, RP = P on average.

Third main result
>   derandomization from weak fine-grained hardness



   >   Proof idea: 

⇒ efficiently balance low-degree formulas → low depth

⇒ amplify worst-case hard ⇒ mild avgcase hard 

(because these are still low-degree formulas)

⇒ appeal to Thm 2 as a black box

Third main result
>   derandomization from weak fine-grained hardness



3 Constructions and proof ideas

   1.   Classical missing piece

   2.   Fine-grained assumptions

  3.   Constructions and proof ideas



Natural hardness assumptions
>   unstructured hardness in P

   >   Thm 2: Assume that for every c ∈ N there’s 

Lc ∈ lu-TIMEDEPTH[ nO(1), n2 ] that’s (1/n)-hard for 

probabilistic time nc.

Then, RP = P on average.



Basic building block

   >   Prop: For every f ∈ lu-SIZEDEPTH[ n100, n2 ] there is a 

targeted HSG Hf that gets input x, prints a list of n-bit 

strings, and: ∀ time-n machine M & ∀ fixed x,

Hf(x) isn’t pseudorandom for M(x,⋅)

⇒ Pr[ FM(x) = f(x) ] ≥ ⅔, where FM runs in time n10

>   refinement of a construction from [CT21]



Basic building block

   >   Prop: For every f ∈ lu-SIZEDEPTH[ T, d ] there is a 

targeted HSG Hf that gets input x, prints a list of T.01-bit 

strings, and: ∀ time-T.01 machine M & ∀ fixed x,

Hf(x) isn’t pseudorandom for M(x,⋅)

⇒ Pr[ FM(x) = f(x) ] ≥ ⅔ , FM runs in time poly(d,n)⋅T.02

>   refinement of a construction from [CT21]



Basic building block

   >   Key points: 

   >   f is hard on x for time n10

⇒ Hf pseudorandom on x

   >   any f ∈ lu-SIZEDEPTH[ n100, n2 ] will do

>   refinement of a construction from [CT21]



Proof idea

   >   Idea: Use the targeted HSG, rely on instance-wise 

hardness vs randomness

f hard in the 
worst case

f hard on 99% 
of inputs

derand on 
99% of inputs

>   use the tarHSG for derandomization



Proof idea

   >   Idea: Use the targeted HSG, rely on instance-wise 

hardness vs randomness

not known for the 
relevant classes!

f hard in the 
worst case

f hard on 99% 
of inputs

derand on 
99% of inputs

>   use the tarHSG for derandomization



Proof idea
>   getting strong average-case hardness

   >   High-level approach: 

1. L is hard, every n20-time alg fails on 1/n of inputs

2. encode L to L’ by an efficient code (approximately 

locally list-decodable), say direct product

3. L’ is hard, every n10-time alg fails on 1-1/n of inputs

… right?



Proof idea

   >   What goes wrong? 

⇒ fix an algorithm A’ computing L’ correctly on

more than 1/n of inputs

⇒ local approximate list-decoder A=DecA’ should

compute L correctly on more than 1 - 1/n of inputs

⇒ problem: Dec only succeeds with low probability

>   getting strong average-case hardness



Worst-case to average-case reductions

   >   Def: 

M is an instance checker for f if

   >   Pr[ Mf(x) = f(x) ] = 1

   >   ∀O, Pr[ MO(x) ∉ { f(x), ⊥ } ] ≤ .01 

>   via new instance checkers



   >   Revised approach: (after building an instance checker)

⇒ L is hard, every n20-time alg fails on 1/n of inputs

⇒ reduce L to L’ that has a good instance checker, 

argue that hardness is preserved

⇒ encode L’ to L’’ with (say) direct product, argue that

every n10-time alg fails on 1-1/n of inputs … right?

Worst-case to average-case reductions
>   via new instance checkers



   >   Def: 

M is an (ε, ε’)-tolerant instance checker for f if

   >   f’ agrees with f on 1-ε of inputs

⇒  for 1-ε’ of inputs, Pr[ Mf’(x) = f(x) ] ≥ ⅔ 

   >   ∀O, Pr[ MO(x) ∉ { f(x), ⊥ } ] ≤ .01 

Worst-case to average-case reductions
>   via new instance checkers



Worst-case to average-case reductions
>   via new instance checkers

   >   because of infinitely-often
vs almost-always issues,

which are under the rug,

the instance checker will 
need to tolerate very high 
corruption, think ε ≈ 1/n 
instead of 1 - ε ≈ 1-1/n



   >   Working approach: (w/ tolerant instance checker)

⇒ L is hard, every n20-time alg fails on 1/n of inputs

⇒ reduce L to L’ that has a good tolerant instance 

checker, argue that hardness is preserved

⇒ encode L’ to L’’ with (say) direct product, argue that

every n10-time alg fails on 1-1/n of inputs

Worst-case to average-case reductions
>   via new instance checkers



   >   Prop: Every L ∈ lu-SIZEDEPTH[ T, d ] is reducible in linear

time to L’ ∈ lu-SIZEDEPTH[ TO(1), d ⋅ polylog(T) ] that has a 

same-length tolerant instance checker running in

time poly( d, log(T), n ).

Worst-case to average-case reductions
>   via new instance checkers



   >   Prop: There is L that’s complete for SPACE[ O(n) ] under 

linear-time reductions and has a same-length tolerant 

instance checker running in time poly(n).

 ⇒ optimal wc2ac for computing SPACE[ O(n) ]

by probabilistic algorithms

Worst-case to average-case reductions
>   via new instance checkers



Technical contribution
>   optimal worst-case to average-case results

   >   Thm:  ∀ nice ε > 0 

SPACE[ O(n) ] ⊄ io-BPTIME[ T ] 

⇒ SPACE[ O(n) ] ⊄ io-avg½+εBPTIME[ T’ ],

where T’ = T(n/c) ⋅ poly(ε/n).



Instance checker construction
>   ideas

   >   Instance checker based on [GKR’15] proof system

x ↦ ( x, i, j )

verifier messageround

   >   pretend that the proof system is history-independent

(in actuality it depends only on last O(1) rounds)



Instance checker construction
>   ideas

   >   Instance checker based on [GKR’15] proof system

x ↦ ( x, i, j )

verifier messageround

   >   #rounds ≈ d < T ⇒ |i| ≤ O(log T)

   >   #coins ≈ O(log T) ⇒ |j| = O(log T)



Instance checker construction
>   ideas

   >   Instance checker based on [GKR’15] proof system

x ↦ ( x, i, j )

verifier messageround

   >   trivial linear-time reduction from original problem

   >   prover is efficient ⇒ complexity upper-bound is preserved

   >   verifier is super-efficient ⇒ fast same-length instance checker



Instance checker construction
>   ideas

   >   Instance checker based on [GKR’15] proof system

x ↦ ( x, i, j )

verifier messageround

   >   problem: it’s not tolerant!

   >   adversary can corrupt (say) only the last round



Instance checker construction
>   ideas

   >   Instance checker based on [GKR’15] proof system

x ↦ ( x, i’, j )

   >   px can self-correct from errors

   ⇒  doesn’t matter if error concentrated on one i

px(i’,j) = interpolates the ≈ n2 polynomials



4 Open problems

   1.   Classical missing piece

   2.   Fine-grained assumptions

  3.   Results, constructions, proof ideas



Open problems
>   classical “hardness vs randomness” framework still isn’t complete!

   1.   Polytime derand from hardness in TIME[ 2n ]

(and then!) from fine-grained hardness in P

   2.   Strengthen conclusion to BPP = P on avg

   >   goal: construct a computational merger

   3.   Prove smooth tradeoffs

   >   match the non-uniform setting



Thank you!

⇒ breaking through a classical barrier
⇒ derand from natural fine-grained hardness

⇒ lots of open questions in hardness vs randomness


