
Unstructured hardness to
average-case randomness
Lijie Chen and Ron Rothblum and Roei Tell
Simons, Feb 2023

Context
> what are we doing here?

 > Recall that BPP = P if:

 > TIME[2n] is hard for circuits of size 2ε⋅n [NW94, IW97]

 > TIMEDEPTH[n100, n2] is almost-all-inputs hard for

probabilistic time n20 [CT21b, LP22a, LP22b, vMS23, …]

1 it’s actually promiseBPP = promiseP, but I’ll ignore it throughout the talk

Context
> what are we doing here?

 > What if we only want BPP ⊆ P “on average”?

[IW98, GW02, CIS18]

1 “on average” = the derandomization succeeds on 1-1/n of inputs (over the uniform distribution)

Context
> what are we doing here?

 > What if we only want BPP ⊆ P “on average”?

 > standard hardness for algorithms?

[IW98, GW02, CIS18]

1 “on average” = the derandomization succeeds on 1-1/n of inputs (over the uniform distribution)

Context
> what are we doing here?

 > What if we only want BPP ⊆ P “on average”?

 > standard hardness for algorithms?

 > weak and intuitive assumptions?

[IW98, GW02, CIS18]

1 “on average” = the derandomization succeeds on 1-1/n of inputs (over the uniform distribution)

 > Thm: Assume that counting k-cliques requires

probabilistic time nc(k), where c(k) grows with k.

Then, RP = P on average.

A sample theorem
> … jumping way ahead

1 “on average” = the derandomization succeeds on 1-1/n of inputs (over the uniform distribution)

Plan
> let’s do it

 1. A classical missing piece in hardness vs randomness

 2. A natural and intuitive setting for hardness vs randomness

 3. Some constructions & proof ideas

> targeted PRGs, tolerant instance checkers, worst-case to avg-case

1 Classical missing piece

 1. Classical missing piece

 2. Fine-grained assumptions

 3. Constructions and proof ideas

Hardness vs randomness
> historic recap

 > Main focus is equivalence between explicit

 > Lower bounds for circuits

 > Pseudorandom generators for circuits

used for
derandomization

log-seed PRG for ckts

Hardness vs randomness
> historic recap

 > Main focus is equivalence between explicit

 > Lower bounds for circuits

 > Pseudorandom generators for circuits

TIME[2n] ⊄ ioSIZE[2.01⋅n]

[NW94,IW97]

Hardness vs randomness
> historic recap

 > Main focus is equivalence between explicit

 > Lower bounds for circuits

 > Pseudorandom generators for circuits

TIME[2n] ⊄ ioSIZE[2.01⋅n]

BPP = P

log-seed PRG for ckts

[NW94,IW97]

General smooth tradeoff
> proved in [SU02, Uma03]

S

T

poly(n)

poly(n)

2ε⋅n

2ε⋅n

TIME[2n] ⊄ SIZE[S]
⇒

BPTIME[n] ⊆ DTIME[T]

hardness

derand
speed

T = 2^{ O(S-1(nO(1))) }

 > Second focus is equivalence between explicit

 > Lower bounds for uniform probabilistic algs

 > PRGs for uniform probabilistic distinguishers

Hardness vs randomness
> historic recap

equivalent to
average-case
derandomization

Hardness vs randomness
> historic recap

TIME[2n] ⊄ BPP BPP ⊆ ioSUBEXP
on average

 > Second focus is equivalence between explicit

 > Lower bounds for uniform probabilistic algs

 > PRGs for uniform probabilistic distinguishers

[IW98]

Hardness vs randomness
> historic recap

 > infinitely-often
vs

almost-always

 > average-case over
which distribution

(⇒ always uniform)

General smooth tradeoff
> an analogous “ideal” result

Tlb

T

poly(n)

poly(n)

2ε⋅n

2ε⋅n

TIME[2n] ⊄ BPTIME[Tlb]
⇒

BPTIME[n] ⊆ avg-DTIME[T]
what we
hope for

A non-smooth tradeoff
> best known result [IW98]

Tlb

T

poly(n)

poly(n)

2ε⋅n

2ε⋅n

what we
know

TIME[2n] ⊄ BPTIME[Tlb]
⇒

BPTIME[n] ⊆ avg-DTIME[T]

Proof approach
> reconstruction argument

 > Proof by a reconstruction argument:

 > break the PRG ⇒ “efficiently” compute the hard func

 > Reconstruction hard-wires non-uniform advice

⇒ yields a circuit computing the hard func

⇒ we assume hardness for circuits

Proof approach
> uniform reconstruction arguments

 > Proof by a uniform reconstruction argument:

 > break the PRG ⇒ compute the hard func by a uniform alg

 > Reconstruction has to be a uniform algorithm

 > Problem: No efficient uniform reconstruction for

arbitrary functions in time 2n

 > Idea [IW98, CNS99, TV02]: Use specific hard functions

that have “nice” structural properties

 > downward self-reducible + random self-reducible

 > Uniform reconstruction, relying on nice properties

Classical barrier
> uniform reconstruction arguments

> best known result for PSPACE [TV02, CRTY20]

Tlb

T

poly(n)

poly(n)

2ε⋅n

2ε⋅n

A tradeoff for specific functions

TQBF ⊄ BPTIME[Tlb]
⇒

BPTIME[n] ⊆ avg-DTIME[T]

TQBF ⊄ BPTIME[Tlb]
⇒

BPTIME[n] ⊆ avg-DTIME[T]

> best known result for PSPACE [TV02, CRTY20]

Tlb

T

poly(n)

poly(n)

2ε⋅n

2ε⋅n

specific func
in pspace

derand still in
super-poly time

A tradeoff for specific functions

 > Limitations of the idea:

 1. such funcs (provably) exist only in PSPACE

 2. these are very specific funcs

 3. known suitable funcs aren’t hard enough

 4. arguments incur runtime overheads

Classical barrier
> uniform reconstruction arguments

Tlb

T

poly(n)

poly(n)

2ε⋅n

2ε⋅n

Ƈ ⊄ BPTIME[Tlb]
⇒

RTIME[n] ⊆ avg-DTIME[T]

> informal diagram

First main result

Tlb

T

poly(n)

poly(n)

2ε⋅n

2ε⋅n

Ƈ ⊄ BPTIME[Tlb]
⇒

RTIME[n] ⊆ avg-DTIME[T]

> informal diagram

First main result

Ƈ ⊄ BPTIME[Tlb]
⇒

RTIME[n] ⊆ avg-DTIME[T]

Tlb

T

poly(n)

poly(n)

2ε⋅n

2ε⋅n

class extends
beyond pspace

polytime
derand

> informal diagram

First main result

Tlb

T

poly(n)

poly(n)

2ε⋅n

2ε⋅n

polytime
derand

> informal diagram

First main result

one-sided error

Ƈ ⊄ BPTIME[Tlb]
⇒

RTIME[n] ⊆ avg-DTIME[T]
class extends
beyond pspace

> breaking the PSPACE barrier, getting polytime derand

First main result

 > Thm 1: For Ƈ = lu-SIZEDEPTH[2O(n), 2o(n)]

Ƈ ⊄ BPTIME[2ε⋅n] ⇒ RP ⊆ avg-P

1 lu = logspace-uniform = printable by a machine using space logarithmic in the circuit size

> breaking the PSPACE barrier, getting polytime derand

First main result

 > Thm 1: For Ƈ = lu-SIZEDEPTH[2O(n), 2o(n)]

Ƈ ⊄ BPTIME[2ε⋅n] ⇒ RP ⊆ avg-P

Ƈ ⊄ BPTIME[T] ⇒ RP ⊆ avg-TIME[2t(n)]
t(n) = T-1(poly(n))2 / O(log n)

1 lu = logspace-uniform = printable by a machine using space logarithmic in the circuit size

> breaking the PSPACE barrier, getting polytime derand

First main result

 > Thm 1: For Ƈ = lu-SIZEDEPTH[2O(n), 2o(n)]

Ƈ ⊄ BPTIME[2ε⋅n] ⇒ BPP ⊆ avg-P / O(log n)

Ƈ ⊄ BPTIME[T] ⇒ BPP ⊆ avg-P / a(n)
t(n) = T-1(poly(n))2 / O(log n)
a(n) = o(T-1(poly(n)) + O(log T-1(n))

> breaking the PSPACE barrier, getting polytime derand

First main result

 > Thm 1: For Ƈ = lu-SIZEDEPTH[2O(n), 2o(n)]

Ƈ ⊄ BPTIME[2ε⋅n] ⇒ RP ⊆ avg-P

 > Ƈ ∋ TQBF, likely contains funcs outside PSPACE

 > no “special structure” needed, any func in Ƈ will do

 > polytime derandomization

1 lu = logspace-uniform = printable by a machine using space logarithmic in the circuit size

> breaking the PSPACE barrier, getting polytime derand

First main result

 > Thm 1: For Ƈ = lu-SIZEDEPTH[2O(n), 2o(n)]

Ƈ ⊄ BPTIME[2ε⋅n] ⇒ RP ⊆ avg-P

 > derand only of RP, or of BPP but with advice

 > Ƈ seems like a proper subset of TIME[2n]

 > tradeoff isn’t perfectly smooth

1 lu = logspace-uniform = printable by a machine using space logarithmic in the circuit size

2 Derand from fine-grained
hardness assumptions

 1. Classical missing piece

 2. Fine-grained assumptions

 3. Constructions and proof ideas

The general question
> natural hardness assumptions

 > Motivating question: Can we deduce derandomization

from hardness for natural problems?

 > Nice setting: Fine-grained hardness for problems in P

 > rich study of k-clique, k-OV, k-SUM, …

 > Key point: This is trying to do something harder

 > hardness in TIME[2n] is stronger assumption

Typically correct derandomization
> non-uniform hardness [GW02, MS05, Sha10, Sha11, KvMS12]

 > Thm [KvMS12]: Assume that ∀c there’s Lc ∈ P that’s

(1/n)-hard for circuits of size nc. Then, BPP ⊆ avg-P.

Typically correct derandomization
> non-uniform hardness [GW02, MS05, Sha10, Sha11, KvMS12]

 > Thm [KvMS12]: Assume that ∀c there’s Lc ∈ P that’s

(1/n)-hard for circuits of size nc. Then, BPP ⊆ avg-P.

 > clean and general result …

 > … but hardness is for non-uniform circuits

 > … and also requires mild average-case hardness

Typically correct derandomization
> non-uniform hardness [GW02, MS05, Sha10, Sha11, KvMS12]

 > Thm [KvMS12]: Assume that ∀c there’s Lc ∈ P that’s

(1/n)-hard for circuits of size nc. Then, BPP ⊆ avg-P.

 > Goal: Get a uniform analogue

 > lower bounds for machines, no advice

 > uniform hypothesis is necessary

Problem-centric derandomization
> hardness for specific problems

 > Thm [CIS18]: Assume that ∀k, counting k-cliques is

hard for probabilistic algorithms that run in time n(½+ε)⋅k.

Then, BPP ⊆ avg-P.

> hardness for specific problems

 > Thm [CIS18]: Assume that ∀k, counting k-cliques is

hard for probabilistic algorithms that run in time n(½+ε)⋅k.

Then, BPP ⊆ avg-P.

 > uniform hardness assumption …

 > … but for specific problems with “nice structure”

 > … and requires specific hardness

Problem-centric derandomization

> hardness for specific problems

 > Thm [CIS18]: Assume that ∀k, counting k-cliques is

hard for probabilistic algorithms that run in time n(½+ε)⋅k.

Then, BPP ⊆ avg-P.

 > Goal: Be more general wrt function & time bound

Problem-centric derandomization

Second main result
> derandomization from weak fine-grained hardness

 > Thm 2: Assume that for every c ∈ N there’s

Lc ∈ lu-TIMEDEPTH[nO(1), n2] that’s (1/n)-hard for

probabilistic time nc.

Then, RP = P on average.

 > Thm 3: Assume that for every c ∈ N there’s Lc computable

by lu arithmetic formulas of polysize and degree n2 over

GF(nO(1)) that’s hard for probabilistic time nc.

Then, RP = P on average.

Third main result
> derandomization from weak fine-grained hardness

 > Proof idea:

⇒ efficiently balance low-degree formulas → low depth

⇒ amplify worst-case hard ⇒ mild avgcase hard

(because these are still low-degree formulas)

⇒ appeal to Thm 2 as a black box

Third main result
> derandomization from weak fine-grained hardness

3 Constructions and proof ideas

 1. Classical missing piece

 2. Fine-grained assumptions

 3. Constructions and proof ideas

Natural hardness assumptions
> unstructured hardness in P

 > Thm 2: Assume that for every c ∈ N there’s

Lc ∈ lu-TIMEDEPTH[nO(1), n2] that’s (1/n)-hard for

probabilistic time nc.

Then, RP = P on average.

Basic building block

 > Prop: For every f ∈ lu-SIZEDEPTH[n100, n2] there is a

targeted HSG Hf that gets input x, prints a list of n-bit

strings, and: ∀ time-n machine M & ∀ fixed x,

Hf(x) isn’t pseudorandom for M(x,⋅)

⇒ Pr[FM(x) = f(x)] ≥ ⅔, where FM runs in time n10

> refinement of a construction from [CT21]

Basic building block

 > Prop: For every f ∈ lu-SIZEDEPTH[T, d] there is a

targeted HSG Hf that gets input x, prints a list of T.01-bit

strings, and: ∀ time-T.01 machine M & ∀ fixed x,

Hf(x) isn’t pseudorandom for M(x,⋅)

⇒ Pr[FM(x) = f(x)] ≥ ⅔ , FM runs in time poly(d,n)⋅T.02

> refinement of a construction from [CT21]

Basic building block

 > Key points:

 > f is hard on x for time n10

⇒ Hf pseudorandom on x

 > any f ∈ lu-SIZEDEPTH[n100, n2] will do

> refinement of a construction from [CT21]

Proof idea

 > Idea: Use the targeted HSG, rely on instance-wise

hardness vs randomness

f hard in the
worst case

f hard on 99%
of inputs

derand on
99% of inputs

> use the tarHSG for derandomization

Proof idea

 > Idea: Use the targeted HSG, rely on instance-wise

hardness vs randomness

not known for the
relevant classes!

f hard in the
worst case

f hard on 99%
of inputs

derand on
99% of inputs

> use the tarHSG for derandomization

Proof idea
> getting strong average-case hardness

 > High-level approach:

1. L is hard, every n20-time alg fails on 1/n of inputs

2. encode L to L’ by an efficient code (approximately

locally list-decodable), say direct product

3. L’ is hard, every n10-time alg fails on 1-1/n of inputs

… right?

Proof idea

 > What goes wrong?

⇒ fix an algorithm A’ computing L’ correctly on

more than 1/n of inputs

⇒ local approximate list-decoder A=DecA’ should

compute L correctly on more than 1 - 1/n of inputs

⇒ problem: Dec only succeeds with low probability

> getting strong average-case hardness

Worst-case to average-case reductions

 > Def:

M is an instance checker for f if

 > Pr[Mf(x) = f(x)] = 1

 > ∀O, Pr[MO(x) ∉ { f(x), ⊥ }] ≤ .01

> via new instance checkers

 > Revised approach: (after building an instance checker)

⇒ L is hard, every n20-time alg fails on 1/n of inputs

⇒ reduce L to L’ that has a good instance checker,

argue that hardness is preserved

⇒ encode L’ to L’’ with (say) direct product, argue that

every n10-time alg fails on 1-1/n of inputs … right?

Worst-case to average-case reductions
> via new instance checkers

 > Def:

M is an (ε, ε’)-tolerant instance checker for f if

 > f’ agrees with f on 1-ε of inputs

⇒ for 1-ε’ of inputs, Pr[Mf’(x) = f(x)] ≥ ⅔

 > ∀O, Pr[MO(x) ∉ { f(x), ⊥ }] ≤ .01

Worst-case to average-case reductions
> via new instance checkers

Worst-case to average-case reductions
> via new instance checkers

 > because of infinitely-often
vs almost-always issues,

which are under the rug,

the instance checker will
need to tolerate very high
corruption, think ε ≈ 1/n
instead of 1 - ε ≈ 1-1/n

 > Working approach: (w/ tolerant instance checker)

⇒ L is hard, every n20-time alg fails on 1/n of inputs

⇒ reduce L to L’ that has a good tolerant instance

checker, argue that hardness is preserved

⇒ encode L’ to L’’ with (say) direct product, argue that

every n10-time alg fails on 1-1/n of inputs

Worst-case to average-case reductions
> via new instance checkers

 > Prop: Every L ∈ lu-SIZEDEPTH[T, d] is reducible in linear

time to L’ ∈ lu-SIZEDEPTH[TO(1), d ⋅ polylog(T)] that has a

same-length tolerant instance checker running in

time poly(d, log(T), n).

Worst-case to average-case reductions
> via new instance checkers

 > Prop: There is L that’s complete for SPACE[O(n)] under

linear-time reductions and has a same-length tolerant

instance checker running in time poly(n).

 ⇒ optimal wc2ac for computing SPACE[O(n)]

by probabilistic algorithms

Worst-case to average-case reductions
> via new instance checkers

Technical contribution
> optimal worst-case to average-case results

 > Thm: ∀ nice ε > 0

SPACE[O(n)] ⊄ io-BPTIME[T]

⇒ SPACE[O(n)] ⊄ io-avg½+εBPTIME[T’],

where T’ = T(n/c) ⋅ poly(ε/n).

Instance checker construction
> ideas

 > Instance checker based on [GKR’15] proof system

x ↦ (x, i, j)

verifier messageround

 > pretend that the proof system is history-independent

(in actuality it depends only on last O(1) rounds)

Instance checker construction
> ideas

 > Instance checker based on [GKR’15] proof system

x ↦ (x, i, j)

verifier messageround

 > #rounds ≈ d < T ⇒ |i| ≤ O(log T)

 > #coins ≈ O(log T) ⇒ |j| = O(log T)

Instance checker construction
> ideas

 > Instance checker based on [GKR’15] proof system

x ↦ (x, i, j)

verifier messageround

 > trivial linear-time reduction from original problem

 > prover is efficient ⇒ complexity upper-bound is preserved

 > verifier is super-efficient ⇒ fast same-length instance checker

Instance checker construction
> ideas

 > Instance checker based on [GKR’15] proof system

x ↦ (x, i, j)

verifier messageround

 > problem: it’s not tolerant!

 > adversary can corrupt (say) only the last round

Instance checker construction
> ideas

 > Instance checker based on [GKR’15] proof system

x ↦ (x, i’, j)

 > px can self-correct from errors

 ⇒ doesn’t matter if error concentrated on one i

px(i’,j) = interpolates the ≈ n2 polynomials

4 Open problems

 1. Classical missing piece

 2. Fine-grained assumptions

 3. Results, constructions, proof ideas

Open problems
> classical “hardness vs randomness” framework still isn’t complete!

 1. Polytime derand from hardness in TIME[2n]

(and then!) from fine-grained hardness in P

 2. Strengthen conclusion to BPP = P on avg

 > goal: construct a computational merger

 3. Prove smooth tradeoffs

 > match the non-uniform setting

Thank you!

⇒ breaking through a classical barrier
⇒ derand from natural fine-grained hardness

⇒ lots of open questions in hardness vs randomness

