Learning Safe Action Models

Brendan Juba

Washington University in St. Louis

-|_—_|-
T2

Based on joint works with
Hai S. Le, Washington University in St. Louis

Roni Stern, Ben Gurion University
Argaman Mordoch, Ben Gurion University

Enrico Scala, university of Brescia

@ Problem: learning a safe action model
@ Algorithm for basic STRIPS models
@ Learnability of representations

@ Learnability of conditional effects

Domain Independent Planning

(6 A Real World
Planning Problem

Action: Move(A,B)

Pre: TruckAt=A

Eff: TruckAt=B

Action: Pickup(B)

Pre: (TruckAt=B,
PackageAt=B)

Eff: (Packageat=Truck) = Al Planner 1. Move(A,B)
..... - 2. Pickup(B)
3. Move(B,C)

Plan 4. Unload(C)

STRIPS action models

 Domain: Actions A and “Fluents” F (relations)

— Parameterized by fixed set of (typed) arguments
e.g., Move(truck t, location x, location y)
At(truck t, location x)

* Action Model: preconditions and effects for
each actionin A
— Preconditions: a conjunction of literals on fluents.
— Effects: a set of literals on fluents.

— We assume these fluents’ arguments are action
parameters (e.g., as above).

STRIPS problems

 Domain: Actions A and “Fluents” F (relations)
* Action Model: preconditions and effects for
each action in A
— Preconditions: a conjunction of literals on fluents.

— Effects: a set of literals on fluents.

* Problem: objects O, initial state s,, and goal g.
— Grounded fluents: fluents bound to 0€0O
— States: Boolean valuations of grounded fluents
— Goal: a conjunction of literals on grounded fluents

* Plan: a sequence of actions bound to o€O.

STRIPS axioms

* Trajectory: sequence of states s,,...,s; and
grounded actions a,,...,a;_, satisfying the
STRIPS axioms: for each triple (Predction, Pose)

1. The precondition of action a, is satisfied in s, ,
2. Each effect literal of action a, is satisfied in s,

3. Each literal that is not an effect of action a,
and satisfied in s, , is satisfied in s,

* Solution to a planning problem: a plan s.t.
the trajectory with given s, satisfies g(s-)

Domain Independent Planning

Real Wo
Planning Prc

Al Planner
-

Plan

The Problem: How to Model the World

Real World
Planning Problem

Al Planner
- -

Plan

Naive approach 1

e Supervised learning? Pre-state <= input,
post-state <> output, i.e., s,,, = a(s,)

® Distribution shift: plans that reach erroneous
states may appear better to planner

® Preconditions are always true in trajectories!

Prior work on learning planning models

* Learning a PDDL model and planning with it, e.g.,
FAMA (Aineto et al.), ARMS (Yang et al.),
LOCM (Cresswell et al.)

— Trial-and-error + analysis of past plan executions

* Reinforcement learning

Learning to Plan

ooy
O
Real World =p :g M ¢ Move, g
. M“‘. (A) |
Planning Problem Te e
) VAR
/ PDDL [Observations}
Exploration
. . e
actions - \
Al Planner Al Learner
P

Plan

Prior work on learning planning models

* Learning a PDDL model and planning with it, e.g.,
FAMA (Aineto et al.), ARMS (Yang et al.),
LOCM (Cresswell et al.)

— Trial-and-error + analysis of past plan executions

* Reinforcement learning

Risky exploration is not an option

Real World
Planning Problem

)’

Exploration
actions

Al Planner Al Learner
-

Plan

* Exploration is unsafe:

conservative learning with
trajectories from an expert

Learning Planning Models

High-level, long time-scale problems
Produces reusable domain model

Large, declaratively described state space

Little training data required

Assumes known domain structure
(predicates, signatures, etc.)

Reinforcement Learning

Low-level, short time-scale problems “

Produces policy optimizing fixed reward

Small unstructured state space or
linear structured (small basis) state space
Data-intensive

Few assumptions necessary:
raw sensor data

Naive approach 2

* Exact learning?

® Impossible: example trajectories may not be
adequate to identify action model
E.g.: if fluent f is always true when action a is
taken and remains true afterwards,
f may or may not be an effect of a.

Key Assumption: Stationary Distribution

Train and test are drawn from the same distribution

What does this mean in planning?

* There is a distribution D over planning problems

 We are given trajectories executing plans solving
problems drawn from D

* Future problems will also be drawn from D

Action Model Learning

* Given: trajectories of plans for problems from D

Do A at state S, and get to state S,
Do B at state S, and get to state S,

* Not given: how actions change the world

What does A do? (effects)
When can | do A? (preconditions)

* Task: learn an action model for planning

Safe Action Model Learning Guarantees

» Safe action model: Only allow action a if
— you are sure it satisfies the precondition and
— you know what the post state will be

* Probably Approximately Complete

action model:
— (Probably) w.p. 1-6 learn an action model s.t.

— (Approximately Complete) w.p. 1-€ action model permits
solving a new problem drawn from D

Remark: action model = nondeterministic alg.

* Fluents: HeadAt(i), oAt(i) for each oin 2,
Adjacent(i,j), Stateq for each g in Q.

e Actions: Aoqgk(i,j) foreachoinZ,qinQ,
k=1,...,[max relation size]
— Pre: HeadAt(i), oAt(i), Adjacent(i,j) or Adjacent(j,i)
— Effect: HeadAt(j),~HeadAt(i), o’At(i), ~oAt(i)

* Problem: let o contain tape cells i=1,...,p(n),
S, encode input x, Stateq,, Adjacent(i,i+1)
goal: StateAccept

* Plan exists & NTM accepts x in space p(n)

@ Problem: learning a safe action model

@ Algorithm for basic STRIPS models

@ Learnability of representations

@ Learning models of stochastic environments

Learning Safe Models

3

STRIPS axioms =» Conservative Learning

Each precondition literal of action a is satisfied in pre
. Each literal unsatisfied in pre isn’t a precondition of a

Each effect literal of action a is satisfied in post

. Each literal unsatisfied in post isn’t an effect of a

Each literal that is not an effect of action a and
satisfied in pre is satisfied in post

. Each literal that is satisfied in post but not pre
is an effect of a

Learning Safe Models

STRIPS axioms =» Conservative Learning

Observation #1

Observation #2

Learned
action model

Move, g

Pre:
At(truck,A),
At(package,C)

Move; .

Learning Safe Models

STRIPS axioms =» Conservative Learning

Observation #1

Observation #2

Learned
action model

Move, g

Pre:
At(truck,A)

Move; .

Pickg

Learning Safe Models

Conservative Learning =2 Safe Models

1. lis a precondition of a if

pre(@) <[] s
it holds in all pre-states (#,0,6") €7 (a)
2. l'is an effect of a if it holds) 5'\sCeffla)

in a post- but not pre-state (sa<)eT(@

Key point: every effect either appears in every pre-state or is absent in one.

If it ever is absent from a pre-state, it is included in the effects of a.

If it is always present in the pre-state, it is in the conservative precondition.
Then since the negation is not also an effect, the fluent holds in the post-state.
Therefore: the model always predicts this fluent holds, so the model is safe.

Safe models can be learned efficiently

Theorem: Given m2>1/_(21In 3 |A||F| + Int/;) trajectories,
with probability at least 1-6 the conservative action model
permits solving a new problem with probability at least 1-&.

Furthermore, we can find the conservative action model in
O(m|F| + |A||F|) time.
(A: set of actions, F: set of fluents)

 (Probably) 1—4d prob. to learn an action model s.t.

« (Approximately) 1—é€prob. to solve a given problem

Proof Outline: Adequate Action Models

An action model is adequate for plans N from D
iff w.h.p. its pre-conditions allow executing I

Lemma: with high probability,
the conservative action model is adequate for D

Proof Outline: Adequate Action Model

An action model is e-adequate for D iff the prob.
pre (a) doesn’t hold for someainMis <&
T The learned pre-conditions]

Lemma: an action model that isn’t e-adequate for D
is consistent with trajectories with probability < e®m

Proof outline:

* If the action model is not e-adequate,
some a was not observed in a state s with pre (a) s

"By definition, consistent w.p. £ (1-g)™ < e*"H

Proof Outline: Counting Action Models

Theorem: Given m >1/_(21In 3 [A||F| +Inl/;) trajectories,

with probability at least 1-0 the conservative action model

permits solving a new problem with probability at least 1-¢
Lemma: an action model that isn’t e-adequate for D
is consistent with trajectories with probability < e®™m

Proof Outline:

* There are 3IFl possible preconditions and 3!Fl
possible effects per action: 32IFIIAl models.

 The conservative action model can be each of
the e-inadequate models with probability
<§/32IFIIAl =>¢e-adequate with probability 1-61

Lifted Planning Domain

 The number of grounded actions for a lifted

action grows polynomially with the number
of domain objects: a)

Move(truck x, location y, location z)fj‘
Move(truck, A, B) Move(truck, C, A)

Move(truck, A, C) Move(truck, C, B)
Move(truck, B, C) Move(truck, B, A)

How do we learn a lifted representation?

29

Lifted Action Model Learning: Assumptions

e Action model is given by lifted literals but
trajectories are given by grounded literals.

* Infer lifted literals for the action model from
grounded literals that appear in trajectories
using two assumptions:

— All the preconditions and effects are bound to
action parameters.

— The bindings are unique: the same object is not
bound to two different parameters of the action.
(injective binding assumption)

30

Lifted Action Model Learning: Algorithm

* Since we assume bindings are injective,
bindings may be inverted:
ground literals can be mapped back to
lifted literals with action parameters
(only parameter-bound literals in eff and pre)

* Apply the inference rules on the lifted literals:
For each (s,a,s’) triplet in the trajectories,

— Mark each lifted literal falsified in s as
not in pre/(a)

— Mark each lifted literal satisfied in s” but not s as
in eff (a)

y r
Move(truck, A,B)
v N

(pre-state, action, post-state)

At(package, B)
At(truck, A)
Not(At(truck, B))
Not(At(truck, C))
Not(At(package, A))
Not(At(package, C))
Not(On(truck, package))

Move(object x, loc y, loc z):
Precondition: At(x, y), —At(x, y),
At(x, z), ~At(x, z)

Effect: @

At(package, B)
At(truck, B)
Not(At(truck, A))
Not(At(truck, C))
Not(At(package, A))
Not(At(package, C))
Not(On(truck, package))

Move(object x, loc y, loc z):

SAM Precondition: At(x, y),
Learning -At(x, z)
Effect: At(x, z), ~At(x, y)

32

@ Problem: learning a safe action model
@ Algorithm for basic STRIPS models

@ Learnability of representations

@ Learnability of conditional effects

Learning Theory Questions

 How rich a family of action models can be
learned safely and efficiently?

— What classes of preconditions can be learned
safely and efficiently?

— What classes of effects can be learned safely and
efficiently?

— Can we learn probabilistic effects? (not today...)

e Other questions, also not today: other
observation models? E.qg., partial info, noise, ...

Preconditions: positive-only learning

Observation 1: supervised learning
from positive examples for C reduces
to safe action model learning with
preconditions from C.

* Natarajan ‘91: Optimal safe concept is the
intersection of all consistent concepts.

* E.g., halfspaces = convex hull

* Kearns-Li-Pitt-Valiant ‘87: disjunctions not
learnable

Learnability of numeric preconditions

* Axis-aligned boxes are learnable: X.[min,max]

* Goldberg 92: Halfspaces
are not learnable, even in
two variables.

* Kivinen 95: Complements and

unions of (two) intervals are
PEs Pills Iiie EENEs EDNEEESS NN Mis Nils N
not learnable. I e M aaa

Effects: VC-dimension/approx. interpolation

Observation 2: “approximate interpolation”
for C reduces to safe action model learning

with effects from C. < T

Boolean f:
d is VC-dim(C)

Anthony, Bartlett, Ishai, Shawe-T
If d is the VC-dimension of the fa

[l o= s, <

(where also f*€C) then Q(éil(dﬂogé)) examples are
necessary to obtain with probability 1-6, a e-approx.
interpolation of C on a 1-6,-probability set.

Open question: condition for safety in general?

Extension to numeric domains (char. 0)

Theorem. Suppose observations are errorless.
Then, there is a polynomial time and sample
complexity algorithm for learning safe action
models where

* Preconditions: Conjunctions of univariate
intervals with linear equality constraints

e Effects: Affine functions

Extension to numeric domains (char. 0)

* Preconditions: Conjunctions of univariate
intervals with linear equality constraints

e Effects: Affine functions
Algorithm: For each action a,
* For each coordinate use max/min as interval

* Write subspace containing pre-states in
examples as linear constraints

* Solve for affine effects on subspace
— Note: data has full rank on the subspace it spans

Safety in Numeric Domains

* For each coordinate: max/min interval
contained in true precondition interval

* Subspaces closed under span =
true subspace contains span of observed data

v’ Preconditions are safe

* Observed data has full rank on its span =
affine transformation for effects is uniquely
determined on pre-states satisfying
precondition.

v Effects are also safe

Completeness in Numeric Domains

e Subspaces have VC-dim. nin R"

* |ntervals have VC-dim. 2

e VC-dim of conjunction £ sum of components
* Thus: Preconditions have VC-dimension O(n)

e Standard VC-dimension bound
(Vapnik-Chervonenkis/Blumer-Ehrenfeucht-
Haussler-Warmuth): Any candidate
precondition consistent with @ C%I(nlogéil+logé))
trajectories is 6,-adequate. (Rest as before)®

@ Problem: learning a safe action model
@ Algorithm for basic STRIPS models

@ Learnability of representations

@ Learnability of conditional effects

Conditional effects: definition

Back to Boolean domains.

* Previously: each action had a precondition,
each effect was a literal

* A conditional effect is given by a pair:
an effect literal and an effect condition
where each effect condition is a conjunction.

Conditional effects: semantics

* A conditional effect is given by a pair:
an effect literal and an effect condition
where each effect condition is a conjunction.

STRIPS axioms with conditional effects:

1. Preconditions - as before

2. Each effect literal of action a, with a satisfied
effect condition in s, is satisfied in s,

3. Each literal that is not an effect of action a,
with a satisfied effect condition in s, , and
satisfied in s, , is satisfied in s,

Conditional effects are hard to learn safely

Theorem. Suppose an algorithm given m
examples drawn from D for a domain with
actions A, fluents F, and conditional effects of
size up to k returns a safe action model such
that with probability at least 1-6, the model

permits solving a new problem with probability
at least 1-€. Then

m 2 Q(l/g(|A||F] (|F|/3k)k + log 1/5))
* Exponential in precondition size k

Construction for lower bound

* Fluents: three kinds
— Goal fluents, one per action (except “no-op”)
— Forbidden fluents, half of remaining
— Flag fluents, half of remaining

* |nitial states of problems (uniformly random):
— All goal fluents false
— Exactly one forbidden fluent false

— k flag fluents true

* Goals: wp. 1-4¢, empty. Otherwise at random:
— One goal fluent true, others false
— False forbidden fluent must remain false

Sketch of lower bound

* Exactly one action achieves each nonempty
goal; all others leave goal unattainable.

 |f a set of flag fluents was not observed,
consistent with a conditional effect that sets
forbidden fluent for the goal’s action

= Safe action models cannot solve the problem.

=Must observe % of all settings of flag fluent/
forbidden fluent/goal tuples.

o > (IFl/)KIFL/(|A]-1) such tuples.

* Only observe one per 1/, examples.®

Optimal algorithm for conditional effects

Theorem. For fixed k, for domains with
conditional effects of size k and (k+1)-CNF
preconditions, there is a polynomial-time
algorithm that returns a safe action model with
(k+2)-CNF preconditions (and effect conditions
of size up to |F|). With probability at least 1-6
the action model permits solving a new problem
with probability at least 1-€ when given
Q(Y/.(|A]|F|** +log !/s)) example trajectories.

* Asymptotically optimal sample complexity

Overview of algorithm

* Track for each action:
— (k+1)-width clauses that may be preconditions
— For each candidate effect literal, k-width clauses

* true whenever effect occurred and
e false whenever effect failed to occur

* Observation: The action is safe if for all
candidate conditional effects, either
— The effect literal is satisfied in the pre-state
— All remaining candidate clauses are false (conj.)

— All remaining candidate clauses are true (k-CNF)

* Can rewrite as a (k+2)-CNF by distributing

The safe action model

* Each action has preconditions obtained by

— Conjunction of all (k+1)-width clauses that may be
preconditions with

— (k+2)-CNF for each candidate conditional effect

* Each effect literal has a condition given by the
conjunction of all remaining possible width-k
conditions (may be unsat. - remove it)

» Safety: true precondition clauses included;
when conditional effect clauses satisfied, each
literal is determined, and conditional effect

(only) fires when it occurs in true model.

Analysis of sample complexity

Idea: examine state of data structure tracking
possible remaining clauses. If the corresponding
precondition isn’t 1-e-adequate, then w.p. g,
the trajectory contains a state in which either

— An extraneous precondition clause is falsified

— Some (but not all) candidate conditions are false
and the effect would be observed to occur

— Some (but not all) candidate conditions are true
and the effect would be observed to not occur

* |n each case, a clause is deleted
(and clauses are never added back).

Analysis of sample complexity

* Thus: data structure states corresponding to
inadequate action models eliminated by each
example with probability 1-¢.

— As before, only survive m examples w.p. (1-g)™

* There are 2O(|F |)

per action.

possible precondition states

ol|F| .
* There are 2) possible sets of clauses per

effect literal, per action.
o|A||F .
=Overall:2 (l 4) possible states.

= Union bound for m > Q(*/_(|A| | F|**+ log 1/,))®

Conclusion

* Task: learn a safe planning model
* Approach: learn a conservative action model

e Results: safe, efficient and PAComplete learning for
— Relational STRIPS models
— STRIPS models with conditional effects of small size

— Numeric models with affine effects,
interval and subspace preconditions

Future work
* Learning more general types of stochastic domains

— E.g., distribution on small number of effect sets

e Learning from partial observations
* Learning in continuous state spaces, actions with duration, etc.

