
Learning Safe Action Models
Brendan	Juba	

Washington	University	in	St.	Louis	
Based	on	joint	works	with		

Hai	S.	Le,	Washington	University	in	St.	Louis	
	

	 	Roni	Stern,	Ben	Gurion	University	
	 	Argaman	Mordoch,	Ben	Gurion	University	

	

	 	Enrico	Scala,	University	of	Brescia 	 		

Outline

①  	Problem:	learning	a	safe	action	model	
② 	Algorithm	for	basic	STRIPS	models	
③ 	Learnability	of	representations	
④ 	Learnability	of	conditional	effects	

Domain Independent Planning

PDDL

AI	Planner

Plan

Real	World		
Planning	Problem

Action:	Move(A,B)	
Pre:	TruckAt=A	
Eff:	TruckAt=B	
Action:	Pickup(B)	
Pre:	(TruckAt=B,		

	PackageAt=B)	
Eff:	(PackageAt=Truck)	
…..	

																																						

																																																	

1.  Move(A,B)	
2.  Pickup(B)	
3.  Move(B,C)	
4.  Unload(C)

STRIPS action models

•  Domain:	Actions	A	and	“Fluents”	F	(relations)	
– Parameterized	by	fixed	set	of	(typed)	arguments	
e.g.,	Move(truck	t,	location	x,	location	y)	
	 		At(truck	t,	location	x)	

•  Action	Model:	preconditions	and	effects	for	
each	action	in	A	
– Preconditions:	a	conjunction	of	literals	on	fluents.	
– Effects:	a	set	of	literals	on	fluents.	
– We	assume	these	fluents’	arguments	are	action	
parameters	(e.g.,	as	above).	

STRIPS problems

•  Domain:	Actions	A	and	“Fluents”	F	(relations)	
•  Action	Model:	preconditions	and	effects	for	
each	action	in	A	
– Preconditions:	a	conjunction	of	literals	on	fluents.	
– Effects:	a	set	of	literals	on	fluents.	

•  Problem:	objects	O,	initial	state	s0,	and	goal	g.	
– Grounded	fluents:	fluents	bound	to	o∊O	
– States:	Boolean	valuations	of	grounded	fluents	
– Goal:	a	conjunction	of	literals	on	grounded	fluents	

•  Plan:	a	sequence	of	actions	bound	to	o∊O.	

STRIPS axioms

•  Trajectory:	sequence	of	states	s0,…,sT	and	
grounded	actions	a1,…,aT-1	satisfying	the	
STRIPS	axioms:	for	each	triple	st-1,at,st,	
	
	
	
	
	

•  Solution	to	a	planning	problem:	a	plan	s.t.		
the	trajectory	with	given	s0	satisfies	g(sT)	

1.  The	precondition	of	action	at	is	satisfied	in	st-1	
2.  Each	effect	literal	of	action	at	is	satisfied	in	st	
3.  Each	literal	that	is	not	an	effect	of	action	at	

and	satisfied	in	st-1	is	satisfied	in	st	
	

〈𝑃𝑟𝑒,𝐴𝑐𝑡𝑖𝑜𝑛, 𝑃𝑜𝑠𝑡〉

Domain Independent Planning

PDDL

Plan

Real	World		
Planning	Problem

Real	World		
Planning	Problem

Real	World		
Planning	Problem

Real	World		
Planning	Problem

Real	World		
Planning	Problem

Real	World		
Planning	Problem

Real	World		
Planning	Problem

AI	Planner

The Problem: How to Model the World

PDDL

Plan

?	

AI	Planner

Real	World		
Planning	Problem

Naïve approach 1

•  Supervised	learning?	Pre-state	⟷	input,		
post-state	⟷	output,	i.e.,	st+1	=	a(st)		
✖ Distribution	shift:	plans	that	reach	erroneous	
states	may	appear	better	to	planner	
✖ Preconditions	are	always	true	in	trajectories!	

Prior work on learning planning models

•  	Learning	a	PDDL	model	and	planning	with	it,	e.g.,		
FAMA	(Aineto	et	al.),	ARMS	(Yang	et	al.),		
LOCM	(Cresswell	et	al.)	
–  Trial-and-error	+	analysis	of	past	plan	executions	
	

•  Reinforcement	learning	

Learning to Plan

Real	World		
Planning	Problem

Plan

Observations

AI	Learner AI	Planner

PDDL
Exploration	

actions

Prior work on learning planning models

•  	Learning	a	PDDL	model	and	planning	with	it,	e.g.,		
FAMA	(Aineto	et	al.),	ARMS	(Yang	et	al.),		
LOCM	(Cresswell	et	al.)	
–  Trial-and-error	+	analysis	of	past	plan	executions		
	

•  	Reinforcement	learning	

Not	Safe

Not	Safe

Risky exploration is not an option

Real	World		
Planning	Problem

Plan

Observations

AI	Learner AI	Planner

PDDL
Exploration	

actions

A cousin: Offline Reinforcement Learning

•  Exploration	is	unsafe:	
conservative	learning	with		
trajectories	from	an	expert	

Learning	Planning	Models	 Reinforcement	Learning	
High-level,	long	time-scale	problems	 Low-level,	short	time-scale	problems		

Produces	reusable	domain	model	 Produces	policy	optimizing	fixed	reward	

Large,	declaratively	described	state	space	
	

Small	unstructured	state	space	or	
linear	structured	(small	basis)	state	space	

Little	training	data	required	 Data-intensive	

Assumes	known	domain	structure	
(predicates,	signatures,	etc.)	

Few	assumptions	necessary:		
raw	sensor	data	

Naïve approach 2

•  Exact	learning?	
✖ Impossible:	example	trajectories	may	not	be	
adequate	to	identify	action	model	
E.g.:	if	fluent	f	is	always	true	when	action	a	is	
taken	and	remains	true	afterwards,		
f	may	or	may	not	be	an	effect	of	a.	

Key Assumption: Stationary Distribution

Train	and	test	are	drawn	from	the	same	distribution	
	 	 	What	does	this	mean	in	planning?	

•  There	is	a	distribution	D	over	planning	problems		
•  We	are	given	trajectories	executing	plans	solving	
problems	drawn	from	D	

•  Future	problems	will	also	be	drawn	from	D	

Action Model Learning

•  Given:	trajectories	of	plans	for	problems	from	D			
							Do	A	at	state	S1	and	get	to	state	S2	
								Do	B	at	state	S2	and	get	to	state	S3	

	 	 								…	

•  Not	given:	how	actions	change	the	world	
	What	does	A	do? 	 	(effects)	
	When	can	I	do	A? 	 	(preconditions)	

•  Task:	learn	an	action	model	for	planning	

Safe Action Model Learning Guarantees

•  Safe	action	model:	Only	allow	action	a	if		
– you	are	sure	it	satisfies	the	precondition	and	
– you	know	what	the	post	state	will	be	
	

•  Probably	Approximately	Complete		
action	model:	
–  (Probably)	 w.p.	1-δ	learn	an	action	model	s.t.					
–  (Approximately	Complete)		w.p.	1-ε	action	model	permits	
solving	a	new	problem	drawn	from	D	

Remark: action model = nondeterministic alg.

•  Fluents:	HeadAt(i),	σAt(i)	for	each	σ	in	Σ,	
Adjacent(i,j),	Stateq	for	each	q	in	Q.	

•  Actions:	Δσqk(i,j)	for	each	σ	in	Σ,	q	in	Q,		
k	=	1,…,[max	relation	size]	
– Pre:	HeadAt(i),	σAt(i),	Adjacent(i,j)	or	Adjacent(j,i)	
– Effect:	HeadAt(j),¬HeadAt(i),	σ’At(i),	¬σAt(i)	

•  Problem:	let	o	contain	tape	cells	i=1,…,p(n),		
s0	encode	input	x,	Stateq0,	Adjacent(i,i+1)	
goal:	StateAccept	

•  Plan	exists	⟺	NTM	accepts	x	in	space	p(n)	

Outline

① 	Problem:	learning	a	safe	action	model	
②  	Algorithm	for	basic	STRIPS	models	
③ 	Learnability	of	representations	
④ 	Learning	models	of	stochastic	environments	

Learning Safe Models

STRIPS	axioms	è	Conservative	Learning	
	
1.  Each	precondition	literal	of	action	a	is	satisfied	in	pre	

	
2.  Each	effect	literal	of	action	a	is	satisfied	in	post	

	
3.  Each	literal	that	is	not	an	effect	of	action	a	and	

satisfied	in	pre	is	satisfied	in	post	
	

1. Each	literal	unsatisfied	in	pre	isn’t	a	precondition	of	a	
	

2. Each	literal	unsatisfied	in	post	isn’t	an	effect	of	a	
	
	

3. Each	literal	that	is	satisfied	in	post	but	not	pre		
is	an	effect	of	a	

Learning Safe Models

STRIPS	axioms	è	Conservative	Learning	
	
	

A B C

MoveA,B

MoveB,C

A B C

A B C

MoveA,B	

Learned	
action	model

MoveB,C	

A B C

MoveA,B

PickB

A B C

A B C

Observation	#1 Observation	#2

Pre:	
At(truck,A),	
At(package,C)	

…	

Learning Safe Models

STRIPS	axioms	è	Conservative	Learning	
	
	

A B C

MoveA,B

MoveB,C

A B C

A B C

MoveA,B	

Learned	
action	model

MoveB,C	

A B C

MoveA,B

PickB

A B C

A B C

Observation	#1 Observation	#2

Pre:	
At(truck,A)	

…	

PickB	

Learning Safe Models

Conservative	Learning	è	Safe	Models		
	
1.   l	is	a	precondition	of	a	if	

	it	holds	in	all	pre-states	
2.   l	is	an	effect	of	a	if	it	holds	

	in	a	post-	but	not	pre-state

Key	point:	every	effect	either	appears	in	every	pre-state	or	is	absent	in	one.		
If	it	ever	is	absent	from	a	pre-state,	it	is	included	in	the	effects	of	a.	
If	it	is	always	present	in	the	pre-state,	it	is	in	the	conservative	precondition.	
Then	since	the	negation	is	not	also	an	effect,	the	fluent	holds	in	the	post-state.	
Therefore:	the	model	always	predicts	this	fluent	holds,	so	the	model	is	safe.	

•  (Probably)	𝟏−𝜹 prob.	to	learn	an	action	model	s.t.					

•  (Approximately)	𝟏−𝝐	prob.	to	solve	a	given	problem	

Safe models can be learned efficiently

Theorem:	Given	m	≥	1/ε(2	ln	3	|A||F|	+	ln1/δ)	trajectories,	
with	probability	at	least	1-δ	the	conservative	action	model	
permits	solving	a	new	problem	with	probability	at	least	1-ε.	
	
Furthermore,	we	can	find	the	conservative	action	model	in	
O(m|F|	+	|A||F|)	time.		
	
(A:	set	of	actions,	F:	set	of	fluents)	

Proof Outline: Adequate Action Models

An	action	model	is	adequate	for	plans	Π	from	D	
iff	w.h.p.	its	pre-conditions	allow	executing	Π	

Lemma:	with	high	probability,		
the	conservative	action	model	is	adequate	for	D	

An	action	model	is	ε-adequate	for	D	iff	the	prob.		
preL(a)	doesn’t	hold	for	some	a	in	Π	is	≤	ε	

Proof	outline:	
•  If	the	action	model	is	not	ε-adequate,	
some	a	was	not	observed	in	a	state	s	with	preL(a)	⊄	s	
☞ By	definition,	consistent	w.p.	≤	(1-ε)m	≤	e-εmn	

Proof Outline: Adequate Action Model

The	learned	pre-conditions

Lemma:	an	action	model	that	isn’t	ε-adequate	for	D	
is	consistent	with	trajectories	with	probability	≤	e-εm	

Proof Outline: Counting Action Models

Proof	Outline:	
•  There	are	3|F|	possible	preconditions	and	3|F|	
possible	effects	per	action:	32|F||A|	models.	

•  The	conservative	action	model	can	be	each	of	
the	ε-inadequate	models	with	probability		
≤δ/32|F||A|	⇒ε-adequate	with	probability	1-δn	

Theorem:	Given	m	≥	1/ε(2	ln	3	|A||F|	+	ln1/δ)	trajectories,	
with	probability	at	least	1-δ	the	conservative	action	model	
permits	solving	a	new	problem	with	probability	at	least	1-ε		

Lemma:	an	action	model	that	isn’t	ε-adequate	for	D	
is	consistent	with	trajectories	with	probability	≤	e-εm	

Lifted Planning Domain

•  The	number	of	grounded	actions	for	a	lifted	
action	grows	polynomially	with	the	number	
of	domain	objects:		

Move(truck	x,	location	y,	location	z):	
	 	 	Move(truck,	A,	B) 	Move(truck,	C,	A)	

	 	Move(truck,	A,	C) 	Move(truck,	C,	B)	
	 	Move(truck,	B,	C) 	Move(truck,	B,	A)	

	

How	do	we	learn	a	lifted	representation?	
	

29	

Lifted Action Model Learning: Assumptions

•  Action	model	is	given	by	lifted	literals	but	
trajectories	are	given	by	grounded	literals.	

•  Infer	lifted	literals	for	the	action	model	from	
grounded	literals	that	appear	in	trajectories	
using	two	assumptions:	
– All	the	preconditions	and	effects	are	bound	to	
action	parameters.	

– The	bindings	are	unique:	the	same	object	is	not	
bound	to	two	different	parameters	of	the	action.	
(injective	binding	assumption)	

	
30	

Lifted Action Model Learning: Algorithm

•  Since	we	assume	bindings	are	injective,	
bindings	may	be	inverted:	
ground	literals	can	be	mapped	back	to		
lifted	literals	with	action	parameters	
(only	parameter-bound	literals	in	eff	and	pre)	

•  Apply	the	inference	rules	on	the	lifted	literals:	
For	each	(s,a,s’)	triplet	in	the	trajectories,	
– Mark	each	lifted	literal	falsified	in	s	as		
not	in	preL(a)	

– Mark	each	lifted	literal	satisfied	in	s’	but	not	s	as		
in	effL(a)	

Example

Move(truck,	A,B)

(pre-state,	action,	post-state)
At(package,	B)	

At(truck,	A)		
Not(At(truck,	B))	
Not(At(truck,	C))	

Not(At(package,	A))	
Not(At(package,	C))	

Not(On(truck,	package))	

At(package,	B)	
At(truck,	B)	

Not(At(truck,	A))		
Not(At(truck,	C))	

Not(At(package,	A))	
Not(At(package,	C))	

Not(On(truck,	package))	

Move(object	x,	loc	y,	loc	z):	
Precondition:	At(x,	y),	¬At(x,	y),	

At(x,	z),	¬At(x,	z)		
Effect:	∅	

SAM	
Learning	

32	

Move(object	x,	loc	y,	loc	z):	
Precondition:	At(x,	y),		

¬At(x,	z)		
Effect:	At(x,	z),	¬At(x,	y)	

Outline

① 	Problem:	learning	a	safe	action	model	
② 	Algorithm	for	basic	STRIPS	models	
③  	Learnability	of	representations	
④ 	Learnability	of	conditional	effects	

Learning Theory Questions

•  How	rich	a	family	of	action	models	can	be	
learned	safely	and	efficiently?	
– What	classes	of	preconditions	can	be	learned	
safely	and	efficiently?	

– What	classes	of	effects	can	be	learned	safely	and	
efficiently?	

– Can	we	learn	probabilistic	effects?	(not	today…)	

•  Other	questions,	also	not	today:	other	
observation	models?	E.g.,	partial	info,	noise,…	

Preconditions: positive-only learning

•  Natarajan	‘91:	Optimal	safe	concept	is	the	
intersection	of	all	consistent	concepts.	

•  E.g.,	halfspaces	➡	 ︎convex	hull	
•  Kearns-Li-Pitt-Valiant	‘87:	disjunctions	not	
learnable	

Observation	1:	supervised	learning	
from	positive	examples	for	C	reduces	
to	safe	action	model	learning	with	
preconditions	from	C.	

Learnability of numeric preconditions

•  Axis-aligned	boxes	are	learnable:	Xi[mini,maxi]	
	

•  Goldberg	‘92:	Halfspaces		
are	not	learnable,	even	in		
two	variables.	

•  Kivinen	‘95:	Complements	and	
unions	of	(two)	intervals	are		
not	learnable.	 · · · · · · ·?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	

·

·
·
·
·

··

?	

?	

?	

?	

?	

?	

?	
?	

Effects: VC-dimension/approx. interpolation

Anthony,	Bartlett,	Ishai,	Shawe-Taylor	’96:	
If	d	is	the	VC-dimension	of	the	family	
	
	
(where	also	f*∊C)	then	 	 	 		examples	are	
necessary	to	obtain	with	probability	1-δ2	a	ε-approx.	
interpolation	of	C	on	a	1-δ1-probability	set.	
Open	question:	condition	for	safety	in	general?	

	

Observation	2:	“approximate	interpolation”	
for	C	reduces	to	safe	action	model	learning	
with	effects	from	C.	

I f *(x)− f (x)
∞
≤ ε⎡

⎣
⎤
⎦ : f ∈C{ }

Ω 1
δ1
d + log 1

δ2()()

Boolean	f:		
d	is	VC-dim(C)	

Extension to numeric domains (char. 0)

Theorem.	Suppose	observations	are	errorless.	
Then,	there	is	a	polynomial	time	and	sample	
complexity	algorithm	for	learning	safe	action	
models	where	
•  Preconditions:	Conjunctions	of	univariate	
intervals	with	linear	equality	constraints	

•  Effects:	Affine	functions	

Extension to numeric domains (char. 0)

•  Preconditions:	Conjunctions	of	univariate	
intervals	with	linear	equality	constraints	

•  Effects:	Affine	functions	
Algorithm:	For	each	action	a,	
•  For	each	coordinate	use	max/min	as	interval	
•  Write	subspace	containing	pre-states	in	
examples	as	linear	constraints	

•  Solve	for	affine	effects	on	subspace	
– Note:	data	has	full	rank	on	the	subspace	it	spans	

Safety in Numeric Domains

•  For	each	coordinate:	max/min	interval	
contained	in	true	precondition	interval	

•  Subspaces	closed	under	span	⇒	
true	subspace	contains	span	of	observed	data	

ü Preconditions	are	safe	
•  Observed	data	has	full	rank	on	its	span	⇒	
affine	transformation	for	effects	is	uniquely	
determined	on	pre-states	satisfying	
precondition.	

ü Effects	are	also	safe	

Completeness in Numeric Domains

•  Subspaces	have	VC-dim.	n	in	Rn	
•  Intervals	have	VC-dim.	2	
•  VC-dim	of	conjunction	≤	sum	of	components	
•  Thus:	Preconditions	have	VC-dimension	O(n)	
•  Standard	VC-dimension	bound		
(Vapnik-Chervonenkis/Blumer-Ehrenfeucht-
Haussler-Warmuth):	Any	candidate	
precondition	consistent	with 	 	 					
trajectories	is	δ1-adequate.	(Rest	as	before)n	

Ω 1
δ1
n log n

δ1
+ log 1

δ2()()

Outline

① 	Problem:	learning	a	safe	action	model	
② 	Algorithm	for	basic	STRIPS	models	
③ 	Learnability	of	representations	
④  	Learnability	of	conditional	effects	

Conditional effects: definition

Back	to	Boolean	domains.	
•  Previously:	each	action	had	a	precondition,	
each	effect	was	a	literal	

•  A	conditional	effect	is	given	by	a	pair:		
an	effect	literal	and	an	effect	condition	
where	each	effect	condition	is	a	conjunction.		
	

Conditional effects: semantics

•  A	conditional	effect	is	given	by	a	pair:		
an	effect	literal	and	an	effect	condition	
where	each	effect	condition	is	a	conjunction.	

STRIPS	axioms	with	conditional	effects:	
1. Preconditions	–	as	before	
2.  Each	effect	literal	of	action	at	with	a	satisfied	

effect	condition	in	st-1	is	satisfied	in	st	
3.  Each	literal	that	is	not	an	effect	of	action	at	

with	a	satisfied	effect	condition	in	st-1	and	
satisfied	in	st-1	is	satisfied	in	st	
	

Conditional effects are hard to learn safely

Theorem.	Suppose	an	algorithm	given	m	
examples	drawn	from	D	for	a	domain	with	
actions	A,	fluents	F,	and	conditional	effects	of	
size	up	to	k	returns	a	safe	action	model	such	
that	with	probability	at	least	1-δ,	the	model	
permits	solving	a	new	problem	with	probability	
at	least	1-ε.	Then	

	m	≥	Ω(1/ε(|A||F|(|F|/3k)k	+	log	1/δ))	
•  Exponential	in	precondition	size	k	

Construction for lower bound

•  Fluents:	three	kinds	
– Goal	fluents,	one	per	action	(except	“no-op”)	
– Forbidden	fluents,	half	of	remaining	
– Flag	fluents,	half	of	remaining	

•  Initial	states	of	problems	(uniformly	random):		
– All	goal	fluents	false	
– Exactly	one	forbidden	fluent	false	
– k	flag	fluents	true	

•  Goals:	wp.	1-4ε,	empty.	Otherwise	at	random:	
– One	goal	fluent	true,	others	false	
– False	forbidden	fluent	must	remain	false	

Sketch of lower bound

•  Exactly	one	action	achieves	each	nonempty	
goal;	all	others	leave	goal	unattainable.	

•  If	a	set	of	flag	fluents	was	not	observed,	
consistent	with	a	conditional	effect	that	sets	
forbidden	fluent	for	the	goal’s	action	
⇒ Safe	action	models	cannot	solve	the	problem.	
⇒ Must	observe	¾	of	all	settings	of	flag	fluent/
forbidden	fluent/goal	tuples.	

•  ≥	(|F|/3k)k	|F|/3	(|A|-1)	such	tuples.	
•  Only	observe	one	per	1/4ε	examples.n	

Optimal algorithm for conditional effects

Theorem.	For	fixed	k,	for	domains	with	
conditional	effects	of	size	k	and	(k+1)-CNF	
preconditions,	there	is	a	polynomial-time	
algorithm	that	returns	a	safe	action	model	with	
(k+2)-CNF	preconditions	(and	effect	conditions	
of	size	up	to	|F|).	With	probability	at	least	1-δ	
the	action	model	permits	solving	a	new	problem	
with	probability	at	least	1-ε	when	given		
Ω(1/ε(|A||F|k+1	+	log	1/δ))	example	trajectories.	
•  Asymptotically	optimal	sample	complexity	

Overview of algorithm

•  Track	for	each	action:	
–  (k+1)-width	clauses	that	may	be	preconditions	
– For	each	candidate	effect	literal,	k-width	clauses		

•  true	whenever	effect	occurred	and		
•  false	whenever	effect	failed	to	occur	

•  Observation:	The	action	is	safe	if	for	all	
candidate	conditional	effects,	either	
– The	effect	literal	is	satisfied	in	the	pre-state	
– All	remaining	candidate	clauses	are	false	(conj.)	
– All	remaining	candidate	clauses	are	true	(k-CNF)	

•  Can	rewrite	as	a	(k+2)-CNF	by	distributing	

The safe action model

•  Each	action	has	preconditions	obtained	by	
– Conjunction	of	all	(k+1)-width	clauses	that	may	be	
preconditions	with	

–  (k+2)-CNF	for	each	candidate	conditional	effect	
•  Each	effect	literal	has	a	condition	given	by	the	
conjunction	of	all	remaining	possible	width-k	
conditions	(may	be	unsat.	→	remove	it)	

•  Safety:	true	precondition	clauses	included;	
when	conditional	effect	clauses	satisfied,	each	
literal	is	determined,	and	conditional	effect	
(only)	fires	when	it	occurs	in	true	model.	

Analysis of sample complexity

Idea:	examine	state	of	data	structure	tracking	
possible	remaining	clauses.	If	the	corresponding	
precondition	isn’t	1-ε-adequate,	then	w.p.	ε,		
the	trajectory	contains	a	state	in	which	either		

– An	extraneous	precondition	clause	is	falsified	
– Some	(but	not	all)	candidate	conditions	are	false	
and	the	effect	would	be	observed	to	occur	

– Some	(but	not	all)	candidate	conditions	are	true	
and	the	effect	would	be	observed	to	not	occur	

•  In	each	case,	a	clause	is	deleted		
(and	clauses	are	never	added	back).	

Analysis of sample complexity

•  Thus:	data	structure	states	corresponding	to	
inadequate	action	models	eliminated	by	each	
example	with	probability	1-ε.	
– As	before,	only	survive	m	examples	w.p.	(1-ε)m	

•  There	are 				possible	precondition	states		
per	action.	

•  There	are	 			possible	sets	of	clauses	per	
effect	literal,	per	action.	
⇒ Overall:		 					possible	states.	
⇒ Union	bound	for	m	≥	Ω(1/ε(|A||F|k+1+	log	1/δ))n	

2
O

k+1

|F |
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2
O

k

|F |
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2
O

k+1

|A||F |
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Conclusion

•  Task:	learn	a	safe	planning	model	
•  Approach:	learn	a	conservative	action	model	
•  Results:	safe,	efficient	and	PAComplete	learning	for	

–  Relational	STRIPS	models	
–  STRIPS	models	with	conditional	effects	of	small	size	
–  Numeric	models	with	affine	effects,		
interval	and	subspace	preconditions	

	

Future	work	
•  Learning	more	general	types	of	stochastic	domains	

–  E.g.,	distribution	on	small	number	of	effect	sets	

•  Learning	from	partial	observations	
•  Learning	in	continuous	state	spaces,	actions	with	duration,	etc.

