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Program Obfuscation

Ideally: the obfuscated code doesn’t give more information than a black box 
access (“Virtual Black Box”). 

Unfortunately,  VBB is impossible [BGIRSVY01]
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Indistinguishability Obfuscation

Indistinguishability:



Applications

 Deniable encryption [SW13]

Optimal MPC [GP15]

Hardness of finding a Nash equilibrium [BPR15]
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equivalent program
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Does statistical iO exist? 

Idea: use 
the 
randomness 
of the iO as 
a short proof 
for 
equivalence
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Simple representations are often desired in practice: in the learning literature, the 
difference between “proper” and “improper” algorithms is very common. 
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“Low-End” Obfuscation - why?

We can always apply “high end” obfuscation.

If we restrict to “weak” program classes, we can get stronger guarantees using 
simpler algorithms.

E.g. OBDDs [GR17] 

(more on that later)  
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High level summary of our results: 

Learning is used to derive both 
negative and positive results!



Result 1: Positive results via “white box” 
learning
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Then we can obfuscate: simply run the learning algorithm, and simulate the 
membership queries.  

Since the learning algorithm only “sees” semantic properties, the resulting 
program does not depend on the initial representation. 
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Exact learning implies (information theoretic) iO

Hint function for a program class: 

Efficiently computable property of P that depends only on the underlying function.

Example: a uniform satisfying assignment for decision trees. 
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Characterizing Information-Theoretic iO

Theorem 1:

For any class of programs P, P admits a polynomial-time perfect (resp. 
deterministic, canonical) iO if and only if P has a polynomial-time exact learning 
algorithm with randomized (resp. deterministic, canonical) hint functions. 

Proof idea: 

=> Run the learning algorithm

<= Use the iO as the hint function



Learning in the mistake bound model

Mistake bound model: 

Examples arrive in a stream: x1, x2, …  (adversarially ordered)

After observing x, the learner needs to predict c(x)

After every mistake the learner makes, they can update their concept

Goal: make at most M mistakes.



Learning in the mistake bound model

Theorem [V87]: 

If a concept class can be learnt in the mistake bound model, it can be exact learnt 
using equivalence and membership queries.  
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Learning in the mistake bound model

Applications:

If P is learnable in the mistake bound model, and implementing equivalence and 
membership queries for programs in P is easy, then we can obfuscate.  

=> Quasi-polynomial time canonization algorithm for DTs. 

Our learning framework together with Learning DT in the mistake bound 
model [S95].

Conceptually easier than the algorithm in [AKKRV15].
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The case of 3CNFs

The equivalence problem for 3CNFs is coNP hard, and so we cannot hope for 
statistical obfuscation.

What about (computationally) proper obfuscation for 3CNFs? 

(The output of the obfuscator is also a 3CNF)
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Theorem 2:

If one-way functions exist, there is no polynomial-time iO of 3-CNF formulas by 
3-CNF formulas with computational indistinguishability.

Our proof gives a stronger statement: 

If one-way functions exist, there is no polynomial-time iO of 3-CNF formulas by a 
program class whose dual class is PAC learnable, with computational 
indistinguishability.
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PAC Learning for Negative Results

Theorem 2:

If one-way functions exist, there is no polynomial-time iO of 3-CNF formulas by a 
program class whose dual class is PAC learnable, with computational 
indistinguishability.

Cannot obfuscate 3CNFs by O(1)-CNFs

(Unlike what we heard yesterday by Mikito Nanashima, 3CNFs are easy to 
dualize)
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Canonizer:



Result 3: Separating Notions of Information-Theoretic iO

Separating canonizer and deterministic iO: 

Program class with one circuit for every size, and equivalence is hard. 
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“Abstract obfuscation”

We can use such f to create a relation that has a “perfect iO” but we cannot 
canonize. 

x ~ y ⇔ f(x) = f(x)

DDH
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Theorem 3:

If one-way functions exist, and under a special-purpose VBB obfuscation 
assumption (alternatively, using ideal obfuscation), there is a program class  P 
such that P admits perfect (proper) iO in the CRS model but not deterministic 
(even improper) iO in the same model.



Result 3: Separating Notions of Information-Theoretic iO

Theorem 3:

If one-way functions exist, and under a special-purpose VBB obfuscation 
assumption (alternatively, using ideal obfuscation), there is a program class  P 
such that P admits perfect (proper) iO in the CRS model but not deterministic 
(even improper) iO in the same model.

“Oracle separation” 
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PAC Learning for Negative Results

Proof idea: “PAC Attack”

Given a OWF and a proper iO for 3CNFs, we can construct a PKE with a 
decryption circuit (with the secret key hardcoded) that is O(1)-CNF. 

But O(1)-CNFs can be PAC learnt!  [V84]

That means we can learn the decryption circuit and break the PKE. 



PKE from iO

Similar in spirit to [FFP18]



PKE from iO

Reminder: hardcore predicate (if you are here, probably you are not a 
cryptographer. They are all working for the CRYPTO deadline now…)
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PKE from iO - correctness  



PKE from iO - security 

Goal: show that Δ0 ≈ Δ1



PKE from iO - security 
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PKE from iO

Recall that we want the decryption circuit to be 3-CNF

Problems:

- The OWF is not necessarily 3-local.
- The standard way to convert a formula to 3CNF (Tseytin transformations) only 

preserves equisatisfiability, and it adds auxiliary variables.

We can overcome these issues



Open problems



Open problems

1. What other natural representation models admit information-theoretic iO?



Open problems

1. What other natural representation models admit information-theoretic iO?

2. Is it possible to obtain proper iO for decision trees? 



Open problems

1. What other natural representation models admit information-theoretic iO?

2. Is it possible to obtain proper iO for decision trees?

3. Can we obfuscate 3CNFs by AC0 circuits?  



Open problems

1. What other natural “programs” admit information-theoretic iO?

2. Is there a proper or statistical iO for decision trees?

3. Can we obfuscate 3CNFs by AC0 circuits?  

4. Can we separate between information-theoretic notions of iO using natural 
program classes or under cleaner assumptions?



Questions?
Thank you!


