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Program Obfuscation

Intuitive goal: hide the implementation of a program (while preserving
functionality).



Program Obfuscation

Intuitive goal: hide the implementation of a program (while preserving

functionality).

int main(Q{int 0_8085b117358aff981ff7326b8ed8d898=(0x0000000000000002 -+
0x0000000000000201 + 0x0000000000000801 - Ox0000000000000A03
),0_dfe2821c09b6cedlad5ec650a4e9269e=(0x0000000000000002 + Ox0000000000000201
+ 0x0000000000000801 - 0x0000000000000A03);int
0_18bfd@9edb@71abc956dcd4282d09cd1=(0x000000000000005C + Ox000000000000022E +
0x000000000000082E - 0x00000000000OVA8A) ;for (int
0_9d8e9¢c181edb72210dfc@90ec6a36c92=(0x0000000000000006 + Ox0000000000000203 +
0x0000000000000803 - 0x0000000000000AR9) ; (0_9d8e9c181ledb72210dfc@90ec6a36c92
<= 0_18bfd09edb@71abc956dcd4282d@9cdl) & !!
(0_9d8e9c181edb72210dfc@90ec6a36c92 <= o0_18bfd@9edbd7labc956dcd4282d@9cdl
);++0_9d8e9¢c181edb72210df c@90ec6a36c92){int
0_9dafc46e75becd94b4bcocd3d5f4a237=0_8085b117358aff981ff7326b8ed8d898 +
0_dfe2821c@9b6cedlad5ec650a4e9269e;std: : cout<<"\x46"" ("
<<0_9d8e9c181edb72210dfc@90ec6a36c92<<"\x29"" \075 "
<<0_9dafc46e75becd94b4bcocd3d5f4a237<<std: : endl
;0_8085b117358aff981ff7326b8ed8d898 = o_dfe2821c@9b6cedlad5ec650a4e9269¢e
;0_dfe2821c@9b6ce@lad5ec650a4€9269e = o_9dafc46e75becd94bdbcocd3d5f4a237;}
;return (0x0000000000000000 + 0x0000000000000200 + 0x0000000000000800 -
0x0000000000000A00) ;% ;



Program Obfuscation

Intuitive goal: hide the implementation of a program (while preserving
functionality).

int main()

{
inta=4; b =13
int target = 46;
for(int n = 3; n <= target; ++n)
{
int fib = a + b;
std::cout << "F("<< n << ") = " << fib << std::endl;
a = b;
b: = fib;
3
return 0;



Program Obfuscation

And a less successful attempit:

Can you obfuscate the following C++ code: #include <iostream>

int main()

{

unsignedinta=1,b=1;
unsigned int target = 46;
for(unsigned int n = 3; n <= target; ++n)
{
unsigned int fib =a + b;
std::cout << "F("<< n << ") =" << fib << std::endl;
a=b;
b = fib;
}

return O;



Program Obfuscation

And a less successful attempt:

Certainly! Here's an obfuscated version of the code:

CH+ ) Copy code

#include <iostream>

O

afl = {2,6,17,58,197,676, ) )
b[] = {4,12,34,116,396, ) )
target = 5

for( n = 0; n <= target-3; ++n)

{
std::cout << "F("<< n+3 << ")

}

return 0;




Program Obfuscation

|deally: the obfuscated code doesn’t give more information than a black box
access (“Virtual Black Box”).



Program Obfuscation

|deally: the obfuscated code doesn’t give more information than a black box
access (“Virtual Black Box”).

Unfortunately, VBB is impossible [BGIRSVY01]



Indistinguishability Obfuscation

Definition (informal):

A probabilistic polynomial time algorithm iO is an indistinguishability obfuscator , if for all pairs of
“programs” C7, C; satisfying C1 = C2 and |C1| = |C2| we have that iO(C1) ~ iO(C2).
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Indistinguishability Obfuscation

Definition (informal):

A probabilistic polynomial time algorithm iO is an indistinguishability obfuscator , if for all pairs of
“programs” Ci, C> satisfying C1 = C> and |C1| = |C2| we have that iO(C1) ~ iO(C?).
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Indistinguishability Obfuscation

Indistinguishability:

Two distribution ensembles X = {X)}xen and Y = {Y)},en are (T, ¢€)-indistinguishable, for
T:N— Nand e: N — [0,1], if for every circuit family A, of size T'(A) and all sufficiently large A it
holds that:

| Pr [Ax@)=1]- Pr [Ax@) = 1]l < (V).

(L‘($—X)\ y(—YA

We say that X and Y are:
computationally indistinguishable if they are (T, 1/T)-indistinguishable for every polynomial T’
statistically indistinguishable if they are (T",1/T)-indistinguishable for every polynomial T' and
arbitrary T";
perfectly indistinguishable if they are identically distributed, namely X, = Y, for all A.



Applications

Deniable encryption [SW13]

Optimal MPC [GP15]

Hardness of finding a Nash equilibrium [BPR15]



Does (computational) iO exist?
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Does (computational) iO exist?
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Does (computational) iO exist?
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Does statistical iO exist?
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Does statistical iO exist?
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Does statistical iO exist?
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This work: “Low-End” Obfuscation
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This work: “Low-End” Obfuscation

If we want to achieve information-theoretic security, we must settle for weaker
models of computation.
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“Low-End” Obfuscation - why?

If we want to achieve information-theoretic security, we must settle for weaker
models of computation.

For example: can we obfuscate decision trees?
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“Low-End” Obfuscation - why?

If we only want to obfuscate “simple” functions, can we preserve the
representation class of the obfuscated program? (Proper Obfuscation)

For example: can we obfuscate 3CNFs by 3CNFs?



“Low-End” Obfuscation - why?

We can always apply “high end” obfuscation.
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“Low-End” Obfuscation - why?

We can always apply “high end” obfuscation.

The right question: why obfuscating a decision tree by a circuit?

Simple representations are often desired in practice: in the learning literature, the
difference between “proper” and “improper” algorithms is very common.

Why not here?



“Low-End” Obfuscation - why?

We can always apply “high end” obfuscation.

If we restrict to “weak” program classes, we can get stronger guarantees using
simpler algorithms.

E.g. OBDDs [GR17]

(more on that later)



“Low-End” Obfuscation: our results

High level summary of our results:
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“Low-End” Obfuscation: our results

High level summary of our results:
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Learning is used to derive both
negative and positive results!



Result 1: Positive results via “white box”
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Exact learning implies (information theoretic) iO

Suppose that a class C is exact learnable with membership queries
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Exact learning implies (information theoretic) iO

Suppose that a class C is exact learnable with membership queries



Exact learning implies (information theoretic) iO

Suppose that a class C is exact learnable with membership queries.

And that the membership queries can be efficiently computed
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Exact learning implies (information theoretic) iO

Then we can obfuscate: simply run the learning algorithm, and simulate the
membership queries.



Exact learning implies (information theoretic) iO

Then we can obfuscate: simply run the learning algorithm, and simulate the
membership queries.

Since the learning algorithm only “sees” semantic properties, the resulting
program does not depend on the initial representation.



Exact learning implies (information theoretic) iO

This paradigm works with any query that is efficiently computable from a
representation, and depends only on the semantic of the function.



Exact learning implies (information theoretic) iO

This paradigm works with any query that is efficiently computable from a
representation, and depends only on the semantic of the function.

Hint function for a program class:

Efficiently computable property of the class that depends only on the underlying
function.



Exact learning implies (information theoretic) iO

Hint function for a program class:

Efficiently computable property of P that depends only on the underlying function.

Example: equivalence queries for decision trees.
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Exact learning implies (information theoretic) iO

Hint function for a program class:

Efficiently computable property of P that depends only on the underlying function.

Example: a uniform satisfying assignment for decision trees.
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Characterizing Information-Theoretic iO

Theorem 1:

For any class of programs P, P admits a polynomial-time perfect (resp.
deterministic, canonical) iO if and only if P has a polynomial-time exact learning
algorithm with randomized (resp. deterministic, canonical) hint functions.
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Characterizing Information-Theoretic iO

Theorem 1:

For any class of programs P, P admits a polynomial-time perfect (resp.
deterministic, canonical) iO if and only if P has a polynomial-time exact learning
algorithm with randomized (resp. deterministic, canonical) hint functions.

Furthermore, the obfuscation algorithm is proper if and only if the learning
algorithm is proper.



Characterizing Information-Theoretic iO

Theorem 1:

For any class of programs P, P admits a polynomial-time perfect (resp.
deterministic, canonical) iO if and only if P has a polynomial-time exact learning
algorithm with randomized (resp. deterministic, canonical) hint functions.

Proof idea:
=> Run the learning algorithm

<= Use the iO as the hint function



Learning in the mistake bound model

Mistake bound model:
Examples arrive in a stream: x1, x2, ... (adversarially ordered)
After observing x, the learner needs to predict c(x)
After every mistake the learner makes, they can update their concept

Goal: make at most M mistakes.



Learning in the mistake bound model

Theorem [V87]:

If a concept class can be learnt in the mistake bound model, it can be exact learnt
using equivalence and membership queries.



Learning in the mistake bound model

Applications:

If P is learnable in the mistake bound model, and implementing equivalence and
membership queries for programs in P is easy, then we can obfuscate.



Learning in the mistake bound model

Applications:

If P is learnable in the mistake bound model, and implementing equivalence and
membership queries for programs in P is easy, then we can obfuscate.

=> Quasi-polynomial time canonization algorithm for DTs.

Our learning framework together with Learning DT in the mistake bound
model [S95].

Conceptually easier than the algorithm in [AKKRV15].



Result 2: negative results using PAC learning
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The case of 3CNFs

The equivalence problem for 3CNFs is coNP hard, and so we cannot hope for
statistical obfuscation.



The case of 3CNFs

The equivalence problem for 3CNFs is coNP hard, and so we cannot hope for
statistical obfuscation.

What about (computationally) proper obfuscation for 3CNFs?

(The output of the obfuscator is also a 3CNF)



PAC Learning for Negative Results

Theorem 2:

If one-way functions exist, there is no polynomial-time iO of 3-CNF formulas by
3-CNF formulas with computational indistinguishability.



PAC Learning for Negative Results

Theorem 2:

If one-way functions exist, there is no polynomial-time iO of 3-CNF formulas by
3-CNF formulas with computational indistinguishability.

Our proof gives a stronger statement:

If one-way functions exist, there is no polynomial-time iO of 3-CNF formulas by a
program class whose dual class is PAC learnable, with computational
indistinguishability.



PAC Learning for Negative Results

Theorem 2:

The of a program class:




PAC Learning for Negative Results

Theorem 2:

The of a program class:

Evd (P,x) = P(x)
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PAC Learning for Negative Results

Theorem 2:

If one-way functions exist, there is no polynomial-time iO of 3-CNF formulas by a
program class whose dual class is PAC learnable, with computational

indistinguishability.



PAC Learning for Negative Results

Theorem 2:

If one-way functions exist, there is no polynomial-time iO of 3-CNF formulas by a
program class whose dual class is PAC learnable, with computational
indistinguishability.

Cannot obfuscate 3CNFs by O(1)-CNFs



PAC Learning for Negative Results

Theorem 2:

If one-way functions exist, there is no polynomial-time iO of 3-CNF formulas by a
program class whose dual class is PAC learnable, with computational
indistinguishability.

Cannot obfuscate 3CNFs by O(1)-CNFs

(Unlike what we heard yesterday by Mikito Nanashima, 3CNFs are easy to
dualize)



Result 3: separating variants of iO
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Result 3: Separating Notions of Information-Theoretic iO

Deterministic iO:

A prebabilistic polynomial time algorithm iO is an indistinguishability obfuscator , if for all pairs of
“programs” (', C; satisfying C; = C and |Ci| = |Cz| we have that iO(C1) XiO(C2).



Result 3: Separating Notions of Information-Theoretic iO

Canonizer:

A probabilistic polynomial time algorithm iO is an indistinguishability obfuscator , if for all pairs of
“programs” C, Cs satisfying C1 = C2-and4E =165} we have that i0(C1) XiO(C?).



Result 3: Separating Notions of Information-Theoretic iO

Separating canonizer and deterministic iO:

Program class with one circuit for every size, and equivalence is hard.



Result 3: Separating Notions of Information-Theoretic iO

“Abstract obfuscation”

Ry € 2ot < fo,1

(Intuition): “Two strings are in R iff they represent the same program”



Result 3: Separating Notions of Information-Theoretic iO

“Abstract obfuscation”
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Result 3: Separating Notions of Information-Theoretic iO
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Result 3: Separating Notions of Information-Theoretic iO

“Abstract obfuscation”
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Result 3: Separating Notions of Information-Theoretic iO

“Abstract obfuscation”

We can use such f to create a relation that has a “perfect iO” but we cannot
canonize.

X~y & f(x) = f(x)



Result 3: Separating Notions of Information-Theoretic iO

“Abstract obfuscation”

We can use such f to create a relation that has a “perfect iO” but we cannot
canonize.

X~y & f(x) = f(x)

DDH



Result 3: Separating Notions of Information-Theoretic iO

Theorem 3:

If one-way functions exist, and under a special-purpose VBB obfuscation
assumption (alternatively, using ideal obfuscation), there is a program class P
such that P admits perfect (proper) iO in the model but not deterministic
(even improper) iO in the same model.



Result 3: Separating Notions of Information-Theoretic iO

Theorem 3:

If one-way functions exist, and under a special-purpose VBB obfuscation
assumption (alternatively, using ideal obfuscation), there is a program class P
such that P admits perfect (proper) iO in the model but not deterministic
(even improper) iO in the same model.

“Oracle separation”



The PAC attack explained
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PAC Learning for Negative Results

Proof idea: “PAC Attack”

Given a OWF and a proper iO for 3CNFs, we can construct a PKE with a
decryption circuit (with the secret key hardcoded) that is O(1)-CNF.
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PAC Learning for Negative Results

Proof idea: “PAC Attack”

Given a OWF and a proper iO for 3CNFs, we can construct a PKE with a
decryption circuit (with the secret key hardcoded) that is O(1)-CNF.

But O(1)-CNFs can be PAC learnt! [V84]

That means we can learn the decryption circuit and break the PKE.



PKE from iO
Similar in spirit to [FFP18]
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PKE from iO

Reminder: hardcore predicate (if you are here, probably you are not a
cryptographer. They are all working for the CRYPTO deadline now...)
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PKE from iO
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PKE from iO
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PKE from iO

Decilpt:‘

output b ® io(g)(x)



PKE from iO - correctness
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PKE from iO - security

a,= i(PK,c) . encryPt ol
A, :z(f\(,c\ : Qn(rnpt 0, he(x) = os
A= PR energPt 4 3

Ay =LK ¢ oencrypt 4 e =43

Goal: show that AO = A1



PKE from iO - security
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PKE from iO

Recall that we want the decryption circuit to be 3-CNF
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Recall that we want the decryption circuit to be 3-CNF
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- The OWEF is not necessarily 3-local.
- The standard way to convert a formula to 3CNF (Tseytin transformations) only
preserves equisatisfiability, and it adds auxiliary variables.



PKE from iO

Recall that we want the decryption circuit to be 3-CNF

Problems:

- The OWEF is not necessarily 3-local.
- The standard way to convert a formula to 3CNF (Tseytin transformations) only
preserves equisatisfiability, and it adds auxiliary variables.

We can overcome these issues



Open problems



Open problems

1.  What other natural representation models admit information-theoretic iO?



Open problems

1.  What other natural representation models admit information-theoretic iO?

2. s it possible to obtain proper iO for decision trees?



Open problems

1.  What other natural representation models admit information-theoretic iO?

2. s it possible to obtain proper iO for decision trees?

3. Can we obfuscate 3CNFs by ACO circuits?



Open problems

1. What other natural “programs” admit information-theoretic iO?
2. Is there a proper or statistical iO for decision trees?
3. Can we obfuscate 3CNFs by ACO circuits?

4. Can we separate between information-theoretic notions of iO using natural
program classes or under cleaner assumptions?



Questions?
Thank you!



