Correlation bounds and all that

Emanuele Viola

Northeastern University 20230216

$$
2
$$

$$
1
$$

Announcements

- Survey:

Correlation bounds against polynomials (2008) Revised 2022

- Book:

Mathematics of the impossible:
Computational Complexity
Being serialized on my blog

One possible view

One possible view

One possible view

One possible view

One possible view

A different view

What goes here?

Frontier of P vs. NP

Circuit lower bounds

Frontier of P vs. NP

Circuit lower
Matrix rigidity

Frontier of P vs. NP

Circuit lower
Matrix rigidity bounds

Correlation bounds for polynomials

Frontier of P vs. NP

Circuit lower
Matrix rigidity

Multi-party
Communication complexity

Correlation bounds for polynomials

Frontier of P vs. NP

A
B means progress on A requires progress on B

Frontier of P vs. NP

A
B means progress on A requires progress on B

Frontier of P vs. NP

A
B means progress on A requires progress on B

Frontier of P vs. NP

My view

Correlation bounds for polynomials

- Challenge: Find explicit $f:\{0,1\}^{n} \rightarrow\{0,1\}$ and distribution X such that for every polynomial p of degree d

$$
\operatorname{Correlation}(f, p):=\operatorname{Pr}[f(X)=p(X)] \leq 1 / 2+\epsilon
$$

- Razborov, Smolenky, 80 's: $\mathrm{f}=$ Majority, $\mathrm{X}=$ uniform, $\epsilon=O\left(\frac{d}{\sqrt{n}}\right)$
- Babai Nisan Szegedy 90's: $\mathrm{f}=\mathrm{GIP} / \operatorname{Mod}_{3}, \epsilon=2^{-\Omega\left(\frac{n}{2 d}\right)}$
- Open: $\epsilon=1 / \sqrt{ } n$ for $d=\log (n)$; required to solve any problem on previous slide

Overview

- Introduction
- A couple of recent results on correlation bounds
- Pseudorandom generators, and more recent results
[Chattopadhyay Hatami Hosseini Lovett Zuckerman] STOC 2020
- Def: Local correlation: $\Delta_{S}(F):=\boldsymbol{E}_{x_{-S}}\left[\boldsymbol{E}_{x_{S}}[F(x)]-E[F]\right]^{2}$
-Thm : \forall degree $-d F \quad \exists S:|S| \leq 2^{\text {poly }(d)}: \Delta_{S}(F)$ small
\Rightarrow new correlation bounds for small degrees
- Conjecture : $|S| \leq \operatorname{poly}(d)$ suffices
would imply dream correlation bounds for large degrees
[Ivanov Pavlovic V]
- Counterexample to CHHLZ conjecture
- Rules out even weak form, shows what they prove is best possible
- Proof sketch:

Start with TRIBES DNF
For any S of size about $n / \log n: \boldsymbol{E}_{x-S}[$ TRIBES $=1] \geq \Omega(1)$

$$
\Rightarrow\left[\boldsymbol{E}_{x_{S}}[F(x)]-E[F]\right]^{2} \text { large }
$$

Approximate TRIBES by $\log (\mathrm{n})$-degree polynomial F
[Ivanov Pavlovic V]

- Conjecture: Symmetric polynomials maximize correlation with mod 3; would imply dream correlation bounds
- Prove the conjecture for degree 2 by "slowly opening directions"
- Prove the conjecture for special classes of degree 3

Overview

- Introduction
- A couple of recent results on correlation bounds
- Pseudorandom generators, and more recent results

Pseudorandom generators

- Explicit, low-entropy distributions that "look random" to polynomials
- Equivalent to correlation bounds for small error
- Case of large error remains unclear
- State-of-the-art [Bogdanov V 2007, Lovett, V]:

To fool degree-d polynomials sum d independent generators for degree 1

- Can analyze up to $\mathrm{d}<0.01 \log \mathrm{n}$. Beyond that is unknown (more later)

Fourier conjectures

- Polarizing random walks: Pseudorandom generators from Fourier bounds [2018 Chattopadhyay Hatami Hosseini Lovett, ...]
- To improve generators for polynomials need Fourier conjectures:

$$
\begin{array}{ll}
\sum_{S:|S|=2}\left|\hat{p}_{S}\right| \leq O\left(d^{2}\right) & \text { [Chattopadhyay Hatami Lovett Tal] } \\
\sum_{S:|S|=k}\left|\hat{p}_{S}\right| \leq 2^{o(d k)} & \text { [Chattopadhyay Gaitonde Lee Lovett Shetty] }
\end{array}
$$

- Theorem[V]: (Even weaker) conjectures
\Rightarrow correlation bounds beating Razborov-Smolensky, for functions related to majority (e.g., $\sum_{i<j} x_{i} x_{j}>0$)

New correlation bounds

- We prove new correlation bounds which aim to, but don't, resolve conjectures
- Note: Correlation with Majority still open!
- Claim: Smolensky $O\left(\frac{d}{\sqrt{n}}\right)$ bound for Majority tight under uniform distribution
- Claim: Can do $\Omega\left(\frac{d^{2}}{n}\right)$ for Majority under every distribution
- Conjecture: This is tight
- Claim: Conjecture holds (thus improving Smolensky) for $d=1$

Next:

New pseudorandom generators using invariant theory

Pseudorandom generators against polynomials

- Definition:

R : $\{0,1\}^{S} \rightarrow F^{n}$ fools degree- d polynomials in n variables over finite field F if

Statistical-Distance($p(R(U)), p(U)) \leq \epsilon$

for any such polynomial $p ; U=$ uniform distribution

Two lines of works

- Small fields, e.g., $\{0,1\}$
[Naor Naor '92] Degree 1
[Bogdanov-Viola '07] Paradigm: To fool degree d, sum d generators for degree 1 Analysis [BV, Lovett, V '08]: seed length $O\left(\log n+2^{d}\right)$
Open problem: Does paradigm work for $d>\log n$?
- Large fields, |F| >> d
[Bogdanov '05] Reduces to hitting-set problem
Optimal hitting sets [Klivans Spielman, B, Lu, Cohen Ta-Shma, Guruswami Xing] \Rightarrow seed length $O\left(d^{4} \log n+\log |F|\right)$, if $|F|>d^{6} \quad$ Cannot get seed length $<d^{2}$
- Two lines followed different paradigms

[Derksen V]

- Analyze Bogdanov-Viola paradigm for large degrees over large fields
\Rightarrow new generators over large fields
- Theorem: Explicit generators against degree-d polynomials with seed length
(1) Optimal $\quad O(d \log n+\log |F|), \quad$ if $|F| \geq d^{4} n^{0.01}$
(2) Nearly optimal $\tilde{O}(d \log n+\log |F|)$, if $|F| \geq d^{4} \log ^{4} n$
(3) Matching previous best, if $|F| \geq d^{4}$ (previous work: d^{6}) Smallest possible |F| using Weil's bound

Proof overview

- Definition: Polynomial $g\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ over F is decomposable if $g=c\left(h\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)$ for some univariate c of degree ≥ 2
- Lemma: g indecomposable $\Rightarrow g(U)$ close to uniform
- Main Lemma: Construction of polynomials $f_{1}, f_{2}, \ldots, f_{n}$:
- Few variables, low degree, and
- preserve indecomposability: $h\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ decomposable $\Rightarrow h$ decomposable
- Generator $R(U):=\left(f_{1}, f_{2}, \ldots, f_{n}\right)(U)$.

Proof: Given g, write $g=c(h)$ for max degree c. Note h indecomposable $\Rightarrow g(U)=c(h(U)) \approx c(U) \approx c\left(h\left(f_{1}, f_{2}, \ldots, f_{n}\right)\right)(U)=g\left(f_{1}, f_{2}, \ldots, f_{n}\right)(U)$

Definition of the f_{i}

- Let $M_{1} . M_{2}, \ldots$ be all monomials in m variables (of some degree k)
- To fool degree d, take d copies $x^{[1]}, x^{[2]}, \ldots, x^{[d]}$ of the variables
- Define $f_{i}:=\sum_{j=1}^{d} M_{i}^{[j]}$ where $M_{i}^{[j]}$ is M_{i} on variables $x^{[j]}$
- "Algebraic" Bogdanov-Viola can take any polynomials M_{i} that fool degree-1 polynomials

Analysis of the f_{i}

- Assume: $G:=g\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ decomposable as $c\left(H\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)$. Goal: Show $g\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ decomposable as $c\left(h\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)$
- G invariant under permuting the copies of the variables (the f_{i} are)
$\Rightarrow H$ is invariant
- The f_{i} are basis for invariant polynomials

$$
\begin{aligned}
& \Rightarrow H\left(x_{1}, x_{2}, \ldots, x_{n}\right)=h\left(f_{1}, f_{2}, \ldots, f_{s}\right) \text { for some } h(\text { possibly } s \gg n) \\
& \Rightarrow g\left(f_{1}, f_{2}, \ldots, f_{n}\right)=c\left(h\left(f_{1}, f_{2}, \ldots, f_{s}\right)\right) .
\end{aligned}
$$

- $\Rightarrow g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=c\left(h\left(x_{1}, x_{2}, \ldots, x_{s}\right)\right)$ and $s=n$.

Analysis of the f_{i}

- We give 3 versions of analysis; different tradeoffs of simplicity and generality
- Can preserve indecomposability over any field, even $\{0,1\}$
- For generator, restriction on field size comes only from Weil's bound, used in Lemma: g indecomposable $\Rightarrow g(U)$ close to uniform

A sense of the parameters

- Goal: fool $g\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of degree d in n variables
- Pick n distinct monomials of degree k in m variables, need $\binom{m+k}{k} \geq n$
- Previous slides \Rightarrow suffices to fool $g\left(f_{1}, f_{2}, \ldots, f_{n}\right)$, degree $d k$ in just $d m$ variables
- E.g., set $m=O(\log n), k=O(\log n)$.
- Setting uniform values for variables \Rightarrow seed length $O(d m)=O(d \log n \log |F|)$
- Improve to $O(d \log n+\log |F|)$: combine with variant of [Bogdanov '05]
- Non-standard: degree >> \# variables; also better dependence on |F|

Future directions

- Goal: optimal seed length for field size $|F|=O\left(d^{4}\right)$
- May be possible with this approach given suitable extension of Weil's bound (work in progress)

Thanks!

