a aYa aYalV/a ala \\NFa A

-

[NeurlPS 2022}

Succinct Neural Networks

Outline:
1) What are they?

2) Use them for Probably-Approximately-Optimal / Turing-Optimal learning,
e.g. NN'’s learn parity

SO A

Surbhi Goel Sham Kakade Adam Tauman Kalai
UPenn

Cyril Zhang

Harvard Microsoft Research Microsoft Research

Motivation: NNs bad for learning algorithms

def more 7s(a, b)ﬂ

More 7’s Parity (no noise)
examples:

471 9125 471 # more 7s(471, 9125) => 471
more 7s(7, 318) => 7

7 318 7 # more 7s(27097, 7’7:)> => 27097

27097 77 27097 _-699321# more 7s(747, 2023) => 747

def more 7s(a, b):

(47 2023 747 819

“Learnable” from examples [Levin+Allender+Valiant?]
* Find constant-size (time-bounded) TM mapping x; — y;

Deep vs. Succinct Neural Networks

Neural Networks Succinct Neural Networks

def factorial(n):
if n == 1:
return 1

return n * factorial (n-1)

0.0 1 110110

DNN : Circuit .. Succ. NN : Turing Machine

SuNN: Succinct NN

~

1

w B= — —
| [on]| — o — | |

o
[]
[]
(@N|
1
o B= —
| | | < | |
i
I
w B= LN —
| | &] I~ o~
-)
__ 1 coe coe i
e | | — — —| |

S| <K

M states = {0 (halt), 2 (initial), 4, 6, ..., 2k}

SUNN: SUCC| nct N N Add state to TM head position
t =20

x4+ 2

< = |
S N —_

—

Lemma. Convert any k-state Turing Machine M to NN, |[S(M)| < K such that
for every x € {0,1}* and T > time(M, x): M(x) = SUNN(S(M), T, x)”

*weights/activations use 0(1) bits, runs in poly(T, |x|) time

Learn succinct NNs, learn algorithms

Only need to learn constant # of weights of S

Examples:
\/I\/Iultiplication: x; = (a;, b;) y; =a; X b;
\/§hortest paths: x; = (I;,E;) y; = length of shortest path in graph (V;, E;)
*«’Smallest factor: x; € Compsit y; = smallest prime factor of x;
XParity functions: x; € {0,1}"* y; = (x; -w) mod 2 forw € {0,1}"

Learn succinct NNs, learn algorithms

Only need to learn constant # of weights of S

For all T, const. k, with prob. = 99% over (x1,v1), (x2,¥2), -, (X Yim) ~D:

max |errp(S) — érr(S)| < O(Jl/m)

IS|sK

1
erry () = xEED[SHNN(S’ T,x)#yl, érr(S):= — I{i | SUNN(S, T, x;) # y;}l

..S0 solve m1n —z || SUNN(S, T, x;) — y;||*

Learn succinct NNs, learn algorithms

Repeat 0(1) times:
* Choose random Iinitialization S;

* Do gradient descent (optional)
Si+1 = S; — 2 Vs|ISUNN(S;, T, %) — v |2

Thm: Best S is good with 99% probability

In contrast, same proof for learning DNNSs:
* Requires exp(T) # repetitions

..S0 solve mln—z: || SUNN(S, T, x;) — v;]|?

Framework: PAO-learning & Turing-optimality

Probably Algorithmically Optimal (PAQO) learning:

Poly-time learning algorithm L is a PAO-learner for a family of algorithms A If,
for any distribution D, with high probabillity:

errp(L(training & validation data)) < géidrql erry (A(training data)) + €

Turing-optimality: PAO when A = {bounded Turing machines}

T TTEE T T T SN . . .
'/ PAOQO learners 5 100% SUCClnCt leamlng import scipy.linalg as la
l . . Turing :
! algorithms L Q > —opt algorithms

. m . -

E {A XX YT o th X y}} : 5 import transformers EERECRURSE R (G0)
: : %‘ N | tokenizer = transformers.Bert °’
| PAC learners i 5 All o
i hypotheses : :E classifiers '-c% from sklearn.ensemble import RandomForestClassifier
| {h:X > Y} ,: §' ~ clf = RandomForestClassifier()
N ’ 50% ~

———————————————————————

PAC-Agnostic [V’'84;KSS'94] vs Prob-Appx-Optimal
Def. Poly-time L agnostic learns family C,, of classifiers
if foralle,§ € [0,1],n €N, m>p(€5) D e AX,, XUY):

< > 1 —
Zle)‘m [eer (L(Z)) mgll errp (C) + e] 1—-96

% ﬁ»ﬂ‘- —

55 P T .
R st TR
P =C £ e
B =

Def. Poly-time L PAO-learns class A of Iearners |f for aII

€, €01, mneN,D e A, XTY): szq(@)
zf)zgm [eer(L(Z)) < Lréidr% eer(A(Z)) + E] >1-¢§°

!
Z’ ~D m In [l]: import PyTorch
from PyTorch import np

SuUNN’s with memory are Turing Optimal

Add additional “memorization” layer
Use “trick” due to Abbe & Sandon (2020)

« SGD on first m examples memorizes the
m examples in the first layer’s weights!

 Surprising: SGD is not Stat. Query

o Afterwards, the TM is run on the
examples

G
N =

X E {_1,1}71 :

B
S

o

LN) o0 0 I

X eee
3

T reps

Summary & future work

« PAO & Turing-optimality: theoretical grounding for algorithm learning
« Captures computational universality of a deep learning pipeline
* Instead of classifiers, looks at algorithms which output classifiers
« Open: efficient PAO algorithms for other restricted algorithm classes A?

* Learning alg’s (or learning learning alg’s) rather than classifiers
« Complexity theory using large language models rather than enumeration?

 SUNN architecture: concise neural encoding of programs

« Standard training suffices to enumerate over programs
* Open: does SGD work? Better ideas?

	Slide 1: Succinct Neural Networks
	Slide 2: Motivation: NNs bad for learning algorithms
	Slide 3: Succinct Neural Networks
	Slide 4: SuNN: Succinct NN
	Slide 5: SuNN: Succinct NN
	Slide 6: Learn succinct NNs, learn algorithms
	Slide 7: Learn succinct NNs, learn algorithms
	Slide 8: Learn succinct NNs, learn algorithms
	Slide 9: Framework: PAO-learning & Turing-optimality
	Slide 10: PAC-Agnostic [V’84;KSS’94] vs Prob-Appx-Optimal
	Slide 11: SuNN’s with memory are Turing Optimal
	Slide 12: Summary & future work

