
Succinct Neural NetworksSuccinct Neural Networks

Adam Tauman Kalai

Microsoft Research

Surbhi Goel

UPenn

Sham Kakade

Harvard

Cyril Zhang

Microsoft Research

Recurrent Convolutional Neural Networks Learn
Succinct Learning Algorithms [NeurIPS 2022]

Outline:

1) What are they?

2) Use them for Probably-Approximately-Optimal / Turing-Optimal learning,

e.g. NN’s learn parity

🐒

Motivation: NNs bad for learning algorithms

More 7’s

𝑥 𝑦

471 9125 471

7 318 7

27097 77 27097

747 2023 747

Smallest factor

𝑥 𝑦

9125 5

292512 2

69932689 7919

819 3

Parity (no noise)

𝑥 𝑦

101 1

010 1

111 0

011 0

𝑦 = 𝑥 ⋅ 𝑤 mod 2
“Learnable” from examples [Levin+Allender+Valiant?]

• Find constant-size (time-bounded) TM mapping 𝑥𝑖 → 𝑦𝑖

🐒

Succinct Neural Networks Succinct Neural Networks

∧

∨ ¬

∨ ∧ ∧

0 0 1

1
0…

Succ. NN : Turing Machine

Deep vs. Succinct Neural Networks

DNN : Circuit

0 0 1 1

::

0 1 0 …

def factorial(n):

if n == 1:

return 1

return n * factorial(n-1)

SuNN: Succinct NN

𝑆 ≤ 𝐾

1

1

1

⋮

⋮

0

0

−1

2

8

2

⋮

⋮

9

7.5

−1

𝑆

𝑡 = 0 𝑡 = 1

3

4

1

⋮

⋮

2

9

−1

𝑆

𝑡 = 2

⋯

1

2.1

3

⋮

⋮

6

1

−1

𝑆

𝑡 = 𝑇

−1 −1 −1 −1

SuNN: Succinct NN

Lemma. Convert any 𝑘-state Turing Machine 𝑀 to NN, 𝑆 𝑀 ≤ 𝐾 such that
for every 𝑥 ∈ 0,1 ∗ and 𝑇 ≥ time 𝑀, 𝑥 :𝑀 𝑥 = SuNN 𝑆 𝑀 , 𝑇, 𝑥

0

*weights/activations use 𝑂 1 bits, runs in poly 𝑇, 𝑥 time

0

𝑥1 + 2

⋮

⋮

𝑥𝑛

𝑇

𝑥2

−1

0

0

𝑥1

⋮

⋮

𝑥𝑛

𝑥2 + 8

−1

𝑆

𝑡 = 0 𝑡 = 1

0

𝑥1

⋮

⋮

𝑥𝑛

𝑥2 + 5/𝑠

−1

𝑆

𝑡 = 2

⋯
0

𝑥1

⋮

⋮

𝑥𝑛

𝑥2 + 5/𝑠

−1

𝑆

𝑡 = 𝑇

*

M states = 0 halt , 2 initial , 4, 6, … , 2𝑘
Add state to TM head position

Learn succinct NNs, learn algorithms

Only need to learn constant # of weights of 𝑆

Examples:

• Multiplication: 𝑥𝑖 = 𝑎𝑖 , 𝑏𝑖 𝑦𝑖 = 𝑎𝑖 × 𝑏𝑖

• Shortest paths: 𝑥𝑖 = 𝑉𝑖 , 𝐸𝑖 𝑦𝑖 = length of shortest path in graph 𝑉𝑖 , 𝐸𝑖

• Smallest factor: 𝑥𝑖 ∈ Compsit 𝑦𝑖 = smallest prime factor of 𝑥𝑖

• Parity functions: 𝑥𝑖 ∈ 0,1 𝑛 𝑦𝑖 = (𝑥𝑖 ⋅ 𝑤) mod 2 for 𝑤 ∈ 0,1 𝑛

ൻ

ൿ

𝑆

Learn succinct NNs, learn algorithms

Only need to learn constant # of weights of 𝑆

For all 𝑇, const. 𝑘, with prob. ≥ 99% over (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑚, 𝑦𝑚)~𝒟:

max
𝑆 ≤𝐾

err𝒟 𝑆 − ෞerr 𝑆 ≤ 𝑂 1/𝑚

err𝒟 𝑆 ≔ Pr
𝑥,𝑦~𝒟

SuNN 𝑆, 𝑇, 𝑥 ≠ 𝑦 , ෞerr 𝑆 ≔
1

𝑚
i SuNN 𝑆, 𝑇, 𝑥𝑖 ≠ 𝑦𝑖}

𝑆

…so solve min
𝑆 ≤𝐾

1

𝑚

𝑖

|| SuNN 𝑆, 𝑇, 𝑥𝑖 − 𝑦𝑖||
2

Learn succinct NNs, learn algorithms

Repeat 𝑂 1 times:

• Choose random initialization 𝑆1

• Do gradient descent (optional)

𝑆𝑖+1 = 𝑆𝑖 −
𝜂

𝑇
∇𝑆||SuNN 𝑆𝑖 , 𝑇, 𝑥𝑖 − 𝑦𝑖||

2

Thm: Best 𝑆 is good with 99% probability

In contrast, same proof for learning DNNs:

• Requires exp(𝑇) # repetitions

𝑆

∧

∨
¬
∨∧

∧

0 1

1
0…

…so solve min
𝑆 ≤𝐾

1

𝑚

𝑖

|| SuNN 𝑆, 𝑇, 𝑥𝑖 − 𝑦𝑖||
2

🐒

Framework: PAO-learning & Turing-optimality

Probably Algorithmically Optimal (PAO) learning:

Poly-time learning algorithm 𝐿 is a PAO-learner for a family of algorithms 𝒜 if,

for any distribution 𝒟, with high probability:

err𝒟(𝐿(training & validation data)) ≤ min
𝐴∈𝒜

err𝒟 𝐴 training data + 𝜖

Turing-optimality: PAO when 𝒜 = {bounded Turing machines}

PAC learners

hypotheses

ℎ ∶ 𝒳 → 𝒴

PAO learners

algorithms

𝐴 ∶ 𝒳 × 𝒴 𝑚 → ℎ ∶ 𝒳 → 𝒴

PAC-Agnostic [V’84;KSS’94] vs Prob-Appx-Optimal

Def. Poly-time 𝐿 agnostic learns family 𝒞𝑛 of classifiers

if for all 𝜖, 𝛿 ∈ 0,1 , 𝑛 ∈ ℕ,𝑚 ≥ 𝑝
𝑛

𝜖𝛿
, 𝒟 ∈ Δ 𝒳𝑛 × 𝒴 :

Pr
𝑍~𝒟𝑚

err𝒟 𝐿 𝑍 ≤ min
𝐶∈𝒞𝑛

err𝒟 𝐶 + 𝜖 ≥ 1 − 𝛿

Def. Poly-time 𝐿 PAO-learns class 𝒜 of learners if for all
𝜖, 𝛿 ∈ 0,1 ,𝑚, 𝑛 ∈ ℕ,𝒟 ∈ Δ 𝒳𝑛 × 𝒴 :

Pr
𝑍~𝒟𝑚

err𝒟 𝐿 𝑍; 𝑍′ ≤ min
𝐴∈𝒜

err𝒟 𝐴 𝑍 + 𝜖 ≥ 1 − 𝛿

𝑍′~𝒟𝑚′

∀𝑚′≥ 𝑞
𝑚𝑛

𝜖𝛿

SuNN’s with memory are Turing Optimal

Add additional “memorization” layer

Use “trick” due to Abbe & Sandon (2020)

• SGD on first 𝑚 examples memorizes the
𝑚 examples in the first layer’s weights!

• Surprising: SGD is not Stat. Query

• Afterwards, the TM is run on the
examples

𝑥1

𝑥2

𝑥𝑛

⋮

⋮

⋮

⋮
× 𝑚

𝑥 ∈ −1,1 𝑛

𝑆

⋮

⋮

-1 -1

𝑇 reps

0

Summary & future work

• PAO & Turing-optimality: theoretical grounding for algorithm learning

• Captures computational universality of a deep learning pipeline

• Instead of classifiers, looks at algorithms which output classifiers

• Open: efficient PAO algorithms for other restricted algorithm classes 𝒜?

• Learning alg’s (or learning learning alg’s) rather than classifiers

• Complexity theory using large language models rather than enumeration?

• SuNN architecture: concise neural encoding of programs

• Recurrent & convolutional weight sharing ↔ parameter-efficient computation

• Standard training suffices to enumerate over programs

• Open: does SGD work? Better ideas?

⌨️🐒

	Slide 1: Succinct Neural Networks
	Slide 2: Motivation: NNs bad for learning algorithms
	Slide 3: Succinct Neural Networks
	Slide 4: SuNN: Succinct NN
	Slide 5: SuNN: Succinct NN
	Slide 6: Learn succinct NNs, learn algorithms
	Slide 7: Learn succinct NNs, learn algorithms
	Slide 8: Learn succinct NNs, learn algorithms
	Slide 9: Framework: PAO-learning & Turing-optimality
	Slide 10: PAC-Agnostic [V’84;KSS’94] vs Prob-Appx-Optimal
	Slide 11: SuNN’s with memory are Turing Optimal
	Slide 12: Summary & future work

