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Outline:

1) What are they?

2) Use them for Probably-Approximately-Optimal / Turing-Optimal learning, 

e.g. NN’s learn parity
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Motivation: NNs bad for learning algorithms
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𝑦 = 𝑥 ⋅ 𝑤 mod 2
“Learnable” from examples [Levin+Allender+Valiant?]

• Find constant-size (time-bounded) TM mapping 𝑥𝑖 → 𝑦𝑖
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Succ. NN : Turing Machine

Deep vs. Succinct Neural Networks

DNN : Circuit
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def factorial(n): 

if n == 1:

return 1

return n * factorial(n-1)



SuNN: Succinct NN

𝑆 ≤ 𝐾
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SuNN: Succinct NN

Lemma. Convert any 𝑘-state Turing Machine 𝑀 to NN, 𝑆 𝑀 ≤ 𝐾 such that 
for every 𝑥 ∈ 0,1 ∗ and 𝑇 ≥ time 𝑀, 𝑥 :𝑀 𝑥 = SuNN 𝑆 𝑀 , 𝑇, 𝑥
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*weights/activations use 𝑂 1 bits, runs in poly 𝑇, 𝑥 time 
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*

M states = 0 halt , 2 initial , 4, 6, … , 2𝑘
Add state to TM head position



Learn succinct NNs, learn algorithms

Only need to learn constant # of weights of 𝑆

Examples: 

• Multiplication: 𝑥𝑖 = 𝑎𝑖 , 𝑏𝑖 𝑦𝑖 = 𝑎𝑖 × 𝑏𝑖

• Shortest paths: 𝑥𝑖 = 𝑉𝑖 , 𝐸𝑖 𝑦𝑖 = length of shortest path in graph 𝑉𝑖 , 𝐸𝑖

• Smallest factor: 𝑥𝑖 ∈ Compsit 𝑦𝑖 = smallest prime factor of 𝑥𝑖

• Parity functions: 𝑥𝑖 ∈ 0,1 𝑛 𝑦𝑖 = (𝑥𝑖 ⋅ 𝑤) mod 2 for 𝑤 ∈ 0,1 𝑛

ൻ

ൿ

𝑆



Learn succinct NNs, learn algorithms

Only need to learn constant # of weights of 𝑆

For all 𝑇, const. 𝑘, with prob. ≥ 99% over (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑚, 𝑦𝑚)~𝒟:

max
𝑆 ≤𝐾

err𝒟 𝑆 − ෞerr 𝑆 ≤ 𝑂 1/𝑚

err𝒟 𝑆 ≔ Pr
𝑥,𝑦~𝒟

SuNN 𝑆, 𝑇, 𝑥 ≠ 𝑦 , ෞerr 𝑆 ≔
1

𝑚
i SuNN 𝑆, 𝑇, 𝑥𝑖 ≠ 𝑦𝑖}

𝑆

…so solve min
𝑆 ≤𝐾
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|| SuNN 𝑆, 𝑇, 𝑥𝑖 − 𝑦𝑖||
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Learn succinct NNs, learn algorithms

Repeat 𝑂 1 times:

• Choose random initialization 𝑆1

• Do gradient descent (optional) 

𝑆𝑖+1 = 𝑆𝑖 −
𝜂

𝑇
∇𝑆||SuNN 𝑆𝑖 , 𝑇, 𝑥𝑖 − 𝑦𝑖||

2

Thm: Best 𝑆 is good with 99% probability

In contrast, same proof for learning DNNs:

• Requires exp(𝑇) # repetitions
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Framework: PAO-learning & Turing-optimality

Probably Algorithmically Optimal (PAO) learning: 

Poly-time learning algorithm 𝐿 is a PAO-learner for a family of algorithms 𝒜 if,       

for any distribution 𝒟, with high probability:

err𝒟(𝐿(training & validation data)) ≤ min
𝐴∈𝒜

err𝒟 𝐴 training data + 𝜖

Turing-optimality: PAO when 𝒜 = {bounded Turing machines}

PAC learners

hypotheses

ℎ ∶ 𝒳 → 𝒴

PAO learners

algorithms

𝐴 ∶ 𝒳 × 𝒴 𝑚 → ℎ ∶ 𝒳 → 𝒴



PAC-Agnostic [V’84;KSS’94] vs Prob-Appx-Optimal

Def. Poly-time 𝐿 agnostic learns family 𝒞𝑛 of classifiers 

if for all 𝜖, 𝛿 ∈ 0,1 , 𝑛 ∈ ℕ,𝑚 ≥ 𝑝
𝑛

𝜖𝛿
, 𝒟 ∈ Δ 𝒳𝑛 × 𝒴 :

Pr
𝑍~𝒟𝑚

err𝒟 𝐿 𝑍 ≤ min
𝐶∈𝒞𝑛

err𝒟 𝐶 + 𝜖 ≥ 1 − 𝛿

Def. Poly-time 𝐿 PAO-learns class 𝒜 of learners if for all 
𝜖, 𝛿 ∈ 0,1 ,𝑚, 𝑛 ∈ ℕ,𝒟 ∈ Δ 𝒳𝑛 × 𝒴 :

Pr
𝑍~𝒟𝑚

err𝒟 𝐿 𝑍; 𝑍′ ≤ min
𝐴∈𝒜

err𝒟 𝐴 𝑍 + 𝜖 ≥ 1 − 𝛿

𝑍′~𝒟𝑚′

∀𝑚′≥ 𝑞
𝑚𝑛

𝜖𝛿



SuNN’s with memory are Turing Optimal

Add additional “memorization” layer

Use “trick” due to Abbe & Sandon (2020)

• SGD on first 𝑚 examples memorizes the 
𝑚 examples in the first layer’s weights!

• Surprising: SGD is not Stat. Query

• Afterwards, the TM is run on the 
examples
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Summary & future work

• PAO & Turing-optimality: theoretical grounding for algorithm learning

• Captures computational universality of a deep learning pipeline

• Instead of classifiers, looks at algorithms which output classifiers

• Open: efficient PAO algorithms for other restricted algorithm classes 𝒜?

• Learning alg’s (or learning learning alg’s) rather than classifiers

• Complexity theory using large language models rather than enumeration?

• SuNN architecture: concise neural encoding of programs

• Recurrent & convolutional weight sharing ↔ parameter-efficient computation

• Standard training suffices to enumerate over programs

• Open: does SGD work? Better ideas?

⌨️🐒
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