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Goal for Today:

� Give a High-Level Overview of the Simons 
Institute program on Meta*-Complexity
– Explain the reasons for excitement and 

optimism.
– Illustrate some of the topics involved via 

examples and metaphors.
– Apologize for the terrible ‘Meta for’ pun.  

Shockingly, I’m not the first to dive this low.

*No connection to the parent company of Facebook.
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Goal for Today:

� Give a High-Level Overview of the Simons 
Institute program on Meta*-Complexity
– Explain the reasons for excitement and 

optimism.
– Optimism?  Really?

*No connection to the parent company of Facebook.
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In the Beginning…
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In the Beginning…

Hartmanis and
Stearns created
complexity theory.

1964
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And the critical reaction was…

… mixed.

1964
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And the critical reaction was…

We could show
that some 
uninteresting
problems require
a lot of time …
but could say 
nothing about 
problems of
interest.

1964
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The Universe of Natural
Computational Problems

This universe was without
form, and void…
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And Cook and Karp said:

Let there be
illumination…
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And Cook and Karp said:

Let there be
illumination…

…in the form of efficient reductions.
19711970
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And the Structure was Revealed!

NP
P

NL

TC0
#P

PSPACE
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A Vision of Paradise

� At about this same time, the first positive 
application of complexity theory arose:
– Cryptography!

� The perceived difference in the complexity of 
problems now made sense!  There was a 
theoretical framework to support our intuitions!  
And it promised to be useful in practice!

� We merely needed to prove that the 
framework was real, and not an illusion.
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The Oracular Prohibition

Thou shalt not
enter into this
paradise by 
means of any
tool at thy 
disposal.
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The Oracular Prohibition

PA=NPA
PB≠NPB

1975
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End-Run Around Oracles

� Small circuit classes, where oracle 
computation might not make sense:
– AC0 (1980’s)                [FSS][A][Y][H]
– AC0[p] for prime p (1980’s)       [R][S]
– …..
– NEXP not in AC0[6]   [Williams, 2011]
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Frontal Assault against Oracles

� The Theory of Interactive Proofs Leads to 
Non-relativizing Proof Techniques!

– coNP ⊆ IP            [LFKN  1990]

– IP = PSPACE       [Shamir 1990]

� But this did not usher in a new flood of lower 
bounds!
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Crimes against Nature

If you seek a Natural way to paradise,
you must forsake the One Way.

Thus spake the 
nature deities:
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Crimes against Nature

If one-way functions exist, you need a
new “un-natural” approach to prove 
lower bounds.

Thus spake the 
nature deities:

1994
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Pointing the Way to Meta-
Complexity

Razborov & Rudich focused on the problem
of computation on truth-tables of functions.

Thus spake the 
nature deities:

1994
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Meta-Complexity Is Born [2000]

� The Minimum Circuit Size Problem (MCSP):
� {(f,s) : f has a circuit of size ≤ s, where f is 

represented by a bit string of length 2n}
� The complexity question: Show f is hard.
� The Meta-Complexity question: show that it is 

hard to show that f is hard.  

That is: Show MCSP is hard.
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Meta-Complexity Is Born [2000]

� The Minimum Circuit Size Problem (MCSP):

� {(f,s) : f has a circuit of size ≤ s, where f is 

represented by a bit string of length 2n}

� MCSP is in NP; not in P if one-way functions 

exist.

� Provably hard to show it’s NP-complete.

Not hard for RP under 

≤"# unless EXP ≠ ZPP. 

[MW][F]
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Meta-Complexity Is Born [2000]

� The Minimum Circuit Size Problem (MCSP):

� {(f,s) : f has a circuit of size ≤ s, where f is 

represented by a bit string of length 2n}

� MCSP is in NP; not in P if one-way functions 

exist.

� Provably hard to show it’s NP-complete.

Harks back to the pre-history

of computational complexity

theory.
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Before the Beginning…

[1959]: Yablonsky announced that 
MCSP requires exponential time.

And Kolmogorov saw what Yablonsky
had written, and saw that it was not
good.  (Thus sayeth Levin.)
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Kolmogorov Complexity

� C(x) = min {|d| : U(d)=x}.

Information is best understood via
computation; this gives us a definition
of randomness.
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Kolmogorov Complexity

� C(x) = min {|d| : U(d)=x}.

Unfortunately, C(x) cannot be computed.
This motivates the search for computable
variants.
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Kolmogorov Complexity

However, Kolmogorov  suggested, even before the notions of P, NP, and 
NP-completeness existed, that lower bound efforts might best be focused on 
sets that are relatively devoid of simple structure. That is, the NP-complete
problems are probably too structured to be good candidates for separating P from 
NP. One should rather focus on the intermediate less-structured sets that somehow 
are complex enough to prove separations. As a candidate of such a set he 
proposed to look at the set of what we call nowadays the resource-bounded 
Kolmogorov random strings.                  [Buhrman & Mayordomo, citing Levin]
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Time-bounded Kolmogorov 
Complexity

� Kt(x) = min {|d| + log t : U(d)=x in time t}.

Great for many purposes… 
but captures an odd type of 
circuit size.
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Circuit Complexity

� Let D be a circuit of AND and OR gates (with 
negations at the inputs).  Size(D) = # of wires 
in D.

� Size(f) = min{Size(D) : D computes f}
� We may allow oracle gates for a set A, along 

with AND and OR gates.
� SizeA(f) = min{Size(D) : DA computes f}
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What is an Oracle Gate?

�An oracle gate for oracle B is a piece 
of hardware with k wires coming in (for 
some k).  If those wires take on the 
value x, then the gate outputs 1 if x is 
in B, and 0 otherwise.

B
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Time-Bounded Kolmogorov 
Complexity

� Levin’s definition:
� Kt(x) = min{|d|+log t : U(d) = x in time t}.
� …but captures an odd type of circuit size.

� Let A be complete for E = Dtime(2O(n)).  
– Then Kt(x) ≈ SizeA(x).
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Time-Bounded Kolmogorov 
Complexity

� Levin’s definition:

� Kt(x) = min{|d|+log t : U(d) = x in time t}.

� Why log t?

– This gives an optimal search order for NP 
search problems.

– Adding t instead of log t would give every 
string complexity ≥ |x|.

� …So let’s look at how to make the run-time be 
much smaller.
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Revised Kolmogorov Complexity

� C(x) = min{|d| : for all i ≤ |x| + 1, U(d,i,b) = 1 iff 
b is the i-th bit of x} (where bit # i+1 of x is *).
– This is identical to the original definition.

� Kt(x) = min{|d|+log t : for all i ≤ |x| + 1, U(d,i,b) 
= 1 iff b is the i-th bit of x, in time t}.
– The new and old definitions are within O(log 

|x|) of each other.
� Define KT(x) = min{|d|+t : for all i ≤ |x| + 1, 

U(d,i,b) = 1 iff b is the i-th bit of x, in time t}.
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Kolmogorov Complexity is Circuit 
Complexity

� KT(x) ≈ Size(x).
� C(x) ≈ KTH ≈ SizeH(x).
� Kt(x) ≈ KTE ≈ SizeE(x).
� Other measures of complexity can be 

captured in this way, too:
– Branching Program Size ≈ KB(x) =     

min{|d|+2s : for all I ≤ |x| + 1, U(d,i,b) = 1 iff b 
is the i-th bit of x, in space s}.
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Kolmogorov Complexity is Circuit 
Complexity

� KT(x) ≈ Size(x).
� C(x) ≈ KTH ≈ SizeH(x).
� Kt(x) ≈ KTE ≈ SizeE(x).
� Other measures of complexity can be 

captured in this way, too:
– Formula Size ≈ KF(x) =                   

min{|d|+2t : for all I ≤ |x| + 1, U(d,i,b) = 1 iff b 
is the i-th bit of x, in time t}, for an alternating
Turing machine U.
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Kolmogorov Complexity is Circuit 
Complexity

� KT(x) ≈ Size(x).
� C(x) ≈ KTH ≈ SizeH(x).
� Kt(x) ≈ KTE ≈ SizeE(x).
� In particular, MCSP “morally” has the same 

complexity as computing KT complexity.
� Frequently, MKTP is easier to work with.
� Other versions of time-bounded K-complexity 

(such as Kpoly) also figure prominently in 
recent work.  In this overview, we’ll ignore the 
differences.
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The Mother of All 
One Way Functions

� [Liu, Pass 2020] Cryptographically Secure 
One-Way Functions exist if and only if        
Kpoly is hard on average.

� Thus, if you want to base cryptography on the 
assumption that NP is hard (in the worst 
case), this is equivalent to showing:
– NP not in BPP   implies    Kpoly ∉ BPP, and
– Kpoly∉BPP   implies  Kpoly is hard on average.
– [Hirahara 2018] “nearly” shows the 2nd implication.
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Pass & Hirahara: 
Destroyers of Worlds

Heuristica

NP easy on average

Pessiland

NP hard on average
but no crypto.   

Note: Destruction is not
yet complete … but off to
a good start.
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Worst-Case vs Average Case

� [Hirahara 2020] (paraphrased): There is 
something in the polynomial hierarchy that is 
hard on average

� If and only if
� Kpoly,PH is not in P.
� This is just a sample.  Much more has been 

done in this direction.
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Meta-Logic and Meta-Complexity

� A major theme of the Meta-Complexity 
semester explores how Meta-Complexity 
provides new insight into the field of Proof 
Complexity (lower bounds on the length 
required to prove that a formula is a 
tautology).

� Rahul Santhanam will be giving a talk on this 
topic later in the Karp Distinguished Lecture 
series.
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Pathetic Lower Bounds

� The Goal is to prove superpolynomial circuit 
size bounds.

� Our current best efforts fall far short.
– For circuits: nothing superlinear.
– For (De Morgan) formulas: approximately n3.
– For Branching Programs: approximately n2.

� Lower bounds for MCSP on these models 
essentially match the best known for any 
explicit problem.  [CKLM]
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Lower Bounds and Magnification

� Define MCSP[s] = {f : (f,s) is in MCSP}
� [CHMY]: MCSP[Nϵ] is not in probabilistic 1-

tape TM time N1.99.
� [MMW]: If MCSP[Nβ] is not in 1-tape TM time 

N1.01, then P ≠ NP.
– Note: β<ϵ…

� General theme of Magnification: modest-
sounding lower bounds can have huge 
consequences.



Eric Allender: How Complex is Complexity?  Or: What’s a ‘Meta” for? < 43 >

Lower Bounds and Magnification

� Another example:

� Recall: MCSP is not in De Morgan Formula 

Size n3-ϵ [CKLM]

� This holds also for MKTP and MKtP.

� If MKtP[Nϵ] is not in De Morgan Formula Size 

n3.001, then EXP is not in NC1 [OPS].

� …but perhaps you’re thinking: We don’t have 

ANY formula size lower bounds that big.  Then 

consider this…
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Lower Bounds and Magnification

Yet another example:
� If MKtP[Nϵ] is not in De Morgan Formula  of 

PARITY Size n1.1, then EXP is not in NC1

[OPS].
� …and we do know problems in P that require 

size n1.99 in this model [Tal].
� For more on magnification, see [CHOPRS].
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Meta-Complexity Is Born [2000]

� The Minimum Circuit Size Problem (MCSP):

� {(f,s) : f has a circuit of size ≤ s, where f is 

represented by a bit string of length 2n}

� MCSP is in NP; not in P if one-way functions 

exist.

� Provably hard to show it’s NP-complete.

Not hard for RP under 

≤"# unless EXP ≠ ZPP. 

[MW][F]
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Randomized Reductions

� Let A and B be languages.
� We say A ≤"#$$ B if there is a polynomial-time-

computable f such that
– x ∈ A implies for most r,  f(x,r) ∈ B
– x ∉ A implies for most r, f(x,r) ∉ B

� Several close relatives of MCSP have been 
shown to be NP-complete under randomized 
reductions.
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Sets NP-complete under ≤"#$$

� Multi-Output MCSP [ILO 2020]
� Conditional KT complexity  McKTP =               

{(x,y,i) : KT(x|y) ≤ i} [ACMTV] [Ilango 2020]
� MCSP* [Hirahara 2022]
� Can MCSP be far behind??
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Zero Knowledge & K-Complexity

Non-Interactive Statistical Zero Knowledge
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Zero Knowledge & K-Complexity

[GSV]: SZK ≤!!"#
$
NISZK (so NISZK is hard iff SZK is).  
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Approximating K-Complexity

� Let R denote the following promise problem:

� RY = {x : K(x) ≥ |x|/2}

� RN = {x : K(x) < |x|/2 - e(|x|)}

� …where e(|x|) is the “approximation error” 

term.  Our results hold for any e(n) such that

� ω(log n) < e(n) < no(1).

� For K-complexity experts: Our results hold for 

both plain and prefix-free K-complexity.
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Zero Knowledge Characterized

� Let A be any decidable promise problem.  
Then the following are equivalent:
– A is in NISZK
– A ≤"#$$ R

� This is the first time a well-studied complexity 
class has been characterized in terms of 
efficient reducibility to an undecidable 
problem!
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Zero Knowledge Characterized

� Let A be any decidable promise problem.  
Then the following are equivalent:
– A is in NISZK
– A ≤"#$$ R

� Let A be any decidable promise problem.  
Then the following are equivalent:
– A is in NISZKL

– A ≤"#$& R
– A ≤"#$'() R
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Why care about NISZKL?

� Let A be any decidable promise problem.  
Then the following are equivalent:
– A is in NISZKL

– A ≤"#$% R
– A ≤"#$'() R

� Because we get projections!
– For every A in NISZKL

– A ≤"*+,- R
– A ≤"*+,- RKT
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What are projections?

Input

Output

!1 #!1 !2 #!2 …  !% #!%

!34 001!103 1110 … !%18

No gates!  Just wires!
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Why care about NISZKL?

For every A in NISZKL

– A ≤"#$%& R
– A ≤"#$%& RKT

� RKT is in coNP, and NL is contained in NISZKL.
� Thus if NP=NL, there is a projection f, where
� f(000000…0) has high K-complexity, and
� f(anything random) has low K-complexity.
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Transmutation

Input

Output

!"# $%&"'()*$"%

ℎ$,ℎ $%&"'()*$"%

No gates!  Just wires!
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Transmutation

Input

Output

ℎ"#ℎ "$%&'()*"&$

+&, "$%&'()*"&$

No gates!  Just wires!
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Transmutation

Input
ℎ"#ℎ "$%&'()*"&$

+&, "$%&'()*"&$
Such transmutation seems impossible.
Proving it’s impossible shows NP≠NL.
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More to the Meta-Complexity 
Saga

� Many exciting developments were not 
covered:
– Connections to maching learning.
– Probabilistic Kolmogorov Complexity.
– …
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A Pathway to Paradise?

� Is there really                                          
optimism that                                              
meta-complexity will                                    
help solve the                                              
long-standing open                        of questions 
questions of                                       
complexity theory?

� Perhaps a little…
� Recent work has already overcome many 

apparent barriers.  And Meta-Complexity has 
– at least – given us some new approaches.
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A Pathway to Paradise?

� Is there really                                          
optimism that                                              
meta-complexity will                                    
help solve the                                              
long-standing open                        of questions 
questions of                                       
complexity theory?

� Perhaps a little…
� We definitely expect further developments to 

bring us further along the road to true 
enlightenment.
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