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● The input size is 2n

● An efficient algorithm for MCSP runs in time poly( 2n ) = 2O(n).
● When s < logn, MCSP∊P by brute force search. 
● When s > 2n/n(1+ε), MCSP(f , s) = 1



The complexity of MCSP

NP-intermediate problem 

● MCSP ∈ NP (witness is the circuit, verifier just checks all 2n inputs.)
● MCSP is unknown to be in any subclass of NP
● SZK ⊆ BPPMCSP [Allender-Das’14]

● Perebor conjecture: brute force search is the best [Trakhtenbrot’84]

● Solving MCSP efficiently implies breaking OWF [Kabanets-Cai’00]

● Several variants are NP-hard  

NP

P

NP-complete

MCSP is now here 

Implies no one-way function exists 



NP-hardness results for variants of MCSP

● [Masek’97]: DNF-MCSP is NP-hard
● [Hirahara-Oliveira-Santhanam’19]: DNF。XOR-MCSP is NP-hard
● [Ilango’19]: MOCSP (an oracle version) is NP-hard
● [Ilango-Loff-Oliveira’20]: Multi-MCSP is NP-hard
● [Ilango’20]: Depth-d-formula-MCSP and MCSP* are NP-hard
● [Hirahara’22]: Partial-MCSP is NP-hard
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● [Razborov-Rudich’97]: 
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Learning theory
● [Carmosino et al.’16]: 

MCSP∊BPP⇒f ∊ size(poly) 
can be PAC-learned in BPP

Circuit Lowr Bound
● [Razborov-Rudich’97]: 

MCSP∊ P⇒ natural 
property against P/poly

● [Kabanets-Cai’00]: MCSP∊ 
P⇒ circuit lower bound for 
PNP

● [Murray-Williams 15]: 
MCSP∊ P⇒EXP ≠ ZPP

● [Arunachalam et al.’19]: 
MCSP∊ BQP⇒ new circuit 
lower bound for BQE

Average-case complexity
● [Hirahara’18]: an approximate version of 

MCSP is NP-hard⇒equivalence of worst- 
and average-case hardness of NP

MCSP
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Why do we study quantum MCSP

● We attended the MCSP workshop in STOC 2020 
○ Hardness is mysterious
○ Connect many problems in TCS

● MCSP is asking complexity of classical circuit complexity for classical 
objects (i.e., boolean functions).

● How about complexity of quantum circuit complexity for 
classical/quantum objects (such as quantum states, unitary matrices, 
and Boolean functions)

Goal: 
● Study the complexity of problems asking for quantum circuit complexity 

of quantum objects
● Connects quantum problems through quantum MCSP

“Understand quantum computing through the lens of meta-complexity”



Quantum MCSP: boolean function/quantum circuit

Boolean Minimum Quantum Circuit Size Problem (MQCSP): 

● Input: Truth table T of f: {0, 1}n -> {0, 1} and an integer t 
● Output: quantum circuit that can compute f by using at most t gates? 

 

Unitary Minimum Quantum Circuit Size Problem (UMCSP): 

● Input: Matrix M of a unitary U∈CNxN and 1t 
● Output: quantum circuit that can compute U by using at most t gates? 

 

State Minimum Quantum Circuit Size Problem (SMCSP): 

● Input 1: Vector V of an n-qubit state |s>∈CN and an integer 1t 
● Input 2: Access to arbitrarily many copies of |s>, 1n, and 1t

● Output: quantum circuit that can compute |s> by using at most t gates? 
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Quantum states
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● Input:
● This represents a 2poly(n)-dimensional vector 

n-qubit quantum state:



Quantum gates

Unitary operator on n qubits: 

 

Quantum universal gate set: CNOT + all single-qubit unitaries
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Measurement: Extract classical information from quantum 
information.

Schrödinger’s Cat: 
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https://www.schrodinger.com/
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Properties of QC that affects quantum MCSP 

● Quantum computing is generally random and erroneous
○ Decision problem → Promise problems

● Quantum circuit is reversible
○ Search-to-decision reduction and self-reduction for UMCSP and 

SMCSP
● Ancilla qubits

○ Make the problems “harder” (NP → QCMA)
● Various universal quantum gate sets

○ Certain results only hold for particular gate sets. 
● ヨSmall classical circuit ⇒ ヨSmall quantum circuit



MQCSP

● Hardness of MQCSP
● MQCSP and cryptography
● MQCSP and learning theory
● MQCSP and circuit lower bounds



Unconditional hardness of MQCSP

Boolean Minimum Quantum Circuit Size Problem (MQCSP): 

● Input: Truth table T of f: {0, 1}n -> {0, 1} and an integer t (0 < t < 2n)
● Output: quantum circuit that can compute f by using at most t gates? 

 
1. MQCSP ∊ QCMA

• QCMA: Like MA, but allowing efficient quantum verifier and classical witness
• Why not in NP? Ancilla qubits!

2. Multi-output MQCSP is NP-hard
• “Quantize” the classical Np-hardness result of multi-output MCSP 

[Ilango-Loff-Oliveira’20]
• Depends on the universal quantum gate set
• Under randomized reduction

3. MQCSP is SZK-hard
• MQCSP oracle can break PRG
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NP

Suppose f has quantum circuit size ≤ t, 
● Let C be the quantum circuit that computes f 

without using any ancilla qubits. 
● V cannot run C on x∈{0,1}n since it only has 

classical power.
● Since we allow V to run in 2O(n), we can compute 

the unitary of C that takes O(22n) time.
   C

n qubits

What if we allow poly(n) ancilla 
qubits? 

poly(n) qubits

Now, this approach takes time 2poly(n) to 
compute the unitary matrix of C, which 
is not efficient.  

Okay, we don’t know how to put it into NP 
yet….

But we can put it into “QCMA” 

NP

QCMA



MQCSP ∈ QCMA

C
poly(n) qubits

n qubits

V P

f and t

CC(f) ≤ t?

The circuit C

QPT verifier Classical 
certificate

QCMA: Like MA, but with quantum efficient verifier

V: 
● Implement C
● Run C on |x,0> for all x∈{0,1}n

● Check if it is consistent with T(f). 

● When O(n) ancilla qubits, MQCSP∈NP
● When ω(n) ancilla qubits, MQCSP∈QCMA

NPNP

QCMA
Allow superlinear 
ancilla qubits



MQCSP and cryptography

1. ∃ quantum-secure OWF ⇒ MQCSP ∉ BQP 
○ PRG paradigm

2. Suppose ∃post-quantum iO. Then NP⊄coRQP ⇒ MQCSP ∉ BQP 
○ coRQP: quantumly polynomial time with perfect soundness and 

bounded-error completeness
○ The other direction is unknown since MQCSP is unknown to be in 

NP

Main questions: 
● Use the hardness of MQCSP to build cryptographic primitives
● Cryptographic primitives ⇒ hardness of MQCSP



MQCSP and learning theory

1. PAC learn quantum circuits

∃ efficient PAC learning algorithms for BQP/poly ⇔ ∃ an efficient 
randomized algorithm for MQCSP

2. Quantum learning algorithms for class C

∃ efficient quantum learning algorithms for PAC learn a circuit class C 
⇔ ∃ an efficient quantum algorithm for C-MQCSP

● Follow [Arunachalam et al.’19]
● Relate quantum learning theory to the hardness of MQCSP



MQCSP and circuit lower bounds

1. Quantum circuit lower bounds
a. MQCSP∊BQP ⇒ BQE  and BQPQCMA⊄BQSIZE[nk] for any k

i. Quantum natural property against quantum circuit classes
ii. Diagonalization lemma for quantum circuits

2. Hardness amplification
a. MQCSP∊BQP ⇒ ∃BQP alg:  f where QCC(f)=2Ω(n)  → 2Ω(n) f’s where f 

QCC(f)=2Ω(n)/Ω(n)
3. Hardness magnification

a. Gap-MQCSP ∉ BQSIZE[2n+O(⇃n)] ⇒ QCMA ⊄ BQSIZE[nk] for any k
4. Fine-grained complexity

a. QETH ⇒ No(loglog N)-hardness of MQCSP*
i. QETH: k-SAT cannot be solved in quantum 2o(n)-time



Quantum MCSP for Quantum objects

Unitary Minimum Quantum Circuit Size Problem (UMCSP): 

● Input: Matrix M of a unitary U∈CNxN and 1t 
● Output: quantum circuit C with size ≤t that can compute U

 

State Minimum Quantum Circuit Size Problem (SMCSP): 

● Input 1: Vector V of an n-qubit state |s>∈CN and an integer 1t 
● Input 2: Access to arbitrarily many copies of |s>, 1n, and 1t

● Output: quantum circuit that can compute |s> by using at most t gates? 

 



Our results for UMCSP and SMCSP

● UMCSP and SMCSP are in QCMA

● Reductions for UMCSP and SMCSP

○ Search-to-decision reductions

○ Self-reduction

● Applications of UMCSP and SMCSP



SMCSP is in QCMA

SMCSP is in QCMA

● Witness: quantum circuit C of size ≤t that computes |s>
● Verification:

○ SMCSP: Swap test on  |s> and C|0>
● Prepare |s> from the inputs

○ Input 1: Vector V of an n-qubit state |s>∈CN 
■ Given V, one can prepare |s> using 2n controlled rotations

○ Input 2: Access to arbitrarily many copies of |s>



UMCSP is in QCMA

● Naive approach: Swap test for all computational-basis states
○ Fail! C and U can differ on superposition states

■ E.g., C(|0>+|1>) = |0> - |1>. But, U(|0>+|1>) = |0>+|1>
○ Tests on all computational basis give no information about the phase

■ E.g., Cannot distinguish - |1> and |1>
○ Entanglement between output qubits and ancilla qubits

● Coherent test: Swap test on all states of the form

 



Search-to-decision reductions

● Unknown whether MCSP has search-to-decision reduction
○ MCSP∈BPP⇒randomized poly-time algorithms for finding an 

approximately optimal circuit [Carmosino et al.’16]
○ Search-to=decision reduction for Gap-MCSP [Hirahara’18]
○ Search-to-decision reduction for AveMCSP [Santhanam’19]
○ Search-to-decision reduction for MFSP [Ilango’20]
○ Relativization barrier for deterministic search-to-decision reduction 

for MCSP [Ren-Santhanam’21]



UMCSP is search-to-decision reducible

Main idea: Unitary is reversible => we can uncompute the gates from U 

The reduction (from search to decision)

● Goal: given U and an oracle for UMCSP, find the quantum circuit C
● Use UMCSP oracle to find s = CC(U)
● Set i=1
● While i<s

○ For all g in the universal gate set
■ if  UMCSP(Ug†, s-i) = 1, then g is the i-th gate of C. Denote as gi

● Return C=g1g2…gs

U Ug1† g1 Ug1†g2† g2 g1 ……

SMCSP is similar



Notes on the search-to-decision reductions

● Our results hold when the quantum circuits use no ancilla qubits
○ We don’t know the full unitary or states of the optimal circuit
○ When there are ancilla qubits, you need to guess both gi and the 

unitary/state on the ancilla qubits
○ When #ancilla qubits is small, we can use ε-net
○ When #ancilla qubits is large, it is an open problem

U
U⛒U’g1†

g1 ……



Self-reduction for SMCSP

Goal: Computes the quantum circuit complexity of an (n-1)-qubit state 

⇒ approximate the quantum circuit complexity of an n-qubit state

For any n-qubit quantum state, we can write

● Estimate a0 and a1 to precision ε/2
● Two cases: 

a. a0 or a1 ≤ ε/2
b. Both a0 and a1 > ε/2

Case a (suppose a1< ε/2):



Self-reduction for SMCSP

For any n-qubit quantum state, we can write

Case b (both a0 and a1≥ ε/2):
● Lower bound:

○ Measuring |ψ> O(1/ε) times gives |ψi> for desired i w.h.p.
● Upper bound:

○ Let Ci be the optimal circuit for |ψi>
○ The following circuits approximate |ψ>



Applications of UMCSP and SMCSP

● UMCSP 
○ Gap-MQCSP ≤ UMCSP

■ This reduction generalize many applications of MQCSP to UMCSP, 
e.g., hardness magnification, quantum circuit lower bound, and 

inverting OWF. 
● SMCSP

○ Break quantum pseudorandom states
○ Estimate wormhole volume under AdS/CFT correspondence and 

C=V conjecture using SMCSP oracle 
○ Solve succinct state tomography problem
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Conclusion

We study the hardness and applications of Quantum MCSP
● Boolean / quantum circuit complexity
● Unitary / quantum circuit complexity
● State / quantum circuit complexity

Open questions: 
● Unconditional hardness of quantum MCSPs?
● Hardness of quantum MCSP <=> quantum cryptographic primitives?
● Relationships between (quantum) MCSPs
● Worst-case to average-case (quantum) reductions? Average-case 

quantum MCSP? 
● Fine-grained complexity and quantum MCSP
● Quantum meta-complexity

Thank you! 


