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The Minimum Circuit Size Problem (MCSP) :

e [nput: Truth table T of function fand s
e Output: Decide whether there exist circuits of size <s that compute f

The input size is 2"

An efficient algorithm for MCSP runs in time poly( 2") = 2°.
When s <logn, MCSPE€P by brute force search.

When s > 2"/n(1+€), MCSP(f, s) = 1




The complexity of MCSP

NP-complete

MCSP is now here

Implies no one-way function exists

NP-intermediate problem

MCSP € NP (witness is the circuit, verifier just checks all 2" inputs.)
MCSP is unknown to be in any subclass of NP

SZK S BPPMSSP [Allender-Das’14]

Perebor conjecture: brute force search is the best [Trakhtenbrot’84]
Solving MCSP efficiently implies breaking OWF [Kabanets-Cai’00]
Several variants are NP-hard



NP-hardness results for variants of MCSP

Masek’97]. DNF-MCSP is NP-hard
Hirahara-Oliveira-Santhanam’19]: DNF, XOR-MCSP is NP-hard
llango’19]: MOCSP (an oracle version) is NP-hard
llango-Loff-Oliveira’20]: Multi-MCSP is NP-hard

llango’20]: Depth-d-formula-MCSP and MCSP* are NP-hard
Hirahara’22]: Partial-MCSP is NP-hard
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MCSP connects many problems in TCS

e [Hirahara8]: an approximate version of
MCSP is NP-hard=equivalence of worst-

and average-case hardness of NP
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Why do we study MCSP

e We attended the MCSP workshop in STOC 2020
o Hardness is mysterious
o Connect many problems in TCS

e MCSP is asking complexity of classical circuit complexity for classical
objects (i.e., boolean functions).

e How about complexity of quantum circuit complexity for
classical/quantum objects (such as quantum states, unitary matrices,
and Boolean functions)

Goal:
e Study the complexity of problems asking for quantum circuit complexity
of quantum objects
e Connects quantum problems through quantum MCSP

“Understand quantum computing through the lens of meta-complexity”



Quantum MCSP: boolean function/quantum circuit

Boolean Minimum Quantum Circuit Size Problem (MQCSP):

e Input: Truth table T of f: {0, 1}" -> {0, 1} and an integer t
e Output: quantum circuit that can compute f by using at most t gates?

Unitary Minimum Quantum Circuit Size Problem (UMCSP):

e Input: Matrix M of a unitary UeCNN and 1t
e Output: quantum circuit that can compute U by using at most t gates?

State Minimum Quantum Circuit Size Problem (SMCSP):.

e Input 1: Vector V of an n-qubit state Is>€CN and an integer 1t
e |nput 2: Access to arbitrarily many copies of Is>, 1", and 1
e Output: quantum circuit that can compute [s> by using at most t gates?




Quantum circuit model
0y — H

|0) N é—  —
0y — H

. S Y

0y — X

Quantum gates

Classical circuit model

|

| x

T

|

o

NAND

D

Da

15



Quantum circuit model
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Quantum states

n-qubit quantum state: Zje{o,l}" Cj|j>,Where Cj € Cand Zj |Cj|2 =1
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e Input: |z)and|0PoY(™)
e This represents a 2P°V"_dimensional vector
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Quantum gates -

Unitary operator on n qubits:
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Quantum universal gate set: CNOT + all single-qubit unitaries
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https://www.schrodinger.com/
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Properties of QC that affects quantum MCSP

e Quantum computing is generally
o Decision problem = Promise problems
e Quantum circuitis
o Search-to-decision reduction and self-reduction for UMCSP and
SMCSP

o Make the problems “harder” (NP » QCMA)
e \arious

o Certain results only hold for particular gate sets.
e Small circuit = 3Small circuit



MQCSP

Hardness of MQCSP

MQCSP and cryptography
MQCSP and learning theory
MQCSP and circuit lower bounds




Unconditional hardness of MQCSP

Boolean Minimum Quantum Circuit Size Problem (MQCSP):

e Input: Truth table T of f: {0, 1}" -> {0, 1} and an integert (0 <t < 2")
e Output: quantum circuit that can compute f by using at most t gates?

1. MQCSP €
- QCMA: Like MA, but allowing efficient and
- Why not in NP? Ancilla qubits!

2. MQCSP is NP-hard

- “Quantize” the classical Np-hardness result of multi-output MCSP
[llango-Loff-Oliveira’20]
« Depends on the universal quantum gate set
« Under randomized reduction
3. MQCSP is

« MQCSP oracle can break PRG




MQCSP € NP?

Suppose f has quantum circuit size <t,
e |et C be the quantum circuit that computes f
without using any ancilla qubits.

f:{0,1"->{01} n qubits
t € (0,27

The circuit C

CC(f) < t?




MQCSP € NP?

Suppose f has quantum circuit size <t,
e |et C be the quantum circuit that computes f
without using any ancilla qubits.
e V cannotrun C on x€{0,1}" since it only has
classical power.

f:{0,1"->{01} n qubits
t € (0,27

The circuit C
f\f
The algorithm and the
message are all classical

CC(f) < t?




MQCSP € NP?

Suppose f has quantum circuit size <t,
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MQCSP € NP?

Suppose f has quantum circuit size <t,
® Let C be the quantum circuit that computes f
without using any ancilla qubits.
e V cannotrun C on x€{0,1}" since it only has
classical power.
e Since we allow V to run in 2°M, we can compute
the unitary of C that takes O(22") time. ]

f:{0,11"->{01} V can check if unitary of C n qubitsC ——
t € (0,2 is consistent with f. So, the
problem is still in NP

The circuit C
vV P
,\/ / C1,1
' The algorithm and the
message are all classical \
Com 1

CC(f) < t?




What if we allow poly(n) ancilla

MQCSP € NP? qubits?

Suppose f has quantum circuit size <t,
® Let C be the quantum circuit that computes f
without using any ancilla qubits.
e V cannotrun C on x€{0,1}" since it only has
classical power.
e Since we allow V to run in 2°M, we can compute
the unitary of C that takes O(22") time.

f:{0,11"->{01} V can check if unitary of C n qubits
t € (0,2 is consistent with f. So, the
problem is still in NP

The circuit C
V j\/ P
v |
The algorithm and the
message are all classical

CC(f) < t?




Suppose f has quantum circuit size <t,
Let C be the quantum circuit that computes f

What if we allow poly(n) ancilla

MQCSP € NP? qubits?

without using any ancilla qubits.

V cannot run C on x€{01}" since it only has  Poly(n) qubi

classical power.

Since we allow V to run in 2°" we can compute

the unitary of C that takes O(22") time.

n qubitsC

Cl’2p0ly(n) \

Copoly(n) gpoly(n) /



Suppose f has quantum circuit size <t,
Let C be the quantum circuit that computes f

What if we allow poly(n) ancilla

MQCSP € NP? qubits?

without using any ancilla qubits.

V cannot run C on x€{01}" since it only has  Poly(n) qubi

classical power.

Siree-weallow V to run in 2°", we can-comptte

the-unitary Of C that tak:eﬁ?’)'ﬁme.

Now, this approach takes time 2P°Y" to
compute the unitary matrix of C, which
is not efficient.
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What if we allow poly(n) ancilla

MQCSP € NP? qubits?

Suppose f has quantum circuit size <t,
® Let C be the quantum circuit that computes f
without using any ancilla qubits.
e V cannot run C on x€{01}" since it only has  Poly(n) qubi
classical power.
e Sireeweallow V to run in 2°", we cancemptte

the-unitary Of C that takﬁ?’)‘ﬁme. . |

- C o
Now, this approach takes time 2°M0 yo 1 AUPIS T -
compute the unitary matrix of C, which - -
is not efficient.

Okay, we don’t know how to put it into NP / C11 SR C opoly(n) \
yet.... ’
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What if we allow poly(n) ancilla

MQCSP € NP? qubits?

Suppose f has quantum circuit size <t,
® Let C be the quantum circuit that computes f
without using any ancilla qubits.
e V cannot run C on x€{01}" since it only has  Poly(n) qubi
classical power.
e Sireeweallow V to run in 2°", we cancemptte

the-unitary Of C that tak:eﬁ?’)'ﬁme. . C |
Now, this approach takes time 2Pt " qubits ¢ — o
compute the unitary matrix of C, which ] |
is not efficient.

Okay, we don’t know how to put it into NP / C11 SR C opoly(n) \
yet.... ’

But we can put it into “QCMA”
\Czpoly(n),l s czpoly(n),zpoly(") /



Allow superlinear

MQCSP € QCMA ancilla qubits < ™\

QCMA: Like MA, but with quantum efficient verifier

V.
e ImplementC
e Run Con Ix,0> for all x€{0,1}"
e Check ifitis consistent with T(f).
poly(n) qublts
fandt
n qubits
The circuit C

) <t? OPT verifier Clastgical
certificate

e When O(n) ancilla qubits, MQCSP € NP
e When w(n) ancilla qubits, MQCSP& QCMA




MQCSP and cryptography

1. 3 quantum-secure OWF = MQCSP ¢ BQP
o PRG paradigm
2. Suppose 3 post-quantum iO. Then NPdcoRQP = MQCSP ¢ BQP
@ quantumly polynomial time with perfect soundness and
bounded-error completeness

o The other direction is unknown since MQCSP is unknown to be in
NP

Main questions:
e Use the hardness of MQCSP to build cryptographic primitives
e Cryptographic primitives = hardness of MQCSP



MQCSP and learning theory

1. PAC learn quantum circuits

3 efficient PAC learning algorithms for BQP/poly < 3 an efficient
randomized algorithm for MQCSP

2. Quantum learning algorithms for class C

3 efficient quantum learning algorithms for PAC learn a circuit class C
< 3 an efficient quantum algorithm for C-MQCSP

e F[ollow [Arunachalam et al.19]
e Relate quantum learning theory to the hardness of MQCSP



MQCSP and circuit lower bounds

1. Quantum circuit lower bounds
a. MQCSPEBQP = BQE and BQPY“MAGBQSIZE[nX] for any k
i.  Quantum natural property against quantum circuit classes
ii. Diagonalization lemma for quantum circuits
2. Hardness amplification
a. MQCSPEBQP = IBQP alg: f where QCC(f)=2%" » 290" f’s where f
QCC(f)=29"/Q(n)
3. Hardness magnification
a. Gap-MQCSP ¢ BQSIZE[2"°"W] = QCMA ¢ BQSIZE[n"] for any k
4. Fine-grained complexity
a. QETH = NelodledN_hardness of MQCSP*
i. QETH: k-SAT cannot be solved in quantum 2°"-time



Quantum MCSP for

Unitary Minimum Quantum Circuit Size Problem (UMCSP):

e Input: Matrix M of a unitary UeCNN and 1t
e Output: quantum circuit C with size <t that can compute U

V], [($[UTCly)[* ~ 1

State Minimum Quantum Circuit Size Problem (SMCSP):.

e Input 1: Vector V of an n-qubit state Is>€CN and an integer 1t
e Input 2: Access to arbitrarily many copies of Is>, 1", and 1!
e Output: quantum circuit that can compute [s> by using at most t gates?

(s|CIO)[* ~ 1




Our results for UMCSP and SMCSP

e UMCSP and SMCSP are in
° for UMCSP and SMCSP
o Search-to-decision reductions

o Self-reduction

e Applications of UMCSP and SMCSP



SMCSP isin QCMA

SMCSP is in QCMA

e Witness: quantum circuit C of size <t that computes |s>
e \Verification:

o SMCSP: Swap test on [s>and C|O>
e Prepare Is>from the inputs

o Input 1: Vector V of an n-qubit state Is>eCN
m Given V, one can prepare Is> using 2" controlled rotations
o Input 2: Access to arbitrarily many copies of [s>

[(]9)]
2

0) = H H /$= Pr[Outputs 0] =
®)
)

_|_
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UMCSP is in QCMA

e Naive approach: Swap test for all computational-basis states
o Faill C and U can differ on
m E.g., C(I0>+1>) = 10> - [1>. But, U(I0>+11>) = [O>+[1>
o Tests on all computational basis give no information about the
m E.g., Cannot distinguish - [1> and [1>

O between output qubits and ancilla qubits
e Coherent test: Swap test on all states of the form %(Ia) + |b)), foralla,b € {0,1}"

Key lemma: Suppose C passes the “standard basis test” + “coherent test”
with high probability. Then, for any a, b € {0,1}", define the ancilla states

|lxXa), |xp) as follows:
(Ut ® I)Cla, 0) =5 |a)lxa)
(Ut @ I)elb,0) ~4 |b)|xp)
We have |x,) =¢ |xp)-




Search-to-decision reductions

e Unknown whether MCSP has search-to-decision reduction

O

O O O O

MCSP €BPP=randomized poly-time algorithms for finding an
approximately optimal circuit [Carmosino et al.’16]
Search-to=decision reduction for Gap-MCSP [Hirahara8]
Search-to-decision reduction for AveMCSP [Santhanam’19]
Search-to-decision reduction for MFSP [llango’20]

Relativization barrier for deterministic search-to-decision reduction
for MCSP [Ren-Santhanam’21]



UMCSP is search-to-decision reducible

Main idea: Unitary is reversible =>we can uncompute the gates from U

The reduction (from search to decision)

e Goal: given U and an oracle for UMCSP, find the quantum circuit C
e Use UMCSP oracle to find s = CC(U)

e Seti=l

e Whilei<s

o For all g in the universal gate set
m if UMCSP(Ug’, s-i) =1, then g is the i-th gate of C. Denote as g,

Return C=g,g,.-9 SMCSP is similar




Notes on the search-to-decision reductions

e Our results hold when the quantum circuits use no ancilla qubits
o We don’t know the full unitary or states of the optimal circuit
o When there are ancilla qubits, you need to guess both g. and the
unitary/state on the ancilla qubits
o When #ancilla qubits is small, we can use e-net
o  When #ancilla qubits is large, it is an open problem




Self-reduction for SMCSP

Computes the quantum circuit complexity of an (n-1)-qubit state

= approximate the quantum circuit complexity of an n-qubit state
€ -max;—o, CC(|¢hs), 2¢) < CC(|4),€) < O(1) - (CC(|¢ho), €) + CO(|¢1),€)) + 3

For any n-qubit quantum state, we can write

) = ao|0)|vo) + a1|1)|4h1)

e Estimate a, and a, to precision e/2
® Two cases:

a. a,ora <g/2

b. Bothajanda, >e/2

Case a (suppose a < €/2):

|’¢> ~/ |0>‘¢0> mm) CC(|1)), €) can be bounded by CC(|0)[1g), €')



Self-reduction for SMCSP

e -max;_g1 CC([hi), 2¢) < CC([),€) < O(1) - (CC(|3ho), €) + CC(h1),€)) + 3

For any n-qubit quantum state, we can write

1Y) = ag|0)|vo) + ar|1)|9r)

Case b (both a,and a2 €/2):
e Lower bound:
o Measuring IY> O(1/€) times gives [.> for desired i w.h.p.
e Upper bound:
o Let C be the optimal circuit for [y >
o The following circuits approximate [(>

0) —R T X T X |-

01 o lc——




Applications of UMCSP and SMCSP

e UMCSP
o Gap-MQCSP < UMCSP
m This reduction generalize many applications of MQCSP to UMCSP,
e.g., hardness magnification, quantum circuit lower bound, and
inverting OWF.
e SMCSP

o Break quantum pseudorandom states

o Estimate wormhole volume under AdS/CFT correspondence and
C=V conjecture using SMCSP oracle
o Solve succinct state tomography problem




Conclusion

We study the hardness and applications of Quantum MCSP
e Boolean / quantum circuit complexity

e Unitary / quantum circuit complexity

e State / quantum circuit complexity



Conclusion

Open questions:

e Unconditional hardness of quantum MCSPs?

e Hardness of quantum MCSP <=> quantum cryptographic primitives?
e Relationships between (quantum) MCSPs

e Worst-case to average-case (quantum) reductions? Average-case
quantum MCSP?

Fine-grained complexity and quantum MCSP

Quantum meta-complexity

Thank you!



