Quantum meets MCSP

Nai-Hui Chia Rice University

Joint work with

Chi-Ning Chou (Harvard), Ruizhe Zheng (UT Austin), and Jiayu Zhang (Caltech)

Minimum Circuit Size Problem

The Minimum Circuit Size Problem (MCSP) :

- Input: Truth table *T* of function f and *s*
- Output: Decide whether there exist circuits of size ≤s that compute f

Minimum Circuit Size Problem

The Minimum Circuit Size Problem (MCSP) :

- Input: Truth table *T* of function f and *s*
- Output: Decide whether there exist circuits of size ≤s that compute f

- The input size is 2ⁿ
- An efficient algorithm for MCSP runs in time poly(2ⁿ) = 2^{O(n)}.
- When s < logn, MCSPEP by brute force search.
- When $s > 2^{n}/n(1+\epsilon)$, MCSP(f, s) = 1

The complexity of MCSP

NP-intermediate problem

- MCSP \in NP (witness is the circuit, verifier just checks all 2ⁿ inputs.)
- MCSP is unknown to be in any subclass of NP
- SZK \subseteq BPP^{MCSP} [Allender-Das'14]
- Perebor conjecture: brute force search is the best [Trakhtenbrot'84]
- Solving MCSP efficiently implies breaking OWF [Kabanets-Cai'00]
- Several variants are NP-hard

NP-hardness results for variants of MCSP

- [Masek'97]: DNF-MCSP is NP-hard
- [Hirahara-Oliveira-Santhanam'19]: DNF_o XOR-MCSP is NP-hard
- [llango'19]: MOCSP (an oracle version) is NP-hard
- [Ilango-Loff-Oliveira'20]: Multi-MCSP is NP-hard
- [llango'20]: Depth-d-formula-MCSP and MCSP* are NP-hard
- [Hirahara'22]: Partial-MCSP is NP-hard

Circuit Lowr Bound

- [Razborov-Rudich'97]: MCSP∈ P⇒ natural property against P/poly
- [Kabanets-Cai'00]: MCSP∈
 P⇒ circuit lower bound for
 P^{NP}
- [Murray-Williams 15]:
 MCSP∈ P⇒EXP ≠ ZPP
 - [Arunachalam et al.'19]:
 MCSP∈ BQP⇒ new circuit
 lower bound for BQE

Circuit Lowr Bound

- [Razborov-Rudich'97]: MCSP∈ P⇒ natural property against P/poly
- [Kabanets-Cai'00]: MCSP∈
 P⇒ circuit lower bound for
 P^{NP}
- [Murray-Williams 15]:
 MCSP∈ P⇒EXP ≠ ZPP
- [Arunachalam et al.'19]: MCSP∈ BQP⇒ new circuit lower bound for BQE

Learning theory

 [Carmosino et al.'16]: MCSP∈BPP⇒f ∈ size(poly) can be PAC-learned in BPP

Cryptography

- [Kabanets-Cai'00]:
 MCSP ∈ BPP⇒∄
 PRG⇒∄ OWF
- [Allender-Da'14]: SZK \subseteq BPP^{MCSP}
- [Impagliazzo et al.'18]: Indistinguishable obfuscator(iO) ⇒ SAT ≤_R MCSP

MCSP

Circuit Lowr Bound

- [Razborov-Rudich'97]: MCSP∈ P⇒ natural property against P/poly
- [Kabanets-Cai'00]: MCSP∈
 P⇒ circuit lower bound for
 P^{NP}
- [Murray-Williams 15]:
 MCSP∈ P⇒EXP ≠ ZPP
- [Arunachalam et al.'19]: MCSP∈ BQP⇒ new circuit lower bound for BQE

Learning theory

 [Carmosino et al.'16]: MCSP∈BPP⇒f ∈ size(poly) can be PAC-learned in BPP

Average-case complexity

 [Hirahara'18]: an approximate version of MCSP is NP-hard⇒equivalence of worstand average-case hardness of NP

Cryptography

- [Kabanets-Cai'00]:
 MCSP ∈ BPP⇒∄
 PRG⇒∄ OWF
- [Allender-Da'14]: SZK \subseteq BPP^{MCSP}
- [Impagliazzo et al.'18]: Indistinguishable obfuscator(iO) ⇒ SAT ≤_R MCSP

MCSP

Circuit Lowr Bound

- [Razborov-Rudich'97]: MCSP∈ P⇒ natural property against P/poly
- [Kabanets-Cai'00]: MCSP∈
 P⇒ circuit lower bound for
 P^{NP}
- [Murray-Williams 15]:
 MCSP∈ P⇒EXP ≠ ZPP
- [Arunachalam et al.'19]: MCSP∈ BQP⇒ new circuit lower bound for BQE

Learning theory

 [Carmosino et al.'16]: MCSP∈BPP⇒f ∈ size(poly) can be PAC-learned in BPP

Why do we study quantum MCSP

- We attended the MCSP workshop in STOC 2020
 - Hardness is mysterious
 - Connect many problems in TCS

Why do we study quantum MCSP

- We attended the MCSP workshop in STOC 2020
 - Hardness is mysterious
 - Connect many problems in TCS
- MCSP is asking complexity of classical circuit complexity for classical objects (i.e., boolean functions).
- How about complexity of quantum circuit complexity for classical/quantum objects (such as quantum states, unitary matrices, and Boolean functions)

Why do we study quantum MCSP

- We attended the MCSP workshop in STOC 2020
 - Hardness is mysterious
 - Connect many problems in TCS
- MCSP is asking complexity of classical circuit complexity for classical objects (i.e., boolean functions).
- How about complexity of quantum circuit complexity for classical/quantum objects (such as quantum states, unitary matrices, and Boolean functions)

Goal:

- Study the complexity of problems asking for quantum circuit complexity of quantum objects
- Connects quantum problems through quantum MCSP

"Understand quantum computing through the lens of meta-complexity"

Quantum MCSP: boolean function/quantum circuit

Boolean Minimum Quantum Circuit Size Problem (MQCSP):

- Input: Truth table T of f: {0, 1}ⁿ -> {0, 1} and an integer t
- **Output:** quantum circuit that can compute f by using at most t gates?

Unitary Minimum Quantum Circuit Size Problem (UMCSP):

- Input: Matrix M of a unitary $U \in C^{N \times N}$ and 1^t
- **Output:** quantum circuit that can compute U by using at most t gates?

State Minimum Quantum Circuit Size Problem (SMCSP):

- Input 1: Vector V of an n-qubit state $|s\rangle \in \mathbb{C}^{N}$ and an integer 1^t
- Input 2: Access to arbitrarily many copies of Is>, 1ⁿ, and 1^t
- **Output:** quantum circuit that can compute |s> by using at most t gates?

Classical circuit model

Quantum circuit model

(Measurement)

Quantum states

n-qubit quantum state: $\sum_{j\in\{0,1\}^n}c_j|j
angle,$ where $c_j\in\mathbb{C}$ and $\sum_j|c_j|^2=1$

• Input: $|x\rangle$ and $|0^{\mathsf{poly}(n)}
angle$

• This represents a 2^{poly(n)}-dimensional vector

Quantum universal gate set: CNOT + all single-qubit unitaries

Measurement: Extract classical information from quantum information.

$$\sum_{j \in \{0,1\}^n} c_j |j\rangle \xrightarrow{\text{Measure}} j \text{ with probability } |c_j|^2$$

Schrödinger's Cat:

$$\frac{1}{\sqrt{2}}|Dead\rangle + \frac{1}{\sqrt{2}}|Live\rangle \xrightarrow{Measure} \mathsf{Dead} \ or \ \mathsf{Live} \ w.p. \ 1/2$$

Quantum circuit

Properties of QC that affects quantum MCSP

- Quantum computing is generally random and erroneous
 - Decision problem → Promise problems
- Quantum circuit is reversible
 - Search-to-decision reduction and self-reduction for UMCSP and SMCSP
- Ancilla qubits
 - Make the problems "harder" (NP \rightarrow QCMA)
- Various universal quantum gate sets
 - Certain results only hold for particular gate sets.
- ∃Small classical circuit ⇒ ∃Small quantum circuit

MQCSP

- Hardness of MQCSP
- MQCSP and cryptography
- MQCSP and learning theory
- MQCSP and circuit lower bounds

Unconditional hardness of MQCSP

Boolean Minimum Quantum Circuit Size Problem (MQCSP):

- Input: Truth table T of f: $\{0, 1\}^n \rightarrow \{0, 1\}$ and an integer t $(0 < t < 2^n)$
- **Output:** quantum circuit that can compute f by using at most t gates?

1. MQCSP ∈ QCMA

- QCMA: Like MA, but allowing efficient quantum verifier and classical witness
- Why not in NP? Ancilla qubits!
- 2. Multi-output MQCSP is NP-hard
 - "Quantize" the classical Np-hardness result of multi-output MCSP
 [llango-Loff-Oliveira'20]
 - Depends on the universal quantum gate set
 - Under randomized reduction
- 3. MQCSP is SZK-hard
 - MQCSP oracle can break PRG

Suppose f has quantum circuit size \leq t,

• Let C be the quantum circuit that computes f without using any ancilla qubits.

- Let C be the quantum circuit that computes f without using any ancilla qubits.
- V cannot run C on $x \in \{0,1\}^n$ since it only has classical power.

- Let C be the quantum circuit that computes f without using any ancilla qubits.
- V cannot run C on $x \in \{0,1\}^n$ since it only has classical power.
- Since we allow V to run in 2^{O(n)}, we can compute the unitary of C that takes O(2²ⁿ) time.

- Let C be the quantum circuit that computes f without using any ancilla qubits.
- V cannot run C on $x \in \{0,1\}^n$ since it only has classical power.
- Since we allow V to run in 2^{O(n)}, we can compute the unitary of C that takes O(2²ⁿ) time.

What if we allow poly(n) ancilla $MQCSP \in NP$? qubits?

NP

- Let C be the quantum circuit that computes f without using any ancilla qubits.
- V cannot run C on x∈{0,1}ⁿ since it only has classical power.
- Since we allow V to run in 2^{O(n)}, we can compute the unitary of C that takes O(2²ⁿ) time.

What if we allow poly(n) ancilla $MQCSP \in NP$? qubits?

Suppose f has quantum circuit size \leq t,

- Let C be the quantum circuit that computes f without using any ancilla qubits.
- V cannot run C on $x \in \{0,1\}^n$ since it only has poly(n) c classical power.
- Since we allow V to run in 2^{O(n)}, we can compute the unitary of C that takes O(2²ⁿ) time.

poly(n) qubits n qubits $c_{1,1}$ $c_{1,2^{poly(n)}}$ $c_{2^{poly(n)},1}$ $c_{2^{poly(n)} \cdot 2^{poly(n)}}$

NP

• When $\omega(n)$ ancilla qubits, MQCSP \in QCMA

MQCSP and cryptography

- 1. \exists quantum-secure OWF \Rightarrow MQCSP \notin BQP
 - PRG paradigm
- 2. Suppose \exists post-quantum iO. Then NP \triangleleft coRQP \Rightarrow MQCSP \notin BQP
 - coRQP: quantumly polynomial time with perfect soundness and bounded-error completeness
 - The other direction is unknown since MQCSP is unknown to be in NP

Main questions:

- Use the hardness of MQCSP to build cryptographic primitives
- Cryptographic primitives ⇒ hardness of MQCSP

MQCSP and learning theory

1. PAC learn quantum circuits

∃ efficient PAC learning algorithms for BQP/poly ⇔ ∃ an efficient randomized algorithm for MQCSP

2. Quantum learning algorithms for class C

∃ efficient quantum learning algorithms for PAC learn a circuit class C

- \Leftrightarrow \exists an efficient quantum algorithm for C-MQCSP
- Follow [Arunachalam et al.'19]
- Relate quantum learning theory to the hardness of MQCSP

MQCSP and circuit lower bounds

1. Quantum circuit lower bounds

- a. MQCSP \in BQP \Rightarrow BQE and BQP^{QCMA} \notin BQSIZE[n^k] for any k
 - i. Quantum natural property against quantum circuit classes
 - ii. Diagonalization lemma for quantum circuits
- 2. Hardness amplification
 - a. MQCSP∈BQP $\Rightarrow \exists$ BQP alg: f where QCC(f)=2^{$\Omega(n)$} $\Rightarrow 2^{\Omega(n)}$ f's where f QCC(f)=2^{$\Omega(n)/\Omega(n)$}
- 3. Hardness magnification
 - a. Gap-MQCSP \notin BQSIZE[2^{n+O(Jn)}] \Rightarrow QCMA \notin BQSIZE[n^k] for any k
- 4. Fine-grained complexity
 - a. QETH \Rightarrow N^{o(loglog N)}-hardness of MQCSP*
 - i. QETH: k-SAT cannot be solved in quantum $2^{o(n)}$ -time
Quantum MCSP for **Quantum objects**

Unitary Minimum Quantum Circuit Size Problem (UMCSP):

- Input: Matrix M of a unitary $U \in C^{N \times N}$ and 1^t
- **Output:** quantum circuit C with size ≤t that can compute U

 $ee ee \psi
angle, \, \left| \langle \psi ert U^{\dagger} C ert \psi
angle
ight|^2 pprox 1$

State Minimum Quantum Circuit Size Problem (SMCSP):

- Input 1: Vector V of an n-qubit state $|s\rangle \in \mathbb{C}^{N}$ and an integer 1^t
- Input 2: Access to arbitrarily many copies of Is>, 1ⁿ, and 1^t
- **Output:** quantum circuit that can compute |s> by using at most t gates?

$$\left|\langle s|C|0
angle
ight|^{2}pprox 1$$

Our results for UMCSP and SMCSP

- UMCSP and SMCSP are in QCMA
- **Reductions** for UMCSP and SMCSP
 - Search-to-decision reductions
 - Self-reduction
- Applications of UMCSP and SMCSP

SMCSP is in **QCMA**

SMCSP is in **QCMA**

- Witness: quantum circuit C of size ≤t that computes |s>
- Verification:
 - \circ **SMCSP:** Swap test on Is> and CIO>
- Prepare Is> from the inputs
 - Input 1: Vector V of an n-qubit state $|s\rangle \in \mathbb{C}^{N}$
 - Given V, one can prepare |s> using 2ⁿ controlled rotations
 - Input 2: Access to arbitrarily many copies of |s>

UMCSP is in **QCMA**

• Naive approach: Swap test for all computational-basis states

• Fail! C and U can differ on superposition states

• E.g., C(|0>+|1>) = |0> - |1>. But, U(|0>+|1>) = |0>+|1>

Tests on all computational basis give no information about the phase

E.g., Cannot distinguish - |1> and |1>

- Entanglement between output qubits and ancilla qubits
- Coherent test: Swap test on all states of the form $\frac{1}{\sqrt{2}}(|a\rangle + |b\rangle)$, for all $a, b \in \{0, 1\}^n$

Key lemma: Suppose C passes the "standard basis test" + "coherent test" with high probability. Then, for any $a, b \in \{0,1\}^n$, define the ancilla states $|\chi_a\rangle$, $|\chi_b\rangle$ as follows:

$$\begin{aligned} & (U^{\dagger} \otimes I) \mathcal{C} | a, 0 \rangle \approx_{\delta} | a \rangle | \chi_{a} \rangle \\ & (U^{\dagger} \otimes I) \mathcal{C} | b, 0 \rangle \approx_{\delta} | b \rangle | \chi_{b} \rangle \end{aligned}$$

We have $|\chi_a\rangle \approx_{\epsilon} |\chi_b\rangle$.

Search-to-decision reductions

- Unknown whether MCSP has search-to-decision reduction
 - MCSP∈BPP⇒randomized poly-time algorithms for finding an approximately optimal circuit [Carmosino et al.'16]
 - Search-to=decision reduction for Gap-MCSP [Hirahara'18]
 - Search-to-decision reduction for AveMCSP [Santhanam'19]
 - Search-to-decision reduction for MFSP [llango'20]
 - Relativization barrier for deterministic search-to-decision reduction for MCSP [Ren-Santhanam'21]

UMCSP is search-to-decision reducible

Main idea: Unitary is **reversible** => we can **uncompute** the gates from U

The reduction (from search to decision)

- Goal: given U and an oracle for UMCSP, find the quantum circuit C
- Use UMCSP oracle to find s = CC(U)
- Set i=1
- While i<s
 - For all g in the universal gate set
 - if UMCSP(Ug⁺, s-i) = 1, then g is the i-th gate of C. Denote as g_i

Notes on the search-to-decision reductions

- Our results hold when the quantum circuits **use no ancilla qubits**
 - We don't know the full unitary or states of the optimal circuit
 - When there are ancilla qubits, you need to guess both g_i and the unitary/state on the ancilla qubits
 - When #ancilla qubits is small, we can use ϵ -net
 - When #ancilla qubits is large, it is an open problem

Self-reduction for SMCSP

Goal: Computes the quantum circuit complexity of an (n-1)-qubit state

⇒ approximate the quantum circuit complexity of an n-qubit state

 $\epsilon \cdot \max_{i=0,1} CC(|\psi_i
angle, 2\epsilon) \leq CC(|\psi
angle, \epsilon) \leq O(1) \cdot (CC(|\psi_0
angle, \epsilon) + CC(|\psi_1
angle, \epsilon)) + 3$

For any n-qubit quantum state, we can write

$$|\psi
angle = a_0|0
angle|\psi_0
angle + a_1|1
angle|\psi_1
angle$$

- Estimate a_0 and a_1 to precision $\epsilon/2$
- Two cases:
 - a. $a_0 \text{ or } a_1 \le \varepsilon/2$
 - b. Both a_0 and $a_1 > \epsilon/2$

Case a (suppose $a_1 < \epsilon/2$): $|\psi\rangle \approx |0\rangle |\psi_0\rangle \implies CC(|\psi\rangle, \epsilon)$ can be bounded by $CC(|0\rangle |\psi_0\rangle, \epsilon')$

Self-reduction for SMCSP

 $\epsilon \cdot \max_{i=0,1} CC(|\psi_i\rangle, 2\epsilon) \leq CC(|\psi\rangle, \epsilon) \leq O(1) \cdot (CC(|\psi_0\rangle, \epsilon) + CC(|\psi_1\rangle, \epsilon)) + 3$

For any n-qubit quantum state, we can write

$$|\psi
angle = a_0|0
angle|\psi_0
angle + a_1|1
angle|\psi_1
angle$$

Case b (both a_0 and $a_1 \ge \epsilon/2$):

- Lower bound:
 - Measuring $|\psi\rangle$ O(1/ ε) times gives $|\psi_i\rangle$ for desired i w.h.p.
- Upper bound:
 - Let C_i be the optimal circuit for $|\psi_i\rangle$
 - The following circuits approximate $|\psi\rangle$

Applications of UMCSP and SMCSP

- UMCSP
 - Gap-MQCSP ≤ UMCSP
 - This reduction generalize many applications of MQCSP to UMCSP, e.g., hardness magnification, quantum circuit lower bound, and inverting OWF.
- SMCSP
 - Break quantum pseudorandom states
 - Estimate wormhole volume under AdS/CFT correspondence and C=V conjecture using SMCSP oracle
 - Solve succinct state tomography problem

Conclusion

We study the hardness and applications of Quantum MCSP

- Boolean / quantum circuit complexity
- Unitary / quantum circuit complexity
- State / quantum circuit complexity

Conclusion

We study the hardness and applications of Quantum MCSP

- Boolean / quantum circuit complexity
- Unitary / quantum circuit complexity
- State / quantum circuit complexity

Open questions:

- Unconditional hardness of quantum MCSPs?
- Hardness of quantum MCSP <=> quantum cryptographic primitives?
- Relationships between (quantum) MCSPs
- Worst-case to average-case (quantum) reductions? Average-case quantum MCSP?
- Fine-grained complexity and quantum MCSP
- Quantum meta-complexity

Thank you!